A SUBSTITUTION PROPERTY

ALAN C. WILDE

Let $(X,+, \cdot)$ be a commutative ring with identity 1 , and let $X^{\prime}=$ $\left\{x \in X \mid x^{2}=x\right\}$. Also, let $x \cup y=x+y-x y, x \cap y=x y$, and $\bar{x}=1-x$. Then it is known that $\left\langle X^{\prime}, \cup, \cap,-\right\rangle$ is a Boolean algebra. We want to explore a property of a function $u:\left(X^{\prime}\right)^{m} \rightarrow X^{\prime}$ and a function $h:\left(X^{\prime}\right)^{n} \rightarrow X^{\prime}$ that are of the form $u\left(x_{1}, \ldots, x_{m}\right)=\sum a_{i_{1} \ldots i_{m}} x_{1}{ }^{\left(i_{1}\right)} \ldots x_{m}{ }^{\left(i_{m}\right)}$ and $h\left(y_{1}, \ldots, y_{n}\right)=$ $\sum b_{i_{1} \ldots i_{n}} y_{1}{ }^{\left(i_{1}\right)} \ldots y_{n}{ }^{\left(i_{n}\right)}$ where $i_{k}, a_{i_{1} \ldots i_{m}}, b_{i_{1} \ldots i_{n}} \in\{0,1\}, x_{i}{ }^{(1)}=x_{i}$, and $x_{i}{ }^{(0)}=\overline{x_{i}}$ (i.e., disjunctive normal form). If we let $v\left(x_{i}\right)=u\left(x_{1}, \ldots, x_{i}\right.$, . . ., x_{m}) with all variables constant except x_{i}, we can prove the following: Theorem $v\left(h\left(y_{1}, \ldots, y_{n}\right)\right)=v(1) v(0) \prod_{k=1}^{n} v\left(y_{k}\right)+v(1) \overline{v(0)} \sum b_{i_{1} \ldots i_{n}} \prod_{k=1}^{n} v^{\left(i_{k}\right)}\left(y_{k}\right)$ $+\overline{v(1)} v(0) \sum \overline{b_{i_{1} \ldots i_{n}}} \prod_{k=1}^{n} v^{\left(1-i_{k}\right)}\left(y_{k}\right)$.

Proof: We verify equation (1) by truth-value analysis, and then the Stone-Representation Theorem shows that (1) holds in a Boolean algebra. Substituting truth values j_{1}, \ldots, j_{n} for y_{1}, \ldots, y_{n}, we see that all terms vanish except those in which $i_{k}=j_{k}(1 \leqslant k \leqslant n)$. Thus it reduces to

$$
\begin{equation*}
v\left(h\left(j_{1}, \ldots, j_{n}\right)\right)=v(1) v(0)+b_{j_{1} \cdots j_{n}} v(1) \overline{v(0)}+\overline{b_{j_{1} \cdots j_{n}}} \overline{v(1)} v(0) \tag{*}
\end{equation*}
$$

If $b_{j_{1} \cdots j_{n}}=1$, the RHS 1 of (*) becomes $v(1) v(0)+v(1) \overline{v(0)}=v(1)$; if $b_{j_{1} \cdots j_{n}}=$ 0 , the RHS of $(*)$ equals $v(1) v(0)+\overline{v(1)} v(0)=v(0)$. But the LHS of (*) equals $v\left(b_{j_{1} \ldots j_{n}}\right)$ in any case. Thus we did the first part, and we are done.

Since $v(1) v(0) \overline{v(y)}=0$ and $\overline{v(1) v(0)} v(y)=0$ (by truth-value analysis and the Stone-Representation Theorem), terms of the form $v^{(i)}(1) v^{(i)}(0) \prod_{k=1}^{n} v^{\left(i_{k}\right)}\left(y_{k}\right)$ where one i_{k} does not equal i also equal 0 . The question occurs as to what are all the forms of $v\left(h\left(y_{1}, \ldots, y_{n}\right)\right)$ that are linear combinations of conjunctions containing $v(1), v(0), v\left(y_{1}\right), \ldots, v\left(y_{n}\right)$. All conjunctions are of the kind we discussed above and also of the form

[^0]$v(1) v(0) \prod_{k=1}^{n} v\left(y_{k}\right), v^{(i)}(1) v^{(1-i)}(0) \prod_{k=1}^{n} v^{\left(i_{k}\right)}\left(y_{k}\right)$, and $\overline{v(1) v(0)} \prod_{k=1}^{n} v\left(y_{k}\right)$. The middle kind are not 0 for all u and occur in (1), but the last kind is not 0 for all u and does not occur. We have then this:

Corollary An expression for $v\left(h\left(y_{1}, \ldots, y_{n}\right)\right)$ as a linear combination of conjunctions containing $v(1), v(0), v\left(y_{1}\right), \ldots, v\left(y_{n}\right)$ is the RHS of (1) plus a linear combination of terms of the form $v^{(i)}(1) v^{(i)}(0) \prod_{k=1}^{n} v^{\left(i_{k}\right)}\left(y_{k}\right)$ where at least one i_{k} does not equal i.

A simpler way of writing (1) is the following:

$$
\begin{align*}
v\left(h\left(y_{1}, \ldots, y_{n}\right)\right)= & v(1) v(0) \prod_{k=1}^{n} v\left(y_{k}\right)+v(1) \overline{v(0)} h\left(v\left(y_{1}\right), \ldots, v\left(y_{n}\right)\right) \\
& +\overline{v(1)} v(0) \bar{h}\left(\overline{v\left(y_{1}\right)}, \ldots, \overline{v\left(y_{n}\right)}\right)
\end{align*}
$$

where $\bar{h}\left(y_{1}, \ldots, y_{n}\right)=1-h\left(y_{1}, \ldots, y_{n}\right)$. This substitution property holds for all u and h.

The theorem has as a corollary the "generalized distributive law," see [1]:

$$
\begin{equation*}
u(x, y \equiv z)=u(x, y) \equiv u(x, z) \equiv u(x, 0) \tag{2}
\end{equation*}
$$

Noting again that $v(1) v(0) \overline{v(y)}=0$ and $\overline{v(1) v(0)} v(y)=0$, and using the notation of this paper, we see that (2) takes the form

$$
\begin{aligned}
v(y \bar{z}+\bar{y} z)= & {[v(y) \overline{v(z)}+\overline{v(y)} v(z)] \overline{v(0)}+[v(y) v(z)+\overline{v(y) v(z)}] v(0) } \\
= & v(y) \overline{v(z)} v(1) \overline{v(0)}+\overline{v(y) v(z) v(1) \overline{v(0)}+v(y) v(z) v(1) v(0)} \\
& +v(y) v(z) \overline{v(1)} v(0)+\overline{v(y) v(z) v(1)} v(0)
\end{aligned}
$$

which we get also by (1).

REFERENCE

[1] Wilde, Alan C., "Generalizations of the distributive and associative laws," Notre Dame Journal of Formal Logic, vol. XV (1974), pp. 491-493.

The University of Michigan
Ann Arbor, Michigan

[^0]: 1. The abbreviations RHS and LHS stand for "right-hand side"' and "left-hand side"" respectively.
