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Introduction* In 1962 Andrzej Grzegorczyk introduced the concept of
constructive categoricity. In his paper [9], he defined this new notion,
displayed some of its properties and made some claims for the superiority
of this notion over those used over the past sixty years. 'Superior,' he
claimed, in that his notion captured more closely the intuitive concept of
categoricity. Yet it was not made clear what the intuitive concept of
categoricity was nor how and why these previous attempts to formalize the
intuitive content of categoricity failed. Thus Grzegorczyk's claim to
success became as problematic as the failure of previous attempts.

Chapter I of this paper determines what is the intuitive content of the
concept of categoricity. It does this by surveying some of the major works
on the concept of categoricity and determining what properties these
logicians and mathematicians claimed for systems that they denoted as
categorical. A common thread of analysis runs through the works of
Dedekind, Veblen, Huntington, Tarski, Carnap, Los, and Vaught. Once this
has been established Chapter I proceeds with a discussion of the formaliza-
tions of this notion previous to Grzegorczyk and concludes by indicating
that some of the properties of the intuitive concept are mutually exclusive;
others problematical. Chapter II is a formal analysis of some of the
properties of the notion of constructive categoricity. By building on the
results of Grzegorczyk a second characterization of the concept of
constructive categoricity is arrived at, and, subsequently, shown to be
equivalent to Grzegorczyk's original characterization. The formal rela-
tionships between constructive categoricity and another formalization,
namely, categoricity in power are proved. Having determined some
further formal properties of constructive categoricity, it is possible to
assess Grzegorczyk's claims to having more closely formalized the
intuitive content of categoricity. This is done in Chapter III which
concludes with a summary of the unsolved problems that have been raised
by this thesis about the concept of categoricity.

CHAPTER I

In dealing with representation theorems1 and attempted axiomatizations
of specific mathematical theories, it is known beforehand (disregarding its
philosophically problematical nature) what specific domains of mathe-
matical objects are to be described and at least some of the properties

*This paper is a thesis written under the direction of Professor Boleslaw Sobociήski
and submitted to the Graduate School of the University of Notre Dame, in partial
fulfillment of the requirements for the degree of Doctor of Philosophy with Philosophy as
the major subject in February 1971. I am very much indebted to Professor Sobociriski
for suggesting the problem and for his considerable help in the preparation of this paper.

Also, I wish to acknowledge the fellowship given me during 1961-1964 by the
Department of Health, Education, and Welfare under the National Defense Education Act,
thus allowing me to begin my graduate career.
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these objects are to have. It does happen that in describing some
mathematical domains not only is the minimal set of properties known, but
also the maximal set. Thus, in such a case, it is intended to describe
completely one and only one set of mathematical objects. For example,
this is the intention in axiomatizing the arithmetic of natural numbers.
Of course, having various individual mathematical domains, it is natural to
ask what objects and properties are common to several of these domains.
Here the intention is to describe interesting properties of many mathemati-
cal domains and such is the intention of group theory. Thus, we have, for
example, the theory of natural numbers, the theory of real numbers, the
theory of dense ordering, and the theory of Euclidean 3-space which
attempt to describe one and only one mathematical domain whereas the
theory of groups, theory of n-dimensional vector spaces, Boolean algebras,
and the theory of categories attempt to describe properties common to
many. It is natural to ask, then, of any axiomatization of the natural
numbers whether the axioms do, indeed, generate only a single domain or
whether through lack of specification do they incidentally describe some
other domain also? This, although vague now, can be tentatively identified
as the question of categoricity. Thus, an axiom system is categorical if
and only if it describes a single mathematical domain. How, it may be
asked, can it be determined whether one or many domains are being
described? In talking about axioms, meaning abstract or uninterpreted
sentences, a method of comparison of all possible realizations or interpre-
tations of the axioms would yield the desired result. Thus if it were
possible to choose arbitrarily any two realizations, call them A and B,
produce an interpretation of A in B and produce an interpretation of B in A
it could be said that they are essentially the same realization. When it is
shown for an axiom system that the collection of all possible interpreta-
tions is reducible by pair-wise mutual interpretability to but a single
realization, then obviously the axiom system describes a single domain and
is categorical. If such a reduction is not possible then the axioms are
non-categorical. The word 'same' used in the phrase 'same interpretation'
has in that context several meanings. 'Same interpretation' can mean that:
(1) the respective domains contain an identical set of true sentences (under
the interpretation); (2) the respective domains talk about an equivalent
number of objects; and (3) the respective domains contain vocabulary to
talk about an identical set of distinguished individual objects. Those axiom
systems whose realizations reduce to a single realization under the
relation of same interpretation in the sense of (1) are said to be categorical
in the general sense, or simply, categorical; those under the relation of
same interpretation in the sense of (1) and (2) are said to be categorical in
power; and those under the relation of same interpretation in the sense of
(1), (2), and (3) can be said to be constructively categorical provided the
number of objects in the domain is at most a countable infinity.

Although, historically, Veblen was the first to use the word cate-
goricity, the concept had been employed in earlier logical or mathematical
works. In Dedekind's [7], published in 1887, there is presented the
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following discussion of the natural numbers (they are called the number-

series N):

§132. Theorem. All simply infinite systems are similar (read: isomorphic)
to the number-series N and consequently by §33 also to one another.2

§133. Theorem. Every system which is similar to a simply infinite system
and therefore by §132, §33 to the number-series N is simply infinite.3

§134. Remark. By the two preceding theorems §132, §133, all simply infinite
systems form a class in the sense of §34. At the same time, with reference to
§71, §73 it is clear that every theorem regarding numbers, i.e., regarding the
elements n of the simply infinite system N set in order by the transformation
φ and indeed every theorem in which we leave entirely out of consideration the
special character of the elements n and discuss only such notions as arise
from the arrangement 0, possesses perfectly general validity for every other
simply infinite system Ω set in order by the transformation θ and its elements
v, and that the passage from N to Ω (e.g., also the translation of an arithmetic
theorem from one language into another) is effected by the transformation ψ
considered in §132, §133, which changes every element n of iVinto an element
v of Ω, i.e., into ψ(n). . . . By these remarks, as I believe, the definition of
the notion of numbers given in §73 is fully justified.*

Here Dedekind implies that since the domain of the natural numbers is

but a single mathematical domain and his definition of the natural numbers

leads to the result that all systems satisfying his definition are isomorphic,

his is indeed a correct definition. This is just what has been described

above as the intuitive content of the notion of categoricity. It, moreover,

gives some hint as to the part the notion of categoricity can play in the

theory of definition. It is perhaps worth remembering that the first use of

what came to be known as categoricity was with respect to the theory of

definitions.

In 1902, cf. [12], E. V. Huntington wrote:

The object of the work which follows is to show that these six postulates form
a complete set; that is, they are (I) consistent, (II) sufficient, (III) independent
(or irreducible). By these three terms we mean: (I) there is at least one
assemblage in which the chosen rule of combination satisfies all the six
requirements; (II) there is essentially only one such assemblage possible;
(ΠI) none of the six postulates is a consequence of the other five.5

Theorem II. Any two assemblages M and Mf which satisfy the postulates 1-6
are equivalent; that is, they can be brought into one-to-one correspondence in
such a way a°b will correspond with ar°br whenever a and b in M correspond
with a' and b' in M' respectively.6

36. From Theorems I and II we may say that the postulates 1-6 define
essentially a single assemblage. This assemblage we call the system of
absolute continuous magnitude, and the rule of combination addition.7

Here, for the first time, is a special word for the intuitive concept that

categorical axiom systems determine only one mathematical domain.

Huntington's use of the word 'sufficient' suggests that no other specification

is necessary to determine this domain other than the specification given by

the six postulates.

In 1904 O. Veblen in [21], introduced the word 'categoricity' and
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opposed it with the word 'disjunctive. He credits the suggestion of such
terminology to John Dewey. Categoricity is there described as follows:

Inasmuch as the terms point and order are undefined one has the right, in
thinking of propositions, to apply the terms in connection with any class of
objects of which the axioms are valid propositions. It is part of our purpose
however to show that there is essentially only one class of which the twelve
axioms are valid. In more exact language, any two classes K and K' of objects
that satisfy the twelve axioms are capable of one-to-one correspondence such
that if three elements A, B, C of K are in the order ABC, the corresponding
elements of K' are also in the order ABC. Consequently any proposition which
can be made in terms of points and order either is in contradiction with our
axioms or is equally true of all classes that verify our axioms. The validity
of any possible statement in these terms is therefore completely determined
by the axioms; and so any further axiom would have to be considered
redundant. Thus, if our axioms are valid geometrical propositions, they are
sufficient for the complete determination of Euclidean geometry.8

A system of axioms such as we have described is called categorical, whereas
one to which it is possible to add independent axioms is called disjunctive.0

Theorem 84. If K and K1 are any two classes that verify axioms I-XII, then
any proposition stated in terms of points and order that is valid of the class K
is valid of the class K'.10

These passages are remarkable for several reasons: (I) the theorem
purporting to show the categoricity of Euclidean geometry does, in fact,
show a slightly different property, which, as it is stated, avoids what came
to be recognized as the major difficulty with the concept of categoricity,
and (II) these passages anticipate several theorems which are important
with respect to the theory of categoricity. However, the discussion of these
two points will be deferred for the discussion leads naturally into the next
topic, namely categoricity in power.

Dedekind, Huntington, and Veblen agree that the property they are
trying to describe is one that is applicable only to systems that, because of
correct definition or sufficient determination, are validated by only a single
class of objects. Moreover, this property is or should be applicable only to
axiom systems describing mathematical domains which are intended to
specify realms intuitively felt to be single domains or accepted as being
single domains. Thus Huntington writes, "From another point of view, the
propositions 1-6 may be accepted as expressing in precise mathematical
form the essential characteristics of magnitude in the popular sense of the
work."11 Dedekind and Veblen also agree that all domains satisfying
categorical axiom systems verify the same propositions. Thus classes of
objects satisfying categorical axiom systems are reducible to a single
class both by the relation of isomorphism and by the relation of verifying
the same propositions. These relations are not equivalent and failure to
distinguish them led to the difficulties with the original notion of cate-
goricity. Dedekind and Huntington felt that the property of categoricity
reflected the correctness of proposed definition (here the term 'definition'
means a combination of sentences which are axioms and sentences
considered as definition proper) but Veblen takes them to task for this.
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Adopting an attitude wftich came to be known as the? Russellian theory of
definition, Veblen writes, "It would probably be better to reserve the word
definition for the substitution of one symbol for another, and to say that a
system of axioms is categorical if it is sufficient for the complete
determination of a class of objects or elements/'12

The notions of categoricity discussed so far were meant to be
applicable to axiomatic theories in general. However, they were applied
only to first-order theories because of the many difficulties that arise in
using it with respect to second- or higher-order theories. Some of the
difficulties are, for example, existence of models for higher-order theories
and the two distinct notions of completeness which arise for higher-order
theories.

But, strictly speaKing, first-order theories can have two distinctive
types of individuals; tUose ordinarily and properly called individuals as
distinguished from those sets which can be considered as individuals also.
Thus elementary theories are based on individual variables and constants,
ϊ\mctiona\ constants a-fiύ p r o r a t e roTisterte as t t ^ vrλy &γώag&TO.l
elements and with quantification allowed only over individual variables. It
should be noted that for the remainder of the introduction, and for the
remainder of this paper, with the exception of the historical section
concerning categoricity as considered by writers prior to Los, only
elementary theories will be considered. Putting aside terminological
differences, Dedekind, Huntington, and Veblen intended that the term
'categorical' be applicable to all and only those axiom systems with the
following three properties:

1. all classes of objects which verify the axioms are isomorphic;

2. all classes of objects which verify the axioms also verify the same set

oί propositions*,

3. the axiom system describes fully a domain which is intuitively con-

sidered to be but a single domain.

Returning to an unanswered question, why was Veblen's definition of
categoricity particularly remarkable? First, Veblen's discussions justify-
ing the notion that axioms added to a categorical axiom system are
superfluous anticipates a theorem consciously enunciated only in 1953 by
Los and Vaught which became a celebrated test for completeness, namely,
if an axiom system has no finite models and is categorical in some infinite
power then it is complete. Secondly, Veblen's Theorem 84 states that
Axioms I-XΠ are verified by classes of objects which verify the same set
oΐ postdates ^stated iτci teϊias & povftte aviά vεteτ). However, Kis detmitiorv
of categoricity requires that they be put into one-to-one correspondence.
Classes of objects which verify the same set of propositions are called
arithmetically equivalent. This terminology is due to Tarski.13 Arith-
metically equivalent classes are not necessarily isomorphic. This is what
was meant above by saying that the relation of isomorphism and the
relation of verifying the propositions are not equivalent. This is the defect
of the original notion of categoricity. Through the work of Lδwenheim and
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Skolem it has been shown that if an axiom system was satisfied by an
infinite class of objects, say of cardinality m, then there were classes of
objects of cardinality n and p respectively, satisfying these axioms such
that n < m < p. These classes of unequal cardinality can be constructed
which verify the same set of propositions and a fortiori are not isomorphic.
Obviously, properties 1 and 2 of the original concept of categoricity are not
compatible as they thus stood. This was rectified in 1953 by Vaught and
Los, who worked independently. Curiously enough, Los approached the
correction via isomorphism and Vaught approached it via arithmetical
equivalence.14

In 1934 Tarski published a paper [19], whose intent it was to investi-
gate among other concepts the concept of categoricity itself and not simply
to apply it to this or that axiom system as the previously mentioned papers
had. Although he says, " . . . a set of sentences is called categorical if any
two of its interpretations (realizations) of this set are isomorphic," his
principal definition of categoricity, formulated in terms of Russell's
Principia Mathematica, is as follows:

Let us say that the formula

x1, y', z' . . .
Rx",y",z" . . .

is to have the same meaning as the conjunction

Λ c 1 — 1. F ~ F . ΛΓ'~ΛΓ". y'~y". z'~z" . . .
R R R R

(In words: (R is a one-one mapping of the class V of all individuals onto itself,
by which x', yr, z', . . . are mapped onto x", y", z", . . ., respectively.')
Consider now any finite set Y of sentences; ιa\ fb', *c'f . . are all specific
terms which occur in the sentences of Y, and (ψ{a, b, c, . . .)' is the conjunc-
tion of all these sentences. The set Y is called categorical if the formula

(*', x", y', y", z', z", . . .) : ψ(x', y', z', . . .) .

ψ(x<>, y», z", . . .) . 3 . (322) . R * / y'> * ' ' ' ' '

is logically provable. 1 5

This idea, as so many of the ideas in Tarski's early papers, is
seminal. Simply by changing the emphasis Tarski avoids many of the
difficulties that the other definitions fall prey to. The emphasis has
switched from the determination of single domains, an intuitive concept, to
the determination of the completeness of specific terms, or formal
concepts. Tarski's definitions are always with respect to a given concrete
formal context. Hence the above definition of categoricity is given in terms
of syntax rather than semantics, or intuitions of single domains. Then,
also, by requiring that relation R is a map from the domain of individuals
onto the domain of individuals Tarski's definition is not subject to the
criticism that isomorphism of realizations and arithmetical equivalence
are not equivalent concepts. Once the class of all possible realizations is
restricted to one domain, in this case the domain of individuals, then these
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concepts are equivalent. The only drawback to such a procedure is that the
definition is rather restrictive. This, however, is perhaps due to the fact
that the definition is cast in Russellian terminology and perhaps with an
intended interpretation in mind. The same reason can be advanced to
explain two other criticisms of the definition, namely, that it is not
restricted to elementary theories, but is intended to apply to higher-order
theories, with all the attendant difficulties of such a procedure.

Tarski himself realizes a serious difficulty with categoricity as he has
defined it and his intended use of it, namely, the determination of the
completeness of concepts. By this is meant that given a logical system,
have we, with respect to its lowest logical level (for example, with
elementary theories the class of individuals) defined all possible concepts
or all possible subclasses of this level? The idea is not to have done so
actually, but to have within the defined systems enough primitive concepts
to be able to do so. That is, it is not possible to add to the system a
predicate which is not definable in terms of the primitive concepts.
Strictly speaking, what Tarski intends is that at therc'th level we are able
to define all possible subclasses of the n-Vst level. As Tarski points out
in his paper, it is possible to have categorical systems which can be
extended through the introduction of concepts not definable in terms of
the original theory. The reason for this is that if the isomorphism of
realizations of a particular theory can be established on the basis of
transformation other than the identity transformation, then the individuals
of the theory are not fully fixed in logical space. Tarski then further
refines his definition of categoricity by defining the concept on mono-
transformability:

(*', *", y', y", . . ., R', R") : φ(x', y', . . .) . φ(x", y", . . .) . R' *',' J,'' ' ' '

is logically provable.16

Before beginning the topic of categoricity in power let us note that in
1942 Carnap introduced alternative terminology to categoricity which he
called monomorphism.

Ein AS heisst monomorph (oder kategorisch), wenn es widerspruchsfrei ist
und alle seine Modelle miteinander isomorph sind. Der Begriff der Isomorphie
von Modellen ist umfassender als der fruher definierte Begriff der Isomorphie
von Klassen oder Relationen (19). Das Modell 9JΪ Blt B2,..., Bn fur die n
axiomatischen Grundzeichen bestehe aus den Begriff en (oder Extensionen)' des
Systems S; ein anderes Modell 2Wf bestehe aus B/, . . ., Bn'. 2» heisst
isomorph mit 9W', wenn es einen Korrelator zwischen den Individuen in 2tt und
denen in SJΓ gibt derart, dass jedes Bp(p = 1 bis n) auf Grund dieses Korrela-
tor s isomorph im fruher en Sinn mit Bp ist. Wenn das AS dagegen nicht-
isomorphe Modelle besitzt, so heisst es polymorph. Wenn ein AS monomorph
ist, so besitzt es eine gewisse Vollstandigkeit in dem Sinn, dass es alle
strukturellen Eigenschaften moglicher Modelle festlegt.17
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In the above passage AS is an abbreviation for 'axiom system.' It is
notable that at this later date the emphasis has shifted from the determina-
tion of a single mathematical domain to the determination of the structural
properties of all possible models. It indicates a higher degree of
abstraction, away from systems with definite content toward uninterpreted
systems in general. It is also worth noting that this concept suffers the
same defect as the original notion of categoricity in that it assumes that
monomorphism is a necessary and sufficient condition for the determina-
tion of structural properties of all possible models when, in fact, it is only
a sufficient condition.

How would it be possible to force monomorphism and arithmetical
equivalence to become equivalent notions? Why are they not equivalent?
Simply because if the domain of objects which satisfy an axiom system is
infinite it is possible to construct a domain of objects containing a
significantly larger number of objects which satisfy the same axioms.
They are arithmetically equivalent but not isomorphic. Consequently, if
consideration were limited to domains with an equal number of objects then
monomorphism and arithmetical equivalence become equivalent concepts.
This is exactly the step taken by the introduction of the notion of cate-
goricity in power. Los has written:

A deductive system is categorical if it possesses only one model, in other
words: if each two models are isomorphic. It is well known that no
elementary system which has an infinite model is categorical. Usually to
prove this theorem, two models of different powers are constructed. It is
evident that such two models may not be isomorphic. The problem arises,
whether this theorem can be proved in a different way, e.g., by proving that
for each elementary system which has an infinite model, there exist two
non-isomorphic denumerable models.

The answer is: no. There are such elementary systems which have only
one denumerable model. Such a system is called categorical in power No In

general, we say that a system is categorical in power m, if it possesses only
one model of the power m.18

A system is categorical in power m, if it possesses a model of the power
m and all its models of this power are isomorphic in pairs.19

Obviously, since this notion resolves the conflict between isomorphism
and arithmetical equivalence it is more successful in capturing the intuition
behind the concept of categoricity. However, as will be shown later, it does
have some undesirable consequences. As was said above, Los approached
categoricity in power by way of isomorphism but Vaught by way of
arithmetical equivalence.

It follows easily from the generalized Skolem-LOwenheim theorem: If K is a
non-empty arithmetically closed class of algebras (with at most a denu-
merable many relations and operations) such that for some infinite power, all
members of K with that power are isomorphic, then all members of K are
arithmetically equivalent. A metamathematical consequence of this result is:
If T is a consistent theory formalized within first-order logic such that every
model of T is infinite, and for some infinite power, all models of that power
are isomorphic, then T is complete.20
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Although this paragraph does not address itself to the problem of
categoricity or explicitly define the notion of categoricity, the key words
are "all members (models) of that power are isomorphic." This paragraph
contains the theorem, also announced by Los and at least intuitively
anticipated by Veblen, namely:

If theory T is categorical in power m then T is complete.

This theorem, however, indicates at what point categoricity in power is
unfaithful to the intuitive concept to be formalized. It indicates that
completeness is a necessary condition for categoricity in power. But
through the pioneering work of Gtfdel it is known that the arithmetic of
natural numbers is incomplete. So is the arithmetic of real numbers.
Obviously, they cannot be categorical in any power. Thus, the concept of
categoricity in power is incapable of distinguishing between those theories
which are intended to describe but a single domain and those theories which
are intended to describe several mathematical domains. The notion
of categoricity in power is capable of reconciling the opposition of
isomorphism and arithmetic equivalence which has proven to be a defect in
the original definition of categoricity but is unable to reconcile the
opposition of isomorphism and distinguishability of axiom systems intended
to describe a single domain from those intended to describe several. This,
of course, was also a defect with the original definition of categoricity but
historically it was not the major one. It is worthwhile noting that in the
context of categoricity in power the equivalence of isomorphism and
arithmetical equivalence indicates that also 'distinguishability' and arith-
metical equivalence are incompatible. In general, incomplete theories will
have classes of objects which satisfy their axioms but these classes are
not arithmetically equivalent. Consequently, neither isomorphism nor
arithmetical equivalence will help in distinguishing axiom systems meant to
determine single or several theories.

All these, however, are rather obvious considerations which point our
thoughts to a more interesting question: in what sense is it said that
incomplete theories do determine mathematical domains? For example, to
the theory of the arithmetic of natural numbers add a sentence which is
independent of the axioms to form theory A and add the negation of this
sentence to form theory B. After this point of ramification in what sense
do they determine a single domain? Yet it could be maintained there is a
definite and distinct difference between the theory (as exemplified by an
axiom system, finite or infinite) and the mathematical domain (given by
intuition). Then it could be concluded (which seems to be a philosophical
conclusion of the Gδdel incompleteness theorem) that present axiomatic
devices and perhaps mathematical language in general is incapable of
describing an intuitive domain. Ultimately, this path of reasoning leads to
the necessity of some decision as to the role of intuition in mathematics or
the relation between intuition and mathematics or even to the relation be-
tween thought and language.

After such an analysis how much of the original intention of cate-
goricity can be preserved? From what has been said above, a workable
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concept of categoricity must be limited to: (1) complete theories, and
(2) some one particular power or cardinality for the domain of objects. Yet
to keep both of these forces a change in the notion of single domain.
Instead of calling a single domain that 'given' by intuition or those which
verify the same set of propositions only, call a single domain those classes
which verify the same set of propositions and whose 'points' or individual
objects 'act' or 'behave' identically with respect to the determination
forced by the axiom system. For example, to the theory of dense ordering
without beginning or end (restricting consideration to domains of cardi-
nality No

 and theories which are complete), it is possible to add a sentence,
formulated entirely within the grammar of this theory, concerning the
behavior of a triple of individuals, i.e., ax < a2 < a3 which is independent of
the axiom system.21 However, within the same restrictions, to a modified
version of Tarski's axiom system for the arithmetic of real numbers, it is
not possible, within the grammar of the theory, to find a sentence
concerning the individuals of the domain which is independent of the axioms
of the theory.22 In the former theory, the domain is not absolutely
determined with respect to the individuals of the domain, there is some
degree of freedom, whereas, by contrast, in the latter theory all individual
numbers of the domain are absolutely determined. To use Carnap's
terminology, in the first theory, "the structural properties of all possible
models" are determined; in the second theory, the elemental as well as the
structural properties of all possible models are determined. Theories
whose axioms determine classes which verify the same propositions and
elemental sentences will be said to determine a single domain. Thus the
idea behind constructive categoricity introduced by Grzegorczyk in [9], can
be preliminarily stated as follows: if the set of constructible atomic
formulas of T behave the same in any two of its models, then T is
constructively categorical.

In order to determine the elemental sentences it must be possible to
enumerate effectively all the individuals of the theory in question. This can
be done by replacing all existential quantifiers occurring in the axioms of
the theory by suitable parameterized functions and then letting the resultant
quantifier-free theory determine its own model by the familiar process of
allowing the elements of the syntax to name themselves as semantic objects
and the predicates of the syntax determine the relations of the semantics.
The term 'constructive' is used because (1) the process of effective
enumeration and (2) the self-determination of models is employed.

Unfortunately, such a goal is excellent in theory but practical
considerations force severe limitations. Anyone who understands the
general mathematical meaning of the word 'constructive' (deliberately used
in the term 'constructive categoricity') can anticipate the restriction that
must be placed on the notion of constructive categoricity. To be able to
ascertain whether two domains verify the same individual propositions
there need be an effective procedure for 'running through' the individuals
and individual propositions. Effective procedures must be recursive.
Automatically, either of the following restrictions are imposed: (1) the
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cardinality of the domains under consideration must be less than or equal
to No

 a s adopted by Grzegorczyk or (2) the domains under consideration
must be well-ordered or of a given ordinal type, as I now suggest, to
modify constructive categoricity in order that it might be applicable to a
larger class of theories.23 Both restrictions are severe, yet acceptable,
because the concept of constructive categoricity with either restriction
yields useful or interesting information. No systematic research has been
done concerning the concept of categoricity based on well-ordered domains.

Constructive categoricity does meet generally the original require-
ments of the notion of categoricity. Within the class of complete theories,
those axiom systems which are constructively categorical (1) verify the
same set of elemental and general sentences, and (2) have up to isomor-
phism but a single model, i.e., every model is mutually interpretable in
every other model. The property of constructive categoricity is capable of
distinguishing between those axiom systems which determine a single
mathematical domain and those which do not. However, the differences
between the properties of constructive categoricity and the original
intention are notable. Since the formal requirements for isomorphism or
mutual interpretability are more comprehensive, the intuitive notion of
single domain also changes since they are directly related. Not only does
the relation of mutual interpretability require that any pair of domains has
an equivalent number of individuals, and that the set of statements formal -
izable in the grammar of one domain be interpretable in the grammar of
any other, but also that there be no implicit functions on the domain of
individuals into the domain of individuals. Also the implicit functions of
one domain must be interpretable in any other domain.

CHAPTER II

Introduction The main topic of this paper is Grzegorczyk's notion of
constructive categoricity. In the first chapter the history of the notion of
categoricity was traced up to and including constructive categoricity. Each
variant of the original notion was accompanied by an informal and terse
analysis of its points of application and its limitations with the intention of
describing its success in formalizing the original intuition. This chapter
gives a formal analysis of the variant of categoricity called constructive
categoricity. As was noted in Chapter I, the key to using constructive
procedures is the ability to enumerate the elements of the, theory in
question. This enumeration is accomplished through the use of Skolem
functions (to be defined later). Consequently, the simplest system to which
the notion of constructive categoricity can be applied is an elementary
theory with functions. Moreover, it is only applicable to elementary
theories.

The contents of this chapter are: (1) a description of elementary
theories with functions and the relation of equality (since the majority of
the theorems are based on an elementary theory with equality) and some
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simple theorems concerning their properties; (2) a description of Skolem
theories (which is not given by Grzegorczyk) and theorems concerning their
properties (as far as is known at this moment, Skolem theories have not
been studied for themselves but always with respect to some other notion.
Although a thorough study of the properties of Skolem theories is not
included in this thesis, several theorems are included relating to these
properties); (3) a description of the work that Grzegorczyk did with respect
to constructive categoricity; (4) a new characterization of a subclass of
constructively categorical theories; (5) and, finally, the relation between
constructive categoricity and categoricity in power. In the third chapter,
building on the formal results of this chapter, the information conveyed by
the predicate 'constructively categorical' will be clearly delineated.

Before proceeding, let it be noted that in this chapter several theorems
are stated without proof. This means that these theorems are well known
in the literature of logic and are only included for ease and completeness of
presentation. These theorems and necessary definitions will be herein
printed in lower cast. Also, several well known theorems are given with
proof. This will occur when the context demands variations from the
classic proof or where there is a new proof possible based on results of
this thesis. Where this occurs it will be duly noted. All other theorems
given with proof are those of the author of this paper.

1 Elementary Theories with Functions and the Relation of Equality This
section will be primarily terminological. A description of the syntax and
semantics of elementary theories will be given along with definitions
of model, isomorphism, cardinality, inferential equivalence, arithmetic
equivalence, extensionality, and completeness.

Definition 2.1 The alphabet of formal language ^ is the following:

1. a set of subscripted letters a0, ax, a2, . . . δ0, blf b2, . . . c0, clt c2, . . . in general
fli, bi, Cί where i is any ordinal number less than some given ordinal I (usually I = ω).
This set of subscripted letters is called the set of individual constants, denoted IC.
2. a set of subscripted letters x0, xu x2, . . . y0, yl9 y2, . . . z0, z1} z2, . . . in general
χi, yi, Zi where i is any ordinal number less than some given ordinal I (usually I = ω).
This set of subscripted letters is called the set of individual variables, denoted IV.
3. a set of letters each with a subscript and superscript/£,/},/2, . . . f\j\j\, . . . in
general // where i is a finite ordinal less than some given finite ordinal I and j is an
ordinal number less than some given ordinal J (usually J = ω). This set of letters with
subscript and superscript's called the set of function constants, denoted FC.
4. a set of letters each with a subscript and superscript Pj, P\, . . . P2

0, P\, . . .
Ql Q\, Qo, Ql, Rl R\, R\, R2I, . . . in general P/, Q/, RJ, . . . where i and j
are any ordinal numbers less than some given ordinals I and J respectively (usually
I = ω and J < n <ω). This set of letters with subscript and superscript is called the set
of predicate constants, denoted PC.
5. the following set of symbols called logical signs, denoted LS, Ί, ->, v, &, <->, (. . .),
(3 . . .) and a set of symbols (, ) called punctuation signs, denoted PS.

The following two conditions hold:

1. sets IC, IV, FC, PC, LS, PS are mutually pairwise disjoint;
2. IC U IV U FC U LS U PS = alphabet of ^ .
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Definition 2.2 An expression is any finite contiguous concatenation of symbols of the
alphabet of language <£. A term of language £ is an expression determined by the
following rules:

1. an individual constant or individual variable is a term;
2. if tl9 . . ., U is a sequence of i terms, not necessarily distinct, and //is a function
constant then//(*!, . . .,f, ) is a term;
3. only expressions determined by the above rules are terms.

Definition 2.3 An atomic formula of X i s an expression determined by the following
rules:

1. if ίx and t2 are terms, not necessarily distinct, then tλ - t2 is an atomic formula;
2. if tί9 . . ., U is a sequence of i terms, not necessarily distinct, and Pj is a predicate
constant then Pj(tl9 . . ., U) is an atomic formula;
3. all and only those expressions determined by the above rules are called atomic
formulas.

Definition 2.4 A well-formed formula of £ is an expression determined by the following
rules:

1. an atomic formula is a well-formed formula;
2. if A is a well-formed formula (denoted wff) of £ then ΊA is a wff of 4!, called the
negation of A;
3. if A and B are the wff of £ then

a. (A & B) is a wff of -(, called the conjunction of A and B\
b. ( Λ v ΰ ) i s a wff of «C, called the disjunction of A and B\
c. (A —» B) is a wff of <£, called the implication of B from A;
d. (A<->£) is a wff of £, called the equivalence of A and B\

4. if A is a wff of £ and #f is an individual variable occurring as part of A then

a. (#, ) A is a wff of »C;
b. (3#f ) A is a wff of ^ .

Two things should be noted in these definitions:

1. the term "£" and "language »C" are used interchangeably and will continue to be so;
2. if the occurrence of an individual constantaι or individual variable*/ as apar t of a
wff A is of particular interest, such a case will be noted byAfo ) or A(<zt ).

A part of a well-formed formula A, whether or not it is a proper part,
if it is itself a wff, is called a subformula of A. A variable Xi occurring in
wff A, i.e., A(%i) is called a bound occurrence of variable Xi provided it
occurs in a subformula of A of the form {xi)B{xi) or {3Xi)B{xj)\ otherwise
it is called a free occurrence of variable xim A wff A in which no variable
occurs free is called a sentence of -(\

Definition 2.5 An elementary theory ba^ed on language <£ with equality, denoted Γe, is a
set of sentences of £. The sentences of set Te are either called axioms, sentences
accepted as elements of Te without proof (cf., Def. 2.6) or theorems, sentences accepted
on the basis of a proof.

A proof is a sequence of sentences or well-formed formulas con-
structed from the rules of procedure. For elementary theories there are
two rules of procedure:
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1. if A —» B is an accepted sentence and A is an accepted sentence then B is
an accepted sentence;

2. if A is an accepted sentence, then (Xi)B is an accepted sentence where

B=Afri).

Definition 2.6 A proof of sentence B is a finite sequence of sentences or
wff Aί9 . . ., An such that An = B and each A, is either (1) an axiom, or
(2) follows from the preceding members of the sequence by an application
of one of the rules of procedure.

Te then might more easily be defined as a set of sentences including
the set of axioms and closed with respect to the rules of procedure. The
set of axioms for elementary theories is the union of two disjoint sets:
the logical axioms and the non-logical or proper axioms. The proper
axioms could be called the characteristic or determining axioms of T e.

The logical axioms of Te are any sentences of the following form:

T l . (A - B) -> ((B -> C) - (A -> O )
T2. A -> (lA -> B)
T3. (ΊA-* A) ->A
T4. (A —* B(Xi)) —» (A —> (xt)B{xι)) provided x{ does occur free in A
T5. (Xi)A(Xi) —> A(t) where t is a term of £ and t contains no variable Xj

such that Xi in A occurs in a subformula B of A, B - (XJ)C(XJ) or
B = (a*,) c{χi)

E l . (x) x = x
E2. (χ)(y)(χ = y)-> (y = χ)
E3. (x)(y)(z)(x = y) - ((y = * ) - > ( # = z))
E4. (*)(?)(* = y)~> (A(x) -> A(y))

The proper axioms cannot be given generally but are given in the
construction of a particular elementary theory. For example, the ele-
mentary theory of groups is the set of sentences of ^ which are closed with
respect to the rules of procedure and include the following three sets of
sentences as axioms: I. T1-T5, II. E1-E4, and

III. Gl. (x)(y)(3z) χoy = z
G2. (x)(y)(z)(χo(yoZ)) = ((Xoy)oZ)

G3. (x)χoa0 = x
G4. (x)(3y) xoy =a0

For the discussion of Skolem theories and constructive categoricity it
is not necessary to have the relation of equality as an element of the
language. Subsequently, some theorems and an unsolved problem will be
given with respect to such theories without equality. Elementary theories
with functions only will be denoted by Tf.

Theory Γf is based upon language £', identical to language £, with the following two
exceptions:

1. the relation of equality, symbolized by '=', does not occur in X';
2. condition (1) of Def. 2.3 concerning the generation of wff does not occur in .(".

Otherwise <£ and j£r are identical.
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The logical axioms for Γf consist of the set T1-T5 only. For example,
the elementary theory of partial ordering is a set of sentences of <£' which
are closed with respect to the rules of procedure and include the following
two sets of sentences as axioms: I. T1-T5 and

II. 01. (x) l(x <x)
02. (x)(y)(z)(x <yky<z)^(x<z)

A realization or interpretation of a language <£ with functions and
equality is a domain of objects (or a set of objects) upon which some
functions and relations are defined. A relation is a subset of the countably
infinite sequences of elements of the domain of objects. Simply, let A
represent the domain of objects, then relation R is a subset of Aω i.e.,
R c Aω. It is easiest to consider functions simply as many-one relations.
Ordinarily, in defining a realization reference must be made to the rank of
the functions and relations. Rank of a function or relation is the number of
arguments of the function or relation. However, because the functions and
relations are herein defined on countably infinite sequences, comparisons
can be made between several realizations without cumbersome notation
relating rank of the corresponding functions and relations.

A set A upon which is defined functions F), F*, Ff, . . . and relations

Rl9 R2, #3, . . . i s said to be an interpretation of language «C if:

1. to every individual constant of language «C there corresponds an individual ae A;
2. to every function constant fj of language <£ there corresponds a function Fj;
3. to every predicate constant Pj of language £ there corresponds a relation fl, .

Having defined a realization it is necessary to be able to define
'satisfaction of a wff of <£ by sequence seAω. ' Once this is done then a
model for theory Te can be defined. The following preliminary definition is
required.

Definition 2.6.a A term ti of language JQ is assigned an element of set A by sequence s
according to the following rules: Let s = (au . . ., α* , . . .) then

1. if U is an individual constant then s assigns to ti the element a of A assigned to it by
the interpretation;
2. if U is an individual variable Xi then s assigns to ti element α* of s;
3. let a\ be the element of A assigned by s to terms U and FJ the function assigned to
the function constant //by interpretation A then s assigns to f\(tl9 . . ., tj) the individual
a/f (h, . . ., tj) = FJial1, a'2z, . . . ap).

Definition 2.7 An atomic formula of language ^ is said to be satisfied by sequence s e /
in interpretation A:

1. if a[ι and a^2 are individuals of A assigned to terms tx and t2 by sequence s and tt = t2

is any atomic formula then it is satisfied by sequence s if and only if ai1 = at?-,
2. if ai1, . . ., alk is a sequence of k individuals of A assigned to terms tlf . . ., tk by
sequence 5 and P ^ , . . ., tk) is an atomic formula then it is satisfied by s if and only if

(ai1, . . .,akk,ak+1, . . .)eRi c /

where Rj is the relation corresponding to predicate P z .
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Normally Def. 2.7 (1) can be stated in terms of any binary congruence
relation R2 on domain A and tί = t2 is satisfied if R(a[ι, a^2). However,
models in which the symbol of equality is interpreted as equality and not
simply a congruence relation are called normal models. In this thesis all
models for Te are normal models.

Definition 2.8 -A well-formed formula of language -C is said to be satisfied by sequence
s eAω in interpretation A:

1. wff lA is satisfied by sequence s if and only if A is not satisfied by sequence s;
2. if A and B are the wff of T, then

a. wff (A & B) is satisfied by sequence s if and only if A is satisfied by sequence s and B
is satisfied by sequence s;
b. wff (A v B) is satisfied by sequence s if and only if A is satisfied by sequence s or B is
satisfied by sequence s;
c. wff (A —» B) is satisfied by sequence s if and only if A is not satisfied by sequence s
or B is satisfied by sequence s;
d. wff (A<r->B) is satisfied by sequence s if and only if A is satisfied by sequence s if
and only if B is satisfied by sequence s;

3. A is a wff of *Q and Xj is an individual variable occurring as part of A then:

a. wff (Xj)A(xi) is satisfied by sequence s if and only if every sequence of Aω which
differs from sequence s in at most the i'th place satisfies A;
b. iff (3xi)A(xi) is satisfied by sequence s if and only if some sequence of A which
differs from sequence s is at most the z'th place satisfies A.

A wff or a sentence of language J£ is said to be true in interpretation A
if it is satisfied by every sequence s of A. An interpretation A is said to be
a model for elementary theory Te iff the axioms of Te are true in A and the
rules of procedure of Te preserve truth in A. A rule of procedure is said
to preserve truth in A provided an application of that rule to a wff of Te

which is true in A produces another wff of Te which is true in A. A wff or
sentence of Te is said to be logically valid if and only if it is true in every
model.

The notation used for a model will be the following sequence

m = (M, Fϊ, . . . F\, . . . F/, . . . Rl9 R29 . . .)

where M is a set of objects and Ff and R{ are functions and relations
defined on M. This sequence will be called model 2JΪ. The phrase 'the
cardinality of model 9JΓ or 'the cardinality of 9JΓ is an ellipsis for the
phrase 'the cardinality of the set M in the model 9Jί.'

Above, theory Te was defined in terms of axioms and rules of
procedures, i.e., it was defined syntactically. It can be defined with an
equal degree of satisfaction as that system or set of sentences of *£ which
are true under a particular given interpretation or true under a particular
set of interpretations, i.e., Te can be defined semantically. Since construc-
tive categoricity which is being investigated is a property of axiom systems
the syntactic definition of Te is sufficient.

Definition 2.9 Models 9fl and 9? are said to be similar provided the same number of
relations of equivalent rank (see p. 526) are defined on each model. A function φ is a
homomorphism between similar models 9tt and 9? provided
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1. ψ maps M into N;

2. φ{Fl(al9 . . ., β, , . . .)) c φ(Fl)(φ(aι)) . . . <p(βy) . . . ) ;

and

3. <ρ(Λ<(«!, . . ., fly, . . .)) c <p(Ri)(<P(ai), - <?(«/) . •).

The above definition contains many abbreviations. Strictly speaking

φ: M—>N.

φ(Fl) is an abbreviation for the FJ of 9ί which is associated with the

corresponding FJ of 2W. Similarly, for φ(Ri). Condition 3 says that for

se Mω φ generates a corresponding s'eiVω such that (s) s c R{ —* sr c φ(R;).

Function <ρ is an isomorphism between similar models 2JJ and $1

provided

1. φ maps M one-one and onto N;

2. φ(Ff(au . . ., * ; , . . . )) = <p(W)M«i), , <?(«/), . .);

and

3. φiRiia^ . . ., α; , . . . ) ) = ψ{Ri)(ψ(ai), - . ., ςp(fl/), •)•

Definition 2.10 Elementary theories 5 e and Te are said to be ίnferentially equivalent
provided:

1. the axioms of Te are theorems of Se and vice versa;
2. the rules of procedure of Te are provable in Se as metarules or theorems of Se and
vice versa;
3. the definitions in Te are theorems or definitions of Se and vice versa.

This is, of course, a syntactic type of equivalence.

Definition 2.11 Models 3JΪ and W are said to be arithmetically equivalent provided
sentence S is true in 9JΪ if and only if sentence S is true in ft.

This is a semantic type of equivalence.

Definition 2.12a Property P is said to be syntactically extensional if for some
elementary theory Te, Te possesses property P and for any elementary theory Se such
that Se and Γe are inferentially equivalent then Se also possesses property P.

Definition 2.12b Let 9M and 91 be models of an elementary theory. Property P is said to
be semantically extensional if 9Jί possesses property P and for W such that 9W and 91 are
arithmetically equivalent then 9Ϊ also possesses property P.

Definition 2.13a Elementary theory Te is said to be syntactically consistent if there is at
least one well-formed formula of language »C which is not a theorem of Te.

Definition 2.13b Elementary theory Te is said to be semantically consistent if it has a
model.

Definition 2.14a Elementary theory Te is said to be syntactically complete if the addition
of a wff of language *C which is not a theorem of Te produces a syntactically inconsistent
system.

If the theory possesses a negation sign and is based on classical

propositional calculus then this definition is equivalent to the sentence,

"Theory Te is syntactically complete if for every sentence A of ^ either A

is a theorem of Te or lA is a theorem of Te."

Definition 2.14b Elementary theory T is said to be semantically complete, or simply,
complete, if and only if every true sentence of T is a theorem of T.
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2 Some Properties of Elementary Theories

Theorem 2.18a Let T{ be an elementary theory based only on logical axioms. Let Tλ be
formed from T$ by the addition of a set of non-logical axioms Si, . . ., Sn whose alphabet
is identical with the alphabet of T\. If A is a well-formed formula of T$, then A is a
theorem of Tx if and only if there is a theorem of Tf of the form S1 -* . . . —* Sn —* A.

Theorem 2.18b Let Te be an elementary theory (with equality) based only on logical
axioms. Let Tx be formed from Te by the addition of a set of non-logical axioms
Sv . . ., Sn whose alphabet is identical with the alphabet of Te. If A is a well-formed
formula of Te then A is a theorem of 7\ if and only if there is a theorem of Te of the form
Sj — . . . — Sn -» A.

Theorem 2.19 If A —> B is a theorem of propositional calculus there is a formula C
whose propositional variables occur in both A and B such that A -> C and C -* B are
theorems of propositional calculus.

3 Elementary Skolem Theories Skolem theories are subsets of elementary
theories with functions or elementary theories with functions and equality.
What distinguishes them from other elementary theories is that all
existential quantifiers are replaced by a special or distinguished set of
functional constants called Skolem functions (some existential quantifiers
are replaced by unique individual constants but if individual constants are
considered as zero-placed functions the above statement needs no modifi-
cation). Skolem theories, therefore, are free variable calculi with the rule
of detachment as the only rule of procedure (the rule of substitution being
subsumed by the use of axiom schemata) and all logical axioms concerning
quantifiers, which occur in elementary theories with functions are removed
except the law of particularization. In summary, a Skolem theory is either
a free-variable elementary theory with functions (to be denoted T\) or free
variable elementary theory with equality (to be denoted T'e) based on a full
propositional calculus with a logical axiom for particularizing and the rule
of detachment as the sole rule of procedure.

T\ or Te are syntactically identical to Tf and Te except for the
following points:

1. the logical axioms of T\ or T'e are simply those of any full propositional
calculus and the axiom scheme P(x) -» P(t);
2. the only rule of procedure is the rule of detachment and thus a fortiori
the definition of proof changes;
3. there are no quantifiers in τ\ or Te

The semantics of Tf or Te and τ\ and T*e are the same and this is the
reason for their importance. Elementary Skolem theories are not so much
studied for themselves but for what they reveal concerning the properties
of the elementary theories to which they are correlated. This correlation
is accomplished through a constructive procedure. The language of the
Skolem theory is simply the language of the original elementary theory, be
it Tf or Te, to which has been added Skolem function constants which are
constants not occurring in the original theory. The following definition
gives the rules for generating a Skolem theory from an elementary theory.
The resultant theory is called the equivalent Skolem theory.
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Definition 2.20 A wff A of the language upon which T f ' or T e ' is based is said to be the
Skolem equivalent of a sentence S of elementary theory Tf or Te if and only if sentence S
is in prenex normal form and A is the last member of the finite sequence Slf . . . , Sn

where

1. S = Si;
2. Sn = A;
3. if Sx is of the form (3#I)(3AT2) . . . (3ΛΓ, ) P{xl9 x2, . . ., x{) then S2 is of the form
P(a1, a2, . . ., flf) where each α, is a Skolem individual constant, distinct from each other
and any other constant occurring in Γf or Te;
4. if Si is of the form (xj . . . (XMBXJ) A(xl9 . . ., Xi, Xj, Xj+X) then S2 is of the form
(Xί) . . . (^iJAf^!, . . .,Xi,flj(xi, . . ., X{), Xj+i) where // is a Skolem functional constant
different from all others used in the transition;
5. if Si is any member of the series Sl9 . . ., Sn of the form (x^ . . . (XΪ)(3XJ)A(XU . . .
Xi, Xj, Xj+i) then Si+1 is of the form (#J . . . (x{)A(xlt . . . xit fi(xlt . . . Xi), xj+1) where f*
is a Skolem functional constant different from all Skolem functions in transition from
Sj —* Sj+ί and different from all functional constants in any S; , j < i\
6. Sw_! will be a sentence in prenex normal form whose prefix contains only universal
quantifiers. Sn is obtained from Sw_χ by deleting the prefix.24

Let Te = Ti, . . ., Tn be an axiom system for elementary theory Te,

excluding the logical axioms. Skl(Te) will be used to denote the Skolem

equivalent of axiom system Te, i.e., Skl(Te) is the set consisting of the

Skolem equivalents of axioms Tx through Tn inclusive. Let SFC(T/)

represent the set of Skolem functional constants and Skolem individual

constants used in the formation of the Skolem equivalent of sentence Γ;.

It is important to remember that in the formation of Skl(Te) the following

condition holds:

sets SFC(7\), SFC(T2), . . ., SFC(TW) are pairwise disjoint.

An example of a Skolem form of an elementary theory is a set of

sentences of -C which are closed with respect to the rules of detachment and

they include the following four sets of sentences: I. T1-T3, II. SI. A{x{) -*

4GO, IΠ. E1-E4, and

IV. SGI. x°y =fl(x,y)

SG2. ((x°y)°z) = (χo(yoZ))

SG3. x°ao = x

SG4. x°f\{x) =βo

This theory is obviously the Skolem form of the theory of groups.

Theorem 2.21a Let Tf be a Skolem theory based only on logical axioms. Let T[ be
formed from T\ by the addition of a set of non-logical axioms Slt . . ., Sn whose alphabet
is identical with the alphabet T\. If A is a well-formed formula of 7y then A is a theorem
of T[ if and only if there is a theorem of T( of the form Sλ-* . . . Sn —> A.

Theorem 2.21b Let Tl be a Skolem theory (with equality) based only on logical axioms.
Let T[ be formed from Tl by the addition of a set of non-logical axioms Slt . . ., Sn

whose alphabet is identical with the alphabet of Tl. If A is a well-formed formula of T'e
then A is a theorem of T[ if and only if there is a theorem of T'e of the form Sλ —» . . .
Sn-*A.

Theorem 2.22a Let S be a prenex normal form formula of elementary
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theory Tf. Then there exists a free variable formula S' whose language

does not differ from S except for the addition of a finite number of Skolem

constants and Skolem function constants such that

(1) models for S can be transformed into models for Sr and models for Sr

are models for S;

(2) if Sτ is a theorem of Skl(Tf) then S is a theorem of Tf.25

Proof: Let 2W be a model for S. Prenex normal form of formula S can only

be of three forms:

(1') (%i)S(xi) a formula whose prefix contains only universal quantifiers;

(2f) (3Xi)S(Xi) a formula whose prefix begins with an existential quantifier;

(3f) (xi) . . . (Xj)(3Xk)S(xi, . . .,Xj,Xk) a formula whose prefix begins with

universal quantifiers followed by an existential quantifier.

Then

(1') if S has the form (xi)S(xi) then Sr has the form S(XJ) and any model for

S will also be a model for Sr since S and Sr are semantically identical;

(2f) if S has the form (3Xi) S(x{) then 3H will be its model iff for any

sequence Se Mω there is a sequence sr e Mω which differs from s in at most

the z'th place and sr satisfies S(XJ). Sr will have the form S(α*). Now to αz

let 9Wf e 9Jί(Sf) assign s/e sr satisfying S(ΛΓZ ) . Then any model 9JΪ which is a

model of (3Xi)S(xi) will also be a model for 5(αz );

Note: Even though the language of S may contain individual constants

s[ can always be assigned to α* by 9JΪ because in the transformation from

S —* Sr, α* is chosen from a set of constants which have not occurred in any

previous wff, i.e., the Skolem constants are distinct from the individual

constants and from each other.

(3') if S has the form (x{) . . . (xj){3xk)S{Xi,.. . , Xj, xk) then 9JΪ will be its

model iff for any sequence {su . . ., sk, . . .) = s e Mω there is a sequence

sτe Mω which differs from s in at most the i'th place and sτ satisfies

S{xi, . . ., Xj, Xk). Sr will have the form S(XJ, . . . Xj, //"*(#/, ΛΓ; )) If

//"1(5i> •> sk> •) * s defined for every sequence se Mω having the value

s'k then 93? will also be a model for Sf.

Note: Again, as in (2') the language of S may contain function constants

but since the Skolem functions are distinct from the functional constants

and from each other the above assignment can always be made.

Consequently, in virtue of (1'), (2f), and (3'), point (1) is proven. In

virtue of Theorems 2.18a and 2.21a point (2) can be restated as follows:

If SkKTi) — . . . - » Skl(Tj -> S' is a theorem of Skl(Γf) then Tx — . . . - »

Tn-+ S is a theorem of T f, where Skl(Ti), . . ., Skl(Tw) are the non-logical

axioms of theory Tf, respectively.

Now, assume SkKΓJ - > . . . - > Skl(ΓΛ) -* Sr is a theorem of Skl(Γf). Let

9W be a model for Skl(Γf). By point (1) it is also a model for theory Tf and

satisfies 7\ —»...—» Tn -» S. But by the well known completeness theorem

for elementary theories T f , T1 -^ . . . —> Tw -• S is a theorem (in virtue of

the logical axioms solely). Thus S is a theorem of theory Tf.
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N.B. In virtue of the given transformation and Def. 2.24, the model
resulting from the transformation is a constructive model for S'.

Theorem 2.22b Let S be a prenex normal form formula of elementary
theory with equality Te. Then there exists a free variable formula Sr whose
language does not differ from S except for the addition of a finite number of
Skolem constants and Skolem functional constants such that

(1) models for S can be transformed into constructive models for Sr and
models for Sr are models for S;
(2) if Sr is a theorem of Skl(Γe) then S is a theorem of Te.

Proof: Similar to 2.22a.

Theorem 2.23a Let A be a conjunction of the axioms o/Skl(Tf) and L(S) be
the list of atomic formulas contained in wff S. If (A & B) —» C is a theorem
o/Skl(Γf) then there is a formula D of Skl(Γf) such that L(D) = l(A & B) Π
L(C) and {A & B) — D and D — C are theorems of Skl(Tf).

Proof: Since {A & B) -> C is a quantifier free formula of Skl(Tf) it is a
theorem of the propositional calculus on the atoms of (A & B) —• C. Thus
by Theorem 2.19 there is a formula D whose propositional variables occur
both in {A & B) and C such that {A & B) -* D and D -* C are theorems of the
propositional calculus and consequently of Skl(Tf).

Theorem 2.23b Let A be a conjunction of the axioms of Skl(Te). If
(A & B) -* C is a theorem of Skl(Te) then there is a formula D of Skl(Te)
such that l(D) = L(Λ & B) 0 L(C) and (A & B) -» D and D -» C are theorems
ofSk\(Te).

Proof: Similar to 2.23a.

Definition 2.24 If theory T{{Te) is an elementary theory (with equality)
based on axioms Tu . . . Tn then model

m = <M, au . . ., an, F\, Fl, . . . Rl9 R2 . . .)

is called constructive if 9W is a model for Skl(Tf) (Skl(Te)) where SC(7Ί) . . .
SC(Tn) are assigned the distinguished constants al9 . . m,an and SFC(T!) . . .
SFC(ΓW) are assigned functions Ff and set M is identical with the least set
containing au . . . an and closed with respect to Fj's.26

Theorem 2.25a Every syntactically consistent elementary theory has a
constructive model.27

Proof: The axioms for an elementary theory either all begin with universal
quantifiers or have at least one sentence which begins with an existential
quantifier. If it begins with all universal quantifiers on the basis of the
following theorem (which is provable from the logical axioms only):

{x)R(x)-> (3x)R(x)

it can be transformed into an axiom-system which has at least one sentence
beginning with an existential quantifier and is inferentially equivalent to the
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original. Namely, if theory Tf or Te is based on axioms (Xi)Al9 . . ., (xk)An

then the transformation of Tf or Te is based on axioms fc)A1( . . ., (xk)An,
(3Xk)An. Therefore the theorem will be proved if the following is proved:

(1) if A is any consistent set of sentences with predicate constants P\ . . .
and if at least one sentence begins with an existential quantifier, then A has
a constructive model.

The model to be constructed is a model on the terms of Ski (A). To the
sentence beginning with an existential quantifier add a Skolem constant ax

and continue transforming it to form its Skolem equivalent. Let {al9 . . . , an}
be the added Skolem constants and {f\} be the added Skolem function
constants to form Skl(A). Let T be the set of terms constructed according
to Definition 2.2 from {aly . . ., an} and {//}. If there are constants and
functions occurring in the original theory, they must be included in the
generation of T.

Extend Ski (A) to a set Z by adding to it atomic sentences formed by the
application of the predicate constants of L(A) to the terms of the set T.
Well-order the set of generated atomic sentences. Define Z recursively:

a. Z0=Skl(A);
( Zn U P}(tu . . ., tn) if Zn U ΊP}(tt, . . ., tn)

b. Zn+ι = < is syntactically inconsistent
[zn U lPl(h, . . ., tn), otherwise;

c. Z = U Zn where N is the set of natural numbers.
neN

Define model 2JΪ for set Z as follows:

a. let ml9 . . ., mne Mbe assigned to the added Skolem constants al9 . . .9 an

respectively;
b. let FJ, ί1* . . . be assigned to the added Skolem function constants {//}
so that F (mly . . ., m ; ) is assigned to fj(a1, . . ., α ; );
c. let Rl9 R2, . . . be assigned to the predicate constants PJ and define
(ml9 . . ., m ; , . . .) e Ri if and only if Pj(al9 . . ., <?;) e Z.

Show that 9W is a model for Skl(A). First, if A/ is an atomic sentence
then by point c. A{ is satisfied by 9JΪ. Second, if A, is of the form ΊA&
where A& is an atomic sentence, SO? satisfies A/ by point c. and the
construction of Z. If A, is of the form A7 —> Ak, A{ will be satisfied since it
verifies the atomic sentences of Ski (A). (This can be shown by a truth-table
evaluation and the definition of —* in 9W.) 2W is a model of Ski (A) since the
Skolem equivalent sentences are quantifier free.

If Tf or Te is an elementary theory and 2Jί is a model for Skl(Tf) or
Skl(Te) it is also a model for Tf or Te in virtue of Theorem 2.22a or 2.22b,
point (1). From Definition 2.24 it is seen that 9JΪ is, moreover, a construc-
tive model.

Theorem 2.25b Every syntactically consistent elementary theory with
equality has a constructive normal model.
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Proof: It follows directly from Theorem 2.25a and well-known methods for
"reducing" models to normal models through the introduction of equiva-
lence classes.

4 Some Relations between Skolem Theories and Definability In the
transition from a theory Te to the Skolem form of the theory Skl(Γe) there
are added to the original theory new elements, the Skolem functions. Are
these totally new elements or can they be defined in the original theory? If
the Skolem functions cannot be defined in the original theory, what does this
tell us about this theory? Answers to some of these questions will be given
in this chapter. Ultimately, these questions and their answers will be
important in determining the necessary and sufficient conditions for the
applicability of the predicate 'constructively categorical' to complete
theories.

Definition 2.25 A function constant f is said to be definable in theory Te

from predicate constants Pj, . . ., Pj and function constants / ? , . . . , ff iff
the following two conditions hold:

(1) (Xl) . . . (*, )(*/+1) (//(*!, . . .,xi)=xi+1^F(P°1, . . . pj,fl . . ./*)) is a
provable sentence of T where F is a wff containing predicate constants
Pj , . . ., P , and function constants /°, . . .,/ ;^and moreover xi9.. ., xi9 xi+1

are the only free variables occurring in F)
(2) some condition for totality of the function holds, e.g.,

(x1)(x2) . . . (xn) 3\(xn+ύfn(xi, . . . , xn) = xn+1

where ' 3 ! ' means 'there exists one and only one . . . such that.' Obviously,
it can be eliminated in terms of ζ3x' and a sentence about the uniqueness
of x.

A function // defined on set A is total if the domain of // is the set of
all ^-tuples of A\ Let the condition of totality, sentence 2.25 (2) be denoted
by the letter U.

Definition 2.25 is formulable in Te but not in Skl(Te). Sentence
2.25 (2) must be modified since it contains an existential quantifier.
However, there are many ways an equivalent condition can be given. For
example, if in Skl(Te) there occurs the nowhere-defined function or the
zero-function, let us denote i t / , then sentence 2.25 (2) can be formulated
as follows:

(2')τ(/;u,. ..,*„)=/).

Definition 2.26 If sentence 2.25 (1) and sentence 2.25 (2) are not provable
in Te then function constant // is said to be undefinable from predicate
constants P j , . . ., P] and function constants/J, . . . , / ? in theory T e .

Theorem 2.27 If function constant // is not definable in theory Te in terms
of predicate constants Pj, . . ., Pi and function constants /x°, . . .,// of
theory Te, then function f is not definable in Skl(Te) in terms of predicate
constants P°, . . ., P? and function constants /°, . . . fl and added Skolem
functional constants /&°+1, . . .,//o/Skl(T e).
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Proof: Suppose function // is not definable in theory Te but is definable in
Skl(Tβ) in terms of P?, . . ., pf function constants /?, . . .,// and added
Skolem function constants/£+1, . . .,//. So, if // is definable in Skl(Te) then
both

//(*,, . . ., Xj) = xμi^F(Pl . . ., Plfu . . .,//,A°+i, . .,//)

and sentence U concerning totality of the functions are theorems of Skl(Te).
From Theorem 2.22b it follows that

ffai9 . . .,*,) =xj+1^F(Po

u . . .,Pf,/?, . . .,//)

is a theorem of Te and IT which is the analogate of U in Te is a theorem
of Te. This constitutes a definition of // in terms of J?J, . . ., Pf and
f%, . . .,// contrary to assumption. Thus// is not definable in Skl(Te).

Theorem 2.28 Let theory Skl(Te) with equality be based on predicates
Pi, . . ., P£ and function constants /J, . . .,// and Skolem function constants
/?+i> >fl- If function constant / p is not definable in Skl(Te) in terms of
Pi, . . ., P£,fι, . . ,//>/?+i, .,// then there are two normal constructive
models o/Skl(Γβ)

m = <M, p ? , . . ., plfl. . . ,//,/? + 1 , . . .,//,/p)

TO' = <M', Pϊ', . . ., PΪ,fV, • • .,/!',ft Λ •,//',/•")

such that M = M', P\ = Pi', . . ., P{ = Pi',/? =/?', . . . , / / =// ' «wrf π ( / p =
/P').2 8

Proof: Let S be the following sentence:

f{Xl, . . ., Xp) = AΓp+i^-^/P'ίΛΓx, . . ., ΛΓp) = ΛΓp+1 & U < " ^ U Γ .

The two normal models of the theorem can be merged into a single
structure 931* where M = Mr = M* (Note: the new model is normal) P? =
Pϊ = P?*7 . . ., p£= Pi1 = Pi*,/? =/?' =/?*, . . .,// =//' =//* and containing
/P and/P' (note again/P ^/Pf). That is

a»* = (M*, p?*, . . .,«*,/?*, . . . , / / * , / p , / p r ) .

Let A be a conjunction of the axioms of Skl(Te), (in which, incidentally,
/P may occur and A1 be a conjunction of the axioms of Skl(Te) where every
occurrence of / p is replaced by /P\ Assume that / p is not definable in
Skl(Te) and, moreover, that it is not possible to find the two models
mentioned in the theorem; consequently it is not possible to find a model
9tf*.

9W* is characterized by being a model for {A} u {Ar} u {ΊS}. But since
no such model exists, the set {A} U {A'} U {~lS} is inconsistent. Thus S must
be derivable from the set {A} U {Af}. Thus

A & A' -> ( (/ p (^ , . . ., *P) = xP+1 & U) - (fp'(xu . . ., xP) = *P +i & Uf))
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is a theorem. Also the following is consequently a theorem

(A &fp(xl9 . . ., x?) = * P + 1 & U) - (A'-fPt(xi, . . ., * P ) = *P+i & U').

By Theorem 2.23b there exists a formula D of Skl(Te) whose proposi-
tional variables occur both in (A &/p(#i, . . ., Xp) = #p+ 1 & U) and (Ar -*
/•*(*!, . . , i p ) = xP + 1 & U') such that (A - f*(χu . . ., xp) = ΛΓP+1 & U) - D
and D -* (A' -* / p ' ( # i , . . ., #p) = * P + 1 & IT). Since in the second formula
/ p ' may be replaced by / p throughout, on the basis of S being a theorem (if
/ p ' occurs in a non-equational context the replacement follows directly
from S; if it occurs in an equational context the replacement follows from S
and the axiom of extensionality for equality)

(A &/p(#i, . . ., xp) = xp+! & U) - D

and

D-+IA &/P(*i, . , xp) = ΛΓP+I & U).

Thus

A -* (D++fp(xl9 . . ., xp) = xP+1 & U)

is a thesis. Hence f? is definable in Skl(Te) by means of formula D,
contrary to assumption. Thus 9Jί* must exist, and consequently 2tt and 9Kf

with the required properties.

5 Constructive Categoricity For fullness of treatment it will be worthwhile
to review the important definitions and theorems proven by Grzegorczyk in
[9] in which the concept of constructive categoricity was introduced. The
following definitions were given there.

Definition 2.29 The axiom system A is constructively categorical if any two of its
constructive models are isomorphic.29

The predicate Ri is called decidable in a set of sentences if and only if
for any terms tu . . ., t^ taken from the language of the sentences A the
following condition holds:

Ri(tu . . ., tk)e Cn(A) v ΊRi(tu . . ., tk)e Cn(A).S0

Besides a number of examples of theories which are or are not
constructively categorical (cited at various places in this thesis) Grzeg-
orczyk proved the following important central theorems.

Theorem 2.31 If A is any consistent set of sentences with extra-logical constants
Rlf . . ., Rm and if at least one sentence belonging to A begins with an existential
quantifier, then A has a constructive model, namely a model on terms of Skl(-A).31

Theorem 2.32 The axiom system A is constructively categorical if and only if all its
primitive predicates are decidable in the set Ski (A).32

Theorem 2.32a R. M. Robinson's arithmetic Q of the natural numbers has a construc-
tively categorical axiom system.

Theorem 2.32b The theory of dense ordering with at least two elements is essentially
non-ca tegori ca I.
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The remainder of this chapter is concerned with a second characteri-
zation of the notion of constructive categoricity, the equivalence of this
notion with that given by Grzegorczyk in Theorem 2.32, and the relation of
constructive categoricity to other notions of categoricity.

6 Completeness and Constructive Categoricity

Theorem 2.33 If theory Te is syntactically complete and has finite models,
then all its models are finite and have the same cardinality.

Proof: If Te has finite models and since Te is based on the full predicate
calculus with equality if there is not already in Te an explicit statement as
to exactly how many elements are in its domain, then a statement of the
form

(x)(3x1)(Bx2) . . . {3xn){{x1 Φ x2) & (x1 Φ x3) & . . . & (#„_! Φ xn)

8ι (x = xlmv.x = x2 -v. . . v . x = xn))

can be formulated in the language of Te. Such a sentence for some one n
must be provable in Te because it is syntactically complete and, moreover,
for only one n since Te is consistent. Consequently all finite models have
the same cardinality n.

The above theorem does not work, however, if syntactic completeness
is changed to semantic completeness. Even though there will be such a
sentence provable in Te its exact form will depend on the model with
respect to which Te is complete. A quite obvious remark which should
however be made at this point is that for syntactically complete theories
with equality all constructive models have but one cardinality, either one
given finite cardinality or cardinality tf0.

Theorem 2.34 If theory Te is syntactically complete and the Skolem
function constants added to Te to form Skl(Te) are definable in Te then Te is
constructively categorical.

Proof: To show that Te is constructively categorical it must be shown that
for any two constructive models of Te, 9tt and W, such that

m = < M , / J , .. . , / ; , / # , . . .,fi,Ro

19.. . , i φ
and

ςn _ /XT /Of fit ri+lr rjr pOf D i r\

vl - \JSI, j ! , . . ., j . , / ; + 1 , . . ., j k , K i , . . . Hj )

where fμ\ (resp. /y+ί') . . . // (resp. fJ

k

r) are interpretations of the Skolem
function constants there is a function φ such that

a. φ maps M 1-1 and onto N;

b. φ(f£(al9 . . . , « „ , . . . ) ) = <p(/£)(</>(« i), . ,<p(an), . . .) for 1 < j and m < k;

and

c. φiftliflu . . . , « „ , . . .)) = φ{Rl){φ{aύ, , ψ(an)y .)•

Since the added Skolem function constants are definable in Te condition
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b. above reduces to the following:

b f . φ(fl(au . . ., ah . . . ) ) = <p(/*)(<p(«i), . , φfa), . . .) for l^i,m <j.

Suppose, however, φ does not exist. Then either conditions a., b f . , or c. or
all are violated. Concerning condition a., by Theorem 2.33 and the
supposition of syntactical completeness, 9W and 9ί are of some one definite
finite cardinality or since 9W and 9Ϊ are constructive, they are of power No.
In either case, a 1-1 map can always be found.

On the other hand, if condition b f . or c. are violated,then there must be
some sentence S of Te such that S is true in one model and not in the other.
Consequently, S is independent of Te and Te is not syntactically complete,
against our assumption.

Theorem 2.35 If theory Te having no finite models is complete and the
Skolem function constants added to Te to form Skl(Tβ) are definable in Te

then Te is constructively categorical.

Proof: Similar to Theorem 2.34 with two exceptions:
(1) considerations of cardinality other than No are not necessary;
(2) models 9W and 9Ϊ do not verify the same atomic sentences and thus Te

cannot be complete since it is consistent.

The above theorem is mentioned by Grzegorczyk but not proved.

Theorem 2.36 If theory Te is constructively categorical then the Skolem
function constants added to Te to form Skl(Te) are definable in Te in terms
of the predicates Rι, . . . R\ and function constants /?, . . .,f{ of theory Γe.

Proof: Suppose theory Te is constructively categorical and some Skolem
function constant, say fV is not definable in terms of the predicate
Ri, . . ., Rj and function constants/?, . . .,/£. Then by Theorem 2.28 there
exist two constructive models

2K =(M,R°U . . . , # / , / ? , . . .,fLfjr)

such that
• > ( / / ' = / / " ) .

Thus, 9K and 9? cannot be isomorphic and theory Te, contrary to assump-
tion, cannot be constructively categorical.

The above theorems are summarized in the following characterization
of complete categorical theories. Theorem 2.38 was conjectured by
Grzegorczyk but not proved.

Theorem 2.37 If theory Te is syntactically complete then Te is construc-
tively categorical if and only if the Skolem function constants added to Te to
form Skl(Te) are definable in Te.

Proof: Follows directly from Theorem 2.34 and Theorem 2.36.
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Theorem 2.38 If theory Te having no finite models is complete then Te is
constructively categorical if and only if the Skolem function constants added
to Te to form Skl(Te) are definable in Te.

Proof: Follows directly from Theorem 2.35 and Theorem 2.36.

If it could be proved that constructive categoricity implies semantic
completeness, then on the strength of Theorem 2.37 and 2.38 completeness
and definability would be necessary and sufficient conditions for construc-
tive categoricity. However, this implication is in general not true. It is
not a necessary condition. This follows from two facts: (1) Grzegorczyk's
proof of the constructive categoricity of R. M. Robinson's arithmetic
of natural numbers, Theorem 2.32a; and (2) incompleteness of R. M.
Robinson's arithmetic of natural numbers. Also, as can be seen from
Grzegorczyk's theorem, Theorem 2.32b, completeness is not a sufficient
condition for constructive categoricity. Thus, unlike categoricity in power
which is directly related to completeness,33 completeness is neither a
necessary nor a sufficient condition for constructive categoricity.

It appears also that the same conditions obtain with respect to
syntactic completeness. If one were to attempt to prove the sentence,
"if theory Te is constructively categorical then it is syntactically com-
plete," the most obvious way is to assume the hypothesis is true but the
conclusion is false. Suppose Te is syntactically incomplete, then there is a
sentence S which is independent of Te. However, to arrive at a contradic-
tion one must be able to produce two constructive models 2JΪ and 91 such
that 931 is a constructive model for the axioms of Te and S while 91 is a
constructive model for the axioms of Te and IS. In general, this probably
is not possible.

For the sake of the completeness of the treatment of the notion of
constructive categoricity on the field of complete theories with equality, the
following theorems prove the equivalence of Grzegorczyk's characteriza-
tion of constructive categoricity (cf., Theorem 2.31) and the one given in
this paper.

Theorem 2.39 If all the primitive predicates of the language of theory Te

are decidable in Skl(Te) then the added Skolem functions used to transform
Te into Skl(Te) are definable in Te.

Proof: Suppose at least one of the Skolem functions ff added to Te to form
Skl(Te) is not definable in Te. Then, by using the argument of Theorem 2.28
the existence of two models for Skl(Te) 931 and 91 can be shown such that
/?€ 931 and/7'e 91 and Ί(/° =/°') Since we may suppose for the purposes of
the theorem that the other Skolem functions of Te are definable in Te then it
is obvious that 931 and 91 are two normal models for Skl(Te). Since,
however, they are non-isomorphic Te cannot be constructively categorical.
Looking at the construction of models 931 and 91, for some primitive
predicate which has/? as an argument (there must be one or ff would not
appear in the constructive model) that primitive predicate cannot be
decidable, at some point in the range of ff where ff ϊffr, contrary to
assumption. Therefore, the theorem is proved.
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Theorem 2.40 If theory Te is syntactically complete and the functions added
to Te to form Skl(Te) are definable in Te then the primitive predicates of Te

are decidable mSkl(Γe).

Proof: Suppose the hypothesis true but the conclusion false. If the
primitive predicates of Te are not decidable, then for some primitive
predicate P and terms tl9 . . ., tn of Skl(Te) neither P(tl9 . . ., tn)e Cn(Skl(Te))
nor lP(tu . . . , tn) e Cn(Skl(Γe)). Consequently the sets {Skl(Te) U P{tu . . . , tn)}
and {Skl(Te) u lP(ίι, . . ., tn)} are consistent and possess models 91 and W,
respectively. But 91 and 91' are models for theory Te by Theorem 2.22a.
However, since the added Skolem functions are definable in Te sentences
P(tu . . ., tn) and Ί P ( ^ I , . . ., tn) are expressible in Te. Thus, on the basis
of Padoa's method and models 91 and 91' of Te, theory Te cannot be
syntactically complete which contradicts our assumption of syntactic
completeness of Te. This proves the theorem.

Theorem 2.41 If theory Te possessing no finite models is complete and the
functions added to Te to form Skl(Te) are definable in Te then the primitive
predicates of Te are decidable mSkl(Te).

Proof: Similar to 2.40.

Theorem 2.42 If theory Te is syntactically complete, then the primitive
predicates of Te are decidable inSk\(Te) if and only if the Skolem functions
added to Te to form Skl(re) are definable in Te.

Proof: Theorem 2.39 and Theorem 2.40.

Theorem 2.43 If theory Te possessing no finite models is complete, then
the primitive predicates of Te are decidable in Skl(Te) if and only if the
Skolem functions added to Te to form Ski(7 )̂ are definable in Te.

Proof: Theorem 2.39 and Theorem 2.41.

7 Categoricity in Power and Constructive Categoricity This section will
briefly state the relationship between the notions of constructive cate-
goricity and categoricity in power tf0. It is easily stated on the basis of
previous theorems.

Theorem 2.44 If theory Te having no finite models is categorical in power
tf0 then theory Te is constructively categorical if and only if the Skolem
functions added to Te to form Skl(Te) are definable in Te.

Proof: Los' theorem on completeness33 and Theorem 2.38.

The notions of categoricity in power and of constructive categoricity
though related are not subsets of each other. This is easily shown by
means of examples. First, categoricity in power No is not a subset of
constructive categoricity. Grzegorczyk shows34 that the theory of dense
ordering without beginning or end is categorical in power but is not
constructively categorical. Secondly, constructive categoricity is not a
subset of categoricity in power No. Robinson's arithmetic of the natural
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numbers is as proved by Grzegorczyk35 constructively categorical but not
categorical in power tfo It is well known that Robinson's arithmetic is
essentially incomplete. Consequently on the basis of Los' theorem it cannot
be categorical in power, a fortiori, it cannot be categorical in power No

CHAPTER III

There are, implicit in the preceding chapter, consequences concerning
the structures which are constructively categorical. They are neverthe-
less of interest in themselves and will be explicated in this chapter.
Specifically, this chapter will contain a description of syntactic and
semantic features, peculiar to constructively categorical theories, and the
formal consequences of these properties. Then the initial purpose of
Grzegorczyk's introduction of the concept of constructive categoricity will
be reviewed with some accompanying criticism. Finally a list of some
unsolved problems yet remaining with respect to this logical notion will be
listed in addition to some observations concerning them.

1 Some Syntactic and Semantic Features of Constructively Categorical
Theories Referring to Definition 2.25 it should be observed that what is
there defined is a total function, which is not the usual definition of
function, but which can be seen as necessary by reviewing the definition of
constructive categoricity, Definition 2.29 and Definition 2.9. Obviously, if
the Skolem functions are not total then they may be interpreted in one
model as having certain but arbitrary values at the points of non-totality
and in the other model as having arbitrary but different values so that the
models cannot be isomorphic. If the Skolem functions are not total, the
theory in general will not be categorical. What does this tell us about the
syntactic properties of constructive categorical theories? Simply, that it
must be meaningful to apply every predicate of such a theory to every
individual contained in the universe discussed by that theory. This point is
perhaps seen a little more easily by reviewing Theorem 2.31 and
Definition 2.29 where Grzegorczyk proves that theory T is constructively
categorical if and only if all the primitive predicates of T are decidable in
Skl(T).

Thus for any predicate P and any individual i of a constructively
categorical theory it must be possible to express syntactically and derive
from the axioms whether P applies at i or not. This property of
6'universality" of the predicates is a strong condition. It should not be
thought, however, that in constructively categorical theories it is not
possible to distinguish subclasses of elements and talk about properties of
such a subclass but it must also be possible to say syntactically just which
elements do not belong to that subclass and, moreover, that the properties
of the subclass elements do not belong to them. As restrictive as this
might seem, it is certainly consonant with some of the original intuitions
behind the notion of categoricity.
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Turning now to the semantic peculiarities of constructively categorical
theories there are two of particular note: (1) every syntactic existential
element has a unique semantic correlate, and (2) the cardinality of any
constructive model is at most a countable infinity.

Factor 1 is very important because it specifically differentiates
Skolem functions as used in conjunction with constructive theories from
Hubert's epsilon.36 It is this same factor which makes these models
constructive. In conjunction with these two points Skolem functions herein
used are definitely weaker than the axiom of choice in contrast to Hubert's
epsilon which, under certain conditions, is equivalent to the axiom of
choice. More on this point later.

Returning now to the statement that every syntactic element has a
unique semantic correlate, what does the term "unique" mean and how is
this statement proved? With respect to constructive models "unique"
means one and only one, i.e., if 2H is a constructive model for a theory T
then 50? contains one and only one element t for each existential statement
formulable in T. Contrast this with non-constructive models when an
existential statement can often be correlated with more than one element of
the model. With respect to constructively categorical theories, then,
"unique" means identical up to isomorphism.

In order to prove Factor 1 a recap of how existential sentences are
resolved using Skolem functions will be helpful:

1. any sentence with an initially placed existential quantifier has that
quantified variable replaced by a Skolem constant—a zero-placed Skolem
function and with the important proviso that this Skolem function be a
"new" function, i.e., not a function used in resolving any previous sentence
of T with initially placed existential quantifiers. Thus any axiom or
sentence of T with an initially placed existential quantifier has a unique
semantic correlate;

2. replace all non-initial occurrences of existential quantifiers with Skolem
functions whose arguments are all the universally quantified variables
preceding the existential variables, e.g.,

(*)(3;y) . . . y . . .

by

(x) . . .f(x) . . .

again with the proviso that this Skolem function be a "new" function.
However, at first sight f(x) appears to be at most a parameterized name
and not unique. But x ranges over the unique names of model 9W for theory
T and generates a unique name at every point in 2W. Obviously this is
because the Skolem functions are single valued.

This is a very important point and the reason why constructive models
are so different from other models. Let this point be reemphasized by
stating it in another way. Assume that
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S = (x)(3y)P(xy)

is a sentence of theory T. Let 9JI be a model of T and 9ί be a constructive
model for T. For S to be satisfied in 9JΪ all that is required is that for any
pair (ml9 m2), mi7 m2eM of 9JΪ is that there is a pair p of elements of M
which differ from (ml9 m2) in at most the second place such that f>e P' of 951
where P f is the interpretation of predicate P in model 9JΪ. However, note,
that there may be another pair p ' of elements of M such that/) = (mu m2)
and />' = (mu m3) and such that p e P' and p'e P' nevertheless m2 Φ m3.
In contradistinction to this in constructive model W the conditions for
satisfaction remain the same as for 9K yet, let nu n2, n3e N of 9? and
p = (nu n2) and p' = (wi, w3) and if pe P' and />'e P' then n2 = rc3 where P'
is the semantic correlate of predicate P in sJί.

The proof that Factor 2 concerning cardinality is in fact the case is
based on the following assertions:

1. the number of sentences of the formal language *£ is at most a
denumerable infinity;
2. the substitution in such sentences of at most a denumerable infinity of
Skolem functions yields at most a denumerable infinity of resolved
sentences;
3. the Skolem functions in each sentence range over at most a denumerable
infinity of previously generated points of the constructive model.

The total number of sentences resulting from the process yields at
most No

 χ No sentences, i.e., a set of sentences of at most tfo

2 Skolem Functions and Hubert's Epsilon In [11] Hubert and Bernays
introduce a logical operator, e, which is referred to as Hubert's epsilon.
The epsilon operator was introduced in order to aid in the reduction of a
predicate calculus to a free variable calculus. The rules for use of the
epsilon to accomplish such a reduction are exactly analogous to the use of
Skolem functions,as given in Definition2.20, except where Skolem constants
appear the symbol exS(x) would occur, (S(x) is a formula in prenex normal
form with initially placed existential quantifier 3#), and f(y, z, . . .) would
occur as an abbreviation for exS(x, y, zy . . .). What is the difference then
between Hubert's epsilon and Skolem functions?

Quite obviously, the intent of both operators is the symbolic resolution
of sentences of predicate calculus in order to eliminate existential
quantifiers. However, the levels at which this intention was carried out
were completely different. Skolem functions appear to be used where
semantics is of prime importance. They were introduced in conjunction
with the determination of the conditions under which existential sentences
could be satisfied in a model.37 Hubert's epsilon is used in cases where
syntax is of prime concern. The famous Hubert epsilon theorems38 are of
a purely syntactic nature.

The first and most important difference is the method of introduction
of the operators into the theory. Hubert's epsilon is introduced into a
theory through the use of a special axiom:
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F{y) - F(exF(x))

where y is a free variable. Skolem functions require no special axiom and
are introduced with the express intent of model construction by the now
familiar process of letting the theorems of the theory define the properties
of the model (i.e., letting syntactic objects name themselves as semantic
objects).

Secondly, the Hubert epsilon can be considered as a formalization of
the indefinite description, which is a phase of the form 'a so-and-so'
(contrasted to RusselPs famous definition description— 'the so-and-so').
The Skolem functions are not designed to be such a formalization and it
would be stretching the point quite a bit to make it so. What makes this so,
and this brings up the third point, is that Hubert's epsilon functions chiefly
as a selection or choice operator. The axiom given by Hubert is inter-
preted as follows: if some constant satisfies F then exF(x) denotes some
object, not specified, which satisfies F. Modern practitioners of the
epsilon, Asser and Hermes, continue in this tradition. Until recently, the
epsilon had not been investigated in itself. Now predicate calculi have been
built upon the epsilon and the properties of these calculi determined.
Asser39 interprets the epsilon:

"Finally, the sign e is a variable for the choice-function of the domain of
individuals J. Thus a choice-function of J is a representation φ which assigns
to each non-empty subset of J a uniquely determined element of this sub-
class . . . " Hermes in his paper gives the following semantics: "(3.10) v is
a choice operator over ω. For every non-empty subset p of ω, v(p) is an
element of p . " 4 0

As was pointed out previously, Skolem functions do not have to be total
functions. Moreover, the semantics of these functions is such that they
may be defined either over the entire set of individuals / (as is required for
constructive categoricity) or over some subset of this domain but it is only
required that their range of values be in the set of individuals. They may
but do not have to function as a choice operator: the intersection of the
range of values of a Skolem function and its domain of definition can be
null. This is the most fundamental difference between Hubert's epsilon and
Skolem functions. As a consequence of this ability of Hubert's epsilon to
function as a choice function, we are led back to our original point that
under certain conditions Hubert's epsilon is equivalent to the axiom of
choice. Why is it said "under certain conditions"? In their work on set
theory Fraenkel and Bar-Hillel remark:

There clearly exists a close connection between the e-formula and the axiom
of choice. This connection should not be overstated, as it is occasionally done,
in the form that the €-formula is a kind of logical (or generalized) axiom of
choice. Indeed, the €-formula allows for a singleton selection only, while the
axiom of choice allows for a simultaneous selection from each member of an
(infinite) set of sets, and guarantees the existence of the set comprising the
selected entities. There is no reason to suppose that in a set theory
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constructed on the basis of an e-calculus the principle of choice would become
generally derivable, unless the specific axioms of set theory contain e-terms
themselves.41

However, for just such a construction of set theory see Bourbaki.42

Skolem functions as used herein are limited to elementary theories and
cannot be used to construct a logical equivalent of the axiom of choice. If
not restricted to elementary theories then they still suffer the same defect
as noted above, the intersection of their ranges and domains can be null,
and would not in general act as a choice operator.

It might be of some interest to contrast the development of a concept of
constructive categoricity based on Hubert's epsilon limited to elementary
theories versus the one based on Skolem functions. The most obvious
benefit would be that those "functions" introduced in the resolution of
existential sentences would not have to be total because if one used that
which Asser calls "e -calculus of the second kind" the places of non-
totality are arbitrarily defined to have the null object as a value. To gain
this advantage which is considerable due to its naturalness means however
that the following must hold. First, the calculus must be able to talk about
the null object. Second, the axioms must be strong enough so that the
predicates can be interpreted as only applying to some one definite
cardinality of objects (contrasted to constructive categoricity where the
primitive predicates must be "universal").

On the other hand, a constructive categoricity based on Hubert's
epsilon has the distinct disadvantage of having to be artificially limited to
models of cardinality of No or less if some semblance of constructivity is to
be maintained. (Contrast this to constructive models based on Skolem
functions which are limited to at most No by the process of construction.)
However, in the future it might be worth pursuing a study of constructivity
based on Hubert's epsilon.

3 Critique of the Notion of Constructive Categoricity The major thrust of
the critique revolves around the fact proven in Chapter II, section 4, that
completeness is neither a necessary nor a sufficient condition for
constructive categoricity. First, it was questioned near the end of
Chapter I as to the appropriateness of applying the notion of categoricity,
no matter which type, to theories which are incomplete. That question
remains. Secondly, there is the following rather obvious theorem:

Theorem 3.1 If theory Te is constructively categorical then Skl(Te) is
complete with respect to its constructive models.

Proof: If Skl(Te) is not complete with respect to constructive model 9J? then
there is a sentence S of Skl(Γe) such that S is satisfied in 9K but such that
S/Cn(Skl(Tβ)) and ΊS/ Cn(Skl(Te)). The symbol 'Cn' means 'the con-
sequences of,' i.e., Cn(Skl(Te)) is the least set of sentences S containing
Skl(Te) and closed under the rule of detachment. Since Skl(Tβ) is a
propositional calculus with some added extralogical axioms, this can only
happen if some atomic part Y of S is such that 7/ Cn(Skl(Te)) and
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ΊF/Cn(Skl(re)). Thus for some primitive predicate P of Te, P is not
decidable in Skl(Te). Consequently, by Theorem 2.31, Te is not construc-
tively categorical contrary to assumption.

Consider now that Grzegorczyk proves in his paper that R. M.
Robinson's arithmetic of the natural numbers is constructively categorical.
He annotates his proof as follows:

It is worth recalling that this arithmetic is undecidable, and hence also
incomplete. It is even known that very simple general theorems, e.g.

(x){y){x + y =y +x)

are independent of these axioms. Yet this axiom determines exactly one
constructive model. It is, of course, the classical model consisting of the
natural numbers.43

In what sense is this constructive model the classical model consisting
of the natural numbers? First, it is known that this axiom system is
essentially incomplete. To say that it is incomplete means that it is
incomplete with respect to some model. It happens that it is incomplete
with respect to this classical model. Thus the constructive model and the
classical model are not identical because the axioms are not incomplete
with respect to the constructive model which they determine.

Just suppose for a moment that the constructive and the classical
models are identical. It is known that Robinson's arithmetic is ω-
incomplete. Are we then justified in saying that Robinson's arithmetic
determines the classical model of the natural numbers? The statement
cited by Grzegorczyk, (x)(y){x +y =y +x), is a valid statement about the
natural numbers. In Robinson's arithmetic statements such as 2 + 5 = 5 + 2
are provable but are these of scientific interest other than perhaps com-
putability? Yet commutativity of addition for the natural numbers is an
important and interesting property!

Theorems 2.40-2.43 and Theorem 3.1 suggest that the notion of
constructive categoricity only yields interesting information when applied
to complete theories. It should, perhaps, be considered as an extension of
the notion of categoricity in power No. However, the study of constructive
categoricity should be extended to models of arbitrary power whose domain
of individuals is ordered according to some ordinal type. Then the notion
of constructive categoricity could be considered in general to be a refine-
ment of the notion of categoricity in power.

4 Unsolved Problems There are some unsolved problems or further
directions of research that remain from Grzegorczyk's paper or have
arisen in the course of this thesis. They will be listed here along with
some hints to their solution. Problem 1 was formulated by Grzegorczyk;
all others are formulated by the author of this thesis, as are all hints.

Problem 1. " . . . has a constructive model of a constructively categorical
axiom system no automorphisms (other than identity), if we disregard the
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Skolem functions, for together with them it obviously cannot have any
automorphisms. . ," 4 4

It seems that one way to approach this problem would be to investigate
the Lindenbaum-Tarski algebras generated by the Skolem form of the
axiom system and then use the results concerning automorphisms of
Boolean algebras45 to attack the problem. Since the Skolem form of the
theory is a 'syntactic copy' of the constructive models the results
concerning the algebras then carry over to the models. One difficulty,
however, will be a guarantee of the existence of Boolean meets and joins
over a countable infinity of objects.

Problem 2. This is a direction for further research which has been
mentioned several times already. It would be interesting to develop a
theory of constructive categoricity based on models of some ordinal type
a, ω < a. Since the syntax and models are correlated in the process of
generating the models the syntax for such theories would have to be capable
of dealing with infinitely long expressions (viz. K. Karp, Theories with
Expressions of Infinite Length, North Holland Publishing Co., 1964).

Problem 3. This follows upon Problem 2. If such a theory can be
developed, then if theory Te is constructively categorical for models of
ordinal type α, ω < a is Te constructively categorical for ordinal type β,
β < a? Is T constructively categorical for ordinal type γ, a < γ?

Problem 4. The results given in Theorems 2.40-2.43 are based on theories
which have equational definitions as the mode or method of definition. For
complete theories, would definability remain a necessary and sufficient
condition for constructive categoricity if the method of definition were
biconditional implication instead of equational ? Seeing how very dependent
constructive categoricity was upon the behavior of the individuals of the
Skolem form of the theory, it would appear that if biconditional implication
were the mode of definition, definability would not be a necessary and
sufficient condition. This, however, remains to be proven.

APPENDIX

Is the concept of constructive categoricity an extensional concept or
not? On page 49 of his paper, cf [9], Grzegorczyk says, "As a possible
drawback of this concept of categoricity, we ought to mention that
constructive categoricity is not an extensional property." Yet no examples
are forthcoming to illustrate this. Theorem 2.32a indicates that Robinson's
arithmetic Q has a constructively categorical axiom system. This is
produced by Grzegorczyk, cf. [9], p. 53, but this is not equivalent to the
originally given axiom system on p. 52. In the former, one can prove
P(0) = 0 whereas in the latter one cannot. Are these two axiom systems
equivalent? The word 'equivalent' is nowhere made precise enough.
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To put it in a more precise context, use the term syntactically
equivalent and syntactically extensional as given in Definition 2.10 and
Definition 2.12a. Then on the basis of Theorem 2.37 and Definition 2.10 the
following theorem results:

Theorem. For syntactically complete theories the concept of constructive
categoricity is syntactically extensional.

NOTES

1. The most immediate example of representation theorems is Stone's representa-
tion theorem for Boolean algebras. See [17], pp. 23, 97, 115, 117. Examples of
representation theorems as applied specifically to logic, see pp. 194ff, 198ff.

2. See [7], p. 92.

3. [7], p. 93.

4. [7], pp. 95-96. Italics are mine.

5. See [12], p. 264. It is interesting to note how much the terminology Huntington
uses to describe postulates has developed in the fifteen years since Dedekind. It
is probably due to Peano's influence, whom Huntington cites in his bibliography.

6. [12], p. 277.

7. [12], p. 278.

8. See [21], p. 346.

9. [21], p. 346. Why Dewey suggested the terms categorical and disjunctive is not
immediately apparent from his logical works and remains at present a mildly
interesting open problem.

10. [21], p. 383.

11. See [12], p. 264. Italics are mine.

12. See [21], pp. 346-347.

13. See [18], p. 712. The idea of arithmetical equivalence is closer to the intuitive
idea of 'same mathematical domain' than is categoricity.

14. See [14], p. 59.

15. See [19], p. 310.

16. [19], p. 313.

17. See [5], p. 149. This terminology is very similar to Tarski 's. Cf. notes 14 and
15. The following is a free translation of this text by the author:

An AS (axiom system) is called monomorphic (or categorical) if it is con-
sistent and all its models are pairwise isomorphic. The concept of the
isomorphism of models is related to the previously defined concept of
isomorphism of classes or relations (19). Model 2Jϊ depends on the rela-
tions (or extensions) Bίf B2, . . . , Bn of the finitely axiomatizable founda-
tions of system S; another model 9H' depends on relations B[, . . . , B'n. m
is said to be isomorphic to 9Jϊ' if there is a mapping between the individuals
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of 9tt and of 2fl' such that each Bp (p = 1 to n) is isomorphic (in the pre-
viously defined sense) to Bj, on the basis of this mapping. If these models
of AS are not isomorphic then AS is said to be polymorphic. If an AS is
monomorphic, consequently complete, then it determines all structural
properties of any possible model.

18. See [14], p. 58.

19. [14], p. 60.

20. See [20], pp. 396-397. Working independently Los and Vaught came up with the
same result. Vaught started from Tarski's notion of arithmetical class (see
note 13). But when you add the notion of cardinality to the notion of arithmetical
equivalence the resulting notion is categoricity in power.

21. See [3], p. 69.

22. See [9], p. 55.

23. See Chapter III, section 4.

24. See [9], pp. 47-48, Definition 5.1.

25. Variants of condition (2) of this theorem are known in the literature of logic,
e.g., [16], p. 55. However, by proving condition (1), condition (2) becomes an
easy matter.

26. The essence of this definition is due to Grzegorczyk. See [9], p. 48, definition
5.3. However, it has to be slightly modified to use the terminology adopted in
this thesis.

27. This is a modification and an improvement of a theorem of Grzegorczyk. See
[9], p. 49, Theorem 5.5. The model W is more general than that constructed by
Grzegorczyk.

28. Essence of this proof is due to E. W. Beth. See [2]. It has been modified for
Skolem theories with their different rules of procedure and the definition of
functions as being total, which is necessary for constructive categoricity.

29. See [9], p. 48, Definition 5.4.

30. See [9], p. 51. The symbol 'Cn' stands for 'consequence of e.g., Cn(A) is the
least set containing A,and closed under the rules of procedure.

31. See [9], p. 49, Theorem 5.5.

32. See [9], p. 51, Theorem 5.7.

33. This fact is proved by Los [14], p. 60.

34. See [9], p. 51.

35. See [9], pp. 52-54, Theorem 5.8.

36. See [11], p. 18ff.

37. See pp. 224-233 of [6] for a detailed explanation of Skolem normal form for
satisfiability.

38. See [11], p. 18 and p. 79.

39. See [1]. Translation of German text is mine.
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40. See [10]. Translation of German text is mine.

41. See [8], pp. 183-185.

42. In [4], the T operator functions as Hubert's epsilon does.

43. See [9], pp. 53-54.

44. See [9], p. 56.

45. See [17].
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