Notre Dame Journal of Formal Logic Volume XV, Number 4, October 1974 NDJFAM

A THEOREM CONCERNING A RESTRICTED RULE OF SUBSTITUTION IN THE FIELD OF PROPOSITIONAL CALCULI. II

BOLESŁAW SOBOCIŃSKI

6* It follows from definition Df.3, Remark IV and 5.4 that in \mathfrak{D}_0 for every m, $1 \le m \le y$, and for every k, $2 \le k \le z$, $\{\mathbf{s}_1^m\}|_{\overline{R1}}\mathbf{s}_k^m$, i.e., that \mathbf{s}_k^m is a consequence by R1 of the first term of \mathbf{S}_m . We indicate by $\mathfrak{D}_1 = \{\mathbf{A}; \mathbf{V}_{1\mathbf{E}}^*; \mathbf{V}_{2\mathbf{E}}^*; \mathbf{S}_1^+; \mathbf{S}_2; \ldots; \mathbf{S}_y\}$ an augmentation of \mathfrak{D}_0 such that \mathfrak{D}_1 is a proof sequence of \mathbf{b} in which $\mathbf{S}_1^+ = \mathbf{S}_1$, but in which for every k, 1 < k < z, there are two terms σ and τ such that they precede \mathbf{s}_1^1 , i.e., the first term of \mathbf{S}_1^+ , and $\{\sigma, \tau\}|_{\overline{R2}}\mathbf{s}_k^1$. In the other words, in \mathfrak{D}_1 every term of \mathbf{S}_1 is a consequence by R2 of two terms belonging to \mathfrak{D}_1 and preceding the first term of \mathbf{S}_1 . Obviously, if $\mathbf{S}_1 = \{\mathbf{s}_1^1\}$, then $\mathfrak{D}_1 = \mathfrak{D}_0$. But, in such a case \mathfrak{D}_0 can be considered as a particular instance of \mathfrak{D}_1 which will not be analyzed separately. In a similar way we indicate by $\mathfrak{D}_2 = \{\mathbf{A}; \mathbf{V}_{1\mathbf{E}}^*; \mathbf{V}_{2\mathbf{E}}^*; \mathbf{S}_1^{+*}; \mathbf{S}_2^+; \ldots; \mathbf{S}_y\}$ an analogous augmentation of \mathfrak{D}_1 and so forth.

In this section we will prove that we can replace \mathfrak{D}_0 by its augmentation

$$\mathfrak{D}_{y} = \{ \mathbf{A}; \ \mathbf{V}_{1}^{*}\mathbf{E}; \ \mathbf{V}_{2}^{*}\mathbf{E}; \ \mathbf{S}_{1}^{+*}; \ \ldots; \ \mathbf{S}_{y-1}^{+*}; \ \mathbf{S}_{y}^{+} \}$$

such that \mathfrak{D}_y is a proof sequence of b in which for every $m, 1 \le m \le y - 1$, $\mathbf{A}|_{\overline{\mathbb{R}^{1^*}, \mathbb{R}^2}} \mathbf{S}_m^{+*}$ and, moreover, $\mathbf{A}|_{\overline{\mathbb{R}^{1^*}, \mathbb{R}^2}} \mathbf{S}_y^+$.

Since in order to prove this statement we shall use deductions entirely analogous to those that were presented in section 4, the proof given below will be rather concise.

6.1 Let us assume that in \mathfrak{D}_0 $\mathfrak{S}_1 \neq \{\mathbf{s}_1^1\}$ and, moreover, that \mathbf{s}_k^1 , $2 \leq k \leq z$, is an arbitrary term of \mathfrak{S}_1 such that $\mathbf{s}_1^1 \neq \mathbf{s}_k^1$. Then, cf., **5.3** and Remark IV, in \mathfrak{D}_0 there are two terms σ and τ such that they precede \mathbf{s}_1^1 , $\{\sigma, \tau\}|_{\overline{R}^2} \mathbf{s}_1^1$ and $\{\mathbf{s}_1^1\}|_{\overline{R}^1} \mathbf{s}_k^1$. Since, obviously, \mathbf{s}_k^1 is a substitution instance of \mathbf{s}_1^1 , there is a

^{*}The first part of this paper appeared in *Notre Dame Journal of Formal Logic*, vol. XV (1974), pp. 465-477. An acquaintance with that part and the reference given therein is presupposed.

formula μ such that $\{\tau\}|_{\overline{R1}} \mu$ and $\mu \approx C\rho \, \mathbf{s}_k^1$. Therefore, since there are five generic cases of \mathbf{S}_1 , cf., $\mathbf{5.5.3}$, we have to analyze five possible cases:

Case 1. σ is a term of \mathbf{A} , τ is a term of $\mathbf{V}_{2\mathbf{E}}$, $\tau \approx C\sigma \mathbf{s}_1^1$, $\{\sigma, \tau\}|_{\overline{R2}} \mathbf{s}_1^1$ and $\{\mathbf{s}_1^1\}|_{\overline{R1}} \mathbf{s}_k^1$.

Additionally, we have $\{\tau\}_{\mathbb{R}^1} \mu$ and $\mu \approx C \rho \mathbf{s}_k^1$. If in $\mathfrak{D}_0 \mu$ is not a term of V_{2E} , then, since τ is a term of V_{2E} and $\{\tau\}_{\overline{R1}}\mu$, μ possesses the same formal properties as term γ_k discussed in section 4.1. Therefore, since σ is a term of A, using the same reasoning as given in 4.1 we are able to replace \mathfrak{D}_0 by its augmentation $\mathfrak{D}_0^* = \{A; V_{1E}^*; V_{2E}^*; S_1; \ldots; S_y\}$ such that \mathfrak{D}_0^* is a proof sequence of b in which $A|_{R_1^*,R_2} s_k^1$. Whence, assume that in $\mathfrak{D}_0 \mu$ is a term of V_{2E} . Clearly, either $\sigma \approx \rho$ or, since σ is a term of A, $\{\sigma\}|_{\overline{R1}^*}\rho$. Hence, if $\sigma \approx \rho$ or in $\mathfrak{D}_0 \rho$ is a term of V_{1E} , in $\mathfrak{D}_0 A |_{R_1 \times R_2} s_k^1$. On the other hand, if $\{\sigma\}_{\mathbb{R}^{1*}\rho}$ and in $\mathfrak{D}_0 \rho$ is not a term of V_{1E} , then we construct an augmentation V_{1E}^{*1} of V_{1E} by adding to $V_{1E} \rho$ as its last term, cf, definition (a) in 4.1. Then, we are able to replace \mathfrak{D}_0 by its augmentation \mathfrak{D}_0^{*1} = $\{A; V_{1E}^{*1}; V_{2E}; S_1; \ldots; S_{\nu}\}$ such that \mathfrak{D}_0^{*1} is a proof sequence of b in which $\{\rho,\mu\}_{\mathbb{R}^2}$ \mathbf{s}_k^1 . Therefore, it is obvious that if Case 1 holds for \mathbf{s}_k^1 then we can always replace \mathfrak{D}_0 by its augmentation $\mathfrak{D}_{0C1} = \{A; V_{1E}^*; V_{2E}^*; S_1; \ldots; S_{\gamma}\}$ such that \mathfrak{D}_{0C1} is a proof sequence of **b** and such that in it \mathbf{s}_k^1 is a consequence by R2 of two terms belonging to \mathfrak{D}_{0C1} and preceding \mathfrak{s}_1^1 . Thus, Case 1 is solved.

Clearly, cf., 4.1, in an analogous way we can obtain the solutions to the remaining four cases, viz.

Case 2. σ is a term of V_{1E} , τ is a term of V_{2E} , $\tau \approx C \sigma s_1^1$, $\{\sigma, \tau\} \mid_{\overline{R2}} s_1^1$ and $\{s_1^1\} \mid_{\overline{R1}} s_k^1$.

Case 3. σ is a term of V_{2E} , τ is a term of A, $\tau \approx C \sigma s_1^1$, $\{\sigma, \tau\}|_{\overline{R2}} s_1^1$ and $\{s_1^1\}|_{\overline{R1}} s_k^1$.

Case 4. σ is a term of V_{2E} , τ is a term of V_{1E} , $\tau \approx C \sigma s_1^1$, $\{\sigma, \tau\}|_{\overline{R^2}} s_1^1$ and $\{s_1^1\}|_{\overline{R^1}} s_k^1$.

Case 5. Both σ and τ are the terms of V_{1E} , $\tau \approx C \sigma s_1^1$, $\{\sigma, \tau\}|_{\overline{R2}} s_1^1$ and $\{s_1^1\}|_{\overline{R1}} s_k^1$.

It means, cf., 4, that if one of the cases 2-5 holds for \mathbf{s}_k^1 , then we can always replace \mathfrak{D}_0 by its augmentation such that it is a proof sequence of \mathbf{b} and such that in it \mathbf{s}_k^1 is a consequence by R2 of two terms belonging to this augmentation and preceding \mathbf{s}_k^1 . Since cases 1-5 are mutually disjoint, we can conclude that for \mathbf{s}_k^1 under consideration there is an unique augmentation of \mathfrak{D}_0 which satisfies the required properties.

6.2 Since in the proof given in **6.1** it is assumed that \mathbf{s}_k^1 , $2 \le k \le y$, is an arbitrary term of \mathbf{S}_1 such that $\mathbf{s}_1^1 \ne \mathbf{s}_k^1$ and since sequence \mathbf{S}_1 is finite, it follows from the discussion presented in **4.3** and **4.3.1**, that we are able to replace \mathfrak{D}_0 by its augmentation $\mathfrak{D}_1 = \left\{\mathbf{A}; \ \mathbf{V}_{1\mathbf{E}}^*; \ \mathbf{V}_{2\mathbf{E}}^*; \ \mathbf{S}_1^+; \ \mathbf{S}_2; \ldots; \ \mathbf{S}_y\right\}$ such that \mathfrak{D}_1 is a proof sequence of \mathbf{b} and such that in it every term of \mathbf{S}_1^+ is a consequence by R2 of two terms belonging to \mathfrak{D}_1 and preceding \mathbf{s}_1^* .

- **6.3** In the subsections of **6** given below the letters y and z will always represent the numbers y and z as defined respectively in **5.4** and **5.3**. Moreover, in order to present the deductions given in those subsections in a compact way: (1) we presuppose a familiarity with the formal properties of subsequences A, V_{1E} , V_{2E} , S_1 , S_1^+ and so forth, (2) we assume tacitly the applications of Formula **6**, and (3) we introduce the following two purely abbreviational definitions:
- Df. 5 For any δ , δ is a term of \mathfrak{M} if and only if there is X such that X is a proof sequence of b; δ is a term of X; A, V_{1E} , and V_{2E} are the subsequences of X and δ is a term either of A or of V_{1E} or of V_{2E} ,

and

- Df. 6 For any δ and m, δ is a term of \mathfrak{R}_m if and only if there is X such that X is a proof sequence of \mathfrak{b} ; δ is a term of X; S_1^{+*} , S_2^{+*} , . . ., S_m^{+*} are the subsequences of X and δ is a term either of S_1^{+*} , or of S_2^{+*} , or of . . ., or of S_m^{+*} .
- **6.4** Now, we have to prove the following lemma:

Lemma 1 For any k, m, and n such that $2 \le k \le z$, $1 \le m \le n$ and 1 < n < y, if

$$\mathfrak{D}_{n+1} = \{ \mathbf{A}; \, \mathbf{V}_{1\mathbf{E}}^*; \, \mathbf{V}_{2\mathbf{E}}^*; \, \mathbf{S}_{1}^{+*}; \, \ldots; \, \mathbf{S}_{m-1}^{+*}; \, \mathbf{S}_{m+1}^{+*}; \, \ldots; \, \mathbf{S}_{n}^{+*}; \, \mathbf{S}_{n+1}^{+}; \, \mathbf{S}_{n+2}, \, \ldots; \, \mathbf{S}_{y} \}$$
 is a proof sequence of \mathbf{b} , \mathbf{s}_{k}^{m} is a term of \mathbf{S}_{m}^{+*} , $\{ \mathbf{s}_{k}^{m} \} \mid_{\overline{R1}} \mu$ and μ is not a term of \mathfrak{D}_{n+1} , then there is a sequence

$$\mathfrak{D}_{n+1}^m = \{ \mathbf{A}; \, \mathbf{V}_{1\mathbf{E}}^*; \, \mathbf{V}_{2\mathbf{E}}^*; \, \mathbf{S}_{1}^{+*}; \, \ldots; \, \mathbf{S}_{m-1}^{+*}; \, \mathbf{S}_{m}^{+*}; \, \mathbf{S}_{m+1}^{+*}; \, \ldots; \, \mathbf{S}_{n}^{+*}; \, \mathbf{S}_{n+1}^{+}; \, \mathbf{S}_{n+2}, \, \ldots; \, \mathbf{S}_{y} \}$$
 such that \mathfrak{D}_{n+1}^m is an augmentation of \mathfrak{D}_{n+1} and such that it is a proof sequence of \mathbf{b} , μ is its term, and in which $\mathbf{A}|_{\overline{\mathbf{R}_{1}^*},\overline{\mathbf{R}_{2}}} \mu$ and μ is the last term of \mathbf{S}_{n}^{+*} .

Explanation: Lemma 1 says: Assume that \mathfrak{D}_{n+1} is a proof sequence of b which satisfies certain conditions, cf., $\mathbf{6}$, and, moreover, that \mathbf{s}_k^m is its term and that a formula μ which is not a term of \mathfrak{D}_{n+1} is a substitution instance by R1 of \mathbf{s}_k^m . Clearly, we do not need to use μ in the proof of b. But, there is an augmentation of \mathfrak{D}_{n+1} , say \mathfrak{D}_{n+1}^m , such that \mathfrak{D}_{n+1}^m is a proof sequence of b such that it contains μ as its term and in which $\mathbf{A}|_{\mathbb{R}^{1^*},\mathbb{R}^2}\mu$. But, in \mathfrak{D}_{n+1}^m μ is not used in the proof of b. We shall see that an application of Lemma 1 is essential in the proof of Theorem A.

In order to prove Lemma 1 let us assume its antecedent. Then:

- **6.5** Since \mathbf{s}_k^m is a term of \mathbf{S}_m^{+*} , it follows from the definition of \mathfrak{D}_{n+1} , cf., $\mathbf{6}$, that in \mathfrak{D}_{n+1} there are two terms σ_1 and τ_1 such that they precede \mathbf{s}_1^m , $\tau_1 \approx C \sigma_1 \mathbf{s}_k^m$ and $\{\sigma_1, \tau_1\}|_{\overline{R2}} \mathbf{s}_k^m$. Since $\{\mathbf{s}_k^m\}|_{\overline{R1}} \mu$, there is a formula μ_1 such that $\{\tau_1\}|_{\overline{R1}} \mu_1$ and $\mu_1 \approx C \rho_1 \mu$. Obviously, either $\sigma_1 \approx \rho_1$ or $\{\sigma_1\}|_{\overline{R1}} \rho_1$.
- **6.5.1** Assume that μ_1 is a term of \mathfrak{D}_{n+1} and, moreover, that $\sigma_1 \approx \rho_1$. Since τ_1 is a term either of \mathfrak{M} or of \mathfrak{N}_{m-1} , $\{\tau_1\} |_{\overline{R1}} \mu_1$ and μ_1 is a term of \mathfrak{D}_{m+1} , it

follows from the definitions of A, V_{1E} , V_{2E} , and S_n^+ that μ_1 precedes s_n^m . Hence, μ_1 is a term either of \mathfrak{M} or of \mathfrak{N}_{m-1} , and, therefore, $A|_{\overline{R1^*,R2}}\,\mu_1$. Since $\sigma_1 \approx \rho_1$, it yields that $A|_{\overline{R1^*,R2}}\,\mu$. But, according to the antecedent of Lemma 1 μ is not a term of \mathfrak{D}_{n+1} . However, since $A|_{\overline{R1^*,R2}}\,\mu$, we are able to construct an augmentation S_m^{+*1} of S_m^{+*} by adding to S_m^{+*} μ as its last term and consequently, to replace \mathfrak{D}_{n+1} by its augmentation

$$\mathfrak{D}_{n+1}^{1} = \left\{ \mathsf{A}; \; \mathsf{V}_{1\mathsf{E}}^{*}; \; \mathsf{V}_{2\mathsf{E}}^{*}; \; \mathsf{S}_{1}^{+*}; \; \ldots; \; \mathsf{S}_{m-1}^{+*}; \; \mathsf{S}_{m}^{+*1}; \; \mathsf{S}_{m+1}^{+*}; \; \ldots; \; \mathsf{S}_{n}^{+*}; \; \mathsf{S}_{n+1}^{+}; \; \mathsf{S}_{n+2}; \; \ldots; \; \mathsf{S}_{y} \right\}$$

such that \mathfrak{D}_{n+1}^1 is a proof sequence of **b** in which μ is a term of S_m^{+*1} and and $A|_{\overline{R}_1^*,\overline{R}_2^*}\mu$. Obviously, if such a case holds, Lemma 1 is proved.

- **6.5.2** Hence, assume that at least one of the formulas, ρ_1 or μ_1 , is not a term of \mathfrak{D}_{n+1} . Since each of the terms σ_1 and τ_1 is a term either of \mathfrak{M} or of \mathfrak{R}_{m-1} we have to distinguish the following four cases:
- Case 1. Both σ_1 and τ_1 are the terms of \mathfrak{M} .
- Case 2. σ_1 is a term of \mathfrak{M} and τ_1 is a term of \mathfrak{R}_{m-1} .
- Case 3. σ_1 is a term of \mathfrak{R}_{m-1} and τ_1 is a term of \mathfrak{M} .
- Case 4. Both σ_1 and τ_1 are the terms of \Re_{m-1} .
- **6.6** Assume that Case 1 holds. Hence both σ_1 and τ_1 are the terms of \mathfrak{M} . Moreover, by assumptions, μ and at least one of the formulas, ρ_1 or μ_1 are not a term of \mathfrak{D}_{n+1} . Since, cf., definition Df. 5, both σ_1 and τ_1 are the terms either of \mathbf{A} or of \mathbf{V}_{2E}^* , we have to analyze the following subcases:
- **6.6.1** σ_1 is a term of **A**. Then we have to investigate all possible subcases created by the fact that τ_1 is a term either of **A** or of V_{1E}^* or of V_{2E}^* . Viz.:
- (i) Suppose that $\sigma_1 \approx \rho_1$. In such a case μ_1 is not a term of \mathfrak{D}_{n+1} . Whence:
- (1) Assume that τ_1 is a term of **A**. Since $\{\tau_1\}|_{\overline{R1}}\mu_1$, it yields clearly that $\mathbf{A}|_{\overline{R1}^*}\mu_1$. Hence, by assumptions, $\{\sigma_1, \tau_1\}|_{\overline{R2}}\mu$, i.e., $\mathbf{A}|_{\overline{R1}^*,\overline{R2}}\mu$. Therefore, due to the fact that $\mathbf{A}|_{\overline{R1}^*,\overline{R2}}\{\mu_1, \mu\}$ we are able to construct the augmentations \mathbf{V}_{1E}^{*1} and \mathbf{S}_{m}^{**1} of \mathbf{V}_{1E}^{*1} and \mathbf{S}_{m}^{**1} respectively adding μ_1 to \mathbf{V}_{1E}^{*1} and μ_2 to \mathbf{S}_{m}^{**2} as their last terms, and, consequently to replace \mathfrak{D}_{n+1} by its augmentation
- $\mathfrak{D}_{n+1}^{1} = \left\{ \mathbf{A}; \ \mathbf{V}_{1E}^{*1}; \ \mathbf{V}_{2E}^{*}; \ \mathbf{S}_{1}^{+*}; \ \ldots; \ \mathbf{S}_{m-1}^{+*}; \ \mathbf{S}_{m+1}^{**}; \ \mathbf{S}_{m+1}^{+*}; \ \ldots; \ \mathbf{S}_{n}^{+*}; \ \mathbf{S}_{n+1}^{+}; \ \mathbf{S}_{n+2}, \ \ldots; \ \mathbf{S}_{y} \right\}$ such that \mathfrak{D}_{n+1}^{1} is a proof sequence of **b** in which μ is a term of \mathbf{S}_{m}^{+*1} . Therefore, in \mathfrak{D}_{n+1}^{1} $\mathbf{A} \mid_{\overline{\mathbf{R}_{1}^{1}, \mathbf{R}_{2}^{2}}} \mu$.
- (2) Assume that τ_1 is a term of V_{1E}^* . It implies that in \mathfrak{D}_{n+1} there is a term δ such that δ is a term of \mathbf{A} and $\{\delta\}|_{\overline{\mathbb{R}^{1^*}}}\tau_1$. Therefore, since $\{\sigma_1\}|_{\overline{\mathbb{R}^{1}}}\mu_1$, $\{\delta\}|_{\overline{\mathbb{R}^{1^*}}}\mu_1$, i.e., $\mathbf{A}|_{\overline{\mathbb{R}^{1^*}}}\mu_1$. Hence, it is self-evident that the solution to this eventuality is the same exactly as given in point (1) above.
- (3) Assume that τ_1 is a term of $\mathbf{V}_{2\mathbf{E}}^*$. This together with the assumption that $\{\tau_1\}_{|\overline{R}|} \mu_1$ yields that, although μ_1 is not a term of \mathfrak{D}_{n+1} , it possesses the same formal properties as term γ_k discussed in section 4.1. For example, if in \mathfrak{D}_{n+1} subsequence \mathbf{E} were not empty and if μ_1 were a term of \mathfrak{D}_{n+1} , then μ_1 would be a term of \mathbf{E} . Hence, using exactly the same reasonings as those which were presented in section 4, we can replace \mathfrak{D}_{n+1} by its augmentation

$$\mathfrak{D}_{n+1}^{1} = \left\{ A; \ \mathsf{V}_{1\mathsf{E}}^{*1}; \ \mathsf{V}_{2\mathsf{E}}^{*1}; \ \mathsf{S}_{1}^{+*}; \ \ldots; \ \mathsf{S}_{m}^{+*}; \ \ldots; \ \mathsf{S}_{n}^{+*}; \ \mathsf{S}_{n+1}^{+}; \ \mathsf{S}_{n+2}; \ \ldots; \ \mathsf{S}_{\gamma} \right\}$$

such that \mathfrak{D}_{n+1}^1 is a proof sequence of **b** in which μ_1 is a term of V_{2E}^{*1} . Hence, cf., **4**, $\mathbf{A}|_{\mathbb{R}^{1*},\mathbb{R}^2}\mu_1$ and, therefore, since $\{\sigma_1, \mu_1\}|_{\mathbb{R}^2}\mu$, $\mathbf{A}|_{\mathbb{R}^{1*},\mathbb{R}^2}\mu$. Due to this we are able to construct an augmentation \mathbf{S}_m^{+*1} of \mathbf{S}_m^{+*} adding μ to \mathbf{S}_m^{+*} as its last term, and, consequently, to replace \mathfrak{D}_{n+1}^1 by its augmentation

$$\mathfrak{D}_{n+1}^{2} = \left\{ A; \ \mathsf{V}_{1\mathsf{E}}^{*1}; \ \mathsf{V}_{2\mathsf{E}}^{*1}; \ \mathsf{S}_{1}^{+*}; \ \ldots; \ \mathsf{S}_{m-1}^{+*}; \ \mathsf{S}_{m}^{+*1}; \ \mathsf{S}_{m+1}^{+*}; \ \ldots; \ \mathsf{S}_{n}^{+*}; \ \mathsf{S}_{n+1}^{+}; \ \mathsf{S}_{n+2}, \ \ldots; \ \mathsf{S}_{N} \right\}$$

such that \mathfrak{D}_{n+1}^2 is a proof sequence of **b** in which μ is a term of S_m^{+*1} . Hence in \mathfrak{D}_{n+1}^2 $A|_{\overline{\mathbb{R}^{1*}},\overline{\mathbb{R}^2}}\mu$.

- (ii) Suppose that $\sigma_1|_{\overline{R1}}\rho_1$ and ρ_1 is a term of \mathfrak{D}_{n+1} . In such a case, since σ_1 is a term of A, clearly, ρ_1 is a term of V_{1E}^* and $A|_{\overline{R1}^*}\rho_1$. On the other hand, since ρ_1 is a term of \mathfrak{D}_{n+1} , μ_1 is not a term of \mathfrak{D}_{n+1} . Whence:
- (4) Assume that τ_1 is a term of **A**. Since $\{\tau_1\}|_{\overline{R1}^*}\mu_1$, obviously, $A|_{\overline{R1}^*}\mu_1$. Hence, since $\{\rho_1, \mu_1\}|_{\overline{R2}}\mu$, $A|_{\overline{R1}^*,\overline{R2}}\mu$. Therefore, we are able to solve this possibility in exactly the same way as for case (1) in (i) above.
- (5) Assume that τ_1 is a term of V_{1E}^* . Hence, cf., point (2) in (i) above, $\mathbf{A}|_{\overline{\mathbb{R}^{1^*}}}\mu_1$. Therefore, it is self-evident that the solution to this eventuality is the same exactly as given in point (4) above.
- (6) Assume that τ_1 is a term of $\mathbf{V}_{2\mathbf{E}}^*$. Then, cf., 3.2, $\mathbf{A}|_{\overline{\mathbb{R}^{1^*},\mathbb{R}^2}}\tau_1$ and, therefore, since $\tau_1|_{\overline{\mathbb{R}^1}}\mu_1$, clearly, $\mathbf{A}|_{\overline{\mathbb{R}^{1^*},\mathbb{R}^2}}\mu$. Hence, cf., point (3) in (i) above, we are able to solve this eventuality in exactly the same way as in point (3) above.
- (iii) Suppose that $\{\sigma_1\}|_{\overline{R1}}\rho_1$ and ρ_1 is not a term of \mathfrak{D}_{n+1} . Since σ_1 is a term of A, it yields that $A|_{\overline{R1}^*}\rho_1$. Therefore, due to this fact we are able to construct an augmentation V_{1E}^{*1} of V_{1E}^{*1} adding ρ_1 to V_{1E}^{*1} as its last term. And, consequently, we are able to replace \mathfrak{D}_{n+1} by its augmentation

$$\mathfrak{D}_{n+1}^{1} = \left\{ A; \, \mathsf{V}_{1\mathsf{E}}^{*1}; \, \mathsf{V}_{2\mathsf{E}}^{*}; \, \mathsf{S}_{1}^{+*}; \, \ldots; \, \mathsf{S}_{m}^{+*}; \, \ldots; \, \mathsf{S}_{n}^{+*}; \, \mathsf{S}_{n+1}^{+}; \, \mathsf{S}_{n+2}; \, \ldots; \, \mathsf{S}_{y} \right\}$$

such that \mathfrak{D}_{n+1}^1 is a proof sequence of **b** in which ρ_1 is a term of $V_{1\mathbf{E}}^{*1}$. And, therefore, in \mathfrak{D}_{n+1}^1 $\mathbf{A}|_{\overline{\mathbb{R}^{1^*}}}\rho_1$. In the discussions presented in this section below instead of \mathfrak{D}_{n+1} we shall consider always \mathfrak{D}_{n+1}^1 as the proof sequence under investigation.

Since ρ_1 is not a term of \mathfrak{D}_{n+1} , it follows from the assumptions accepted in **6.6** that either μ_1 is a term of \mathfrak{D}_{n+1} , i.e., of \mathfrak{D}_{n+1}^1 , or μ_1 is not a term of \mathfrak{D}_{n+1} , i.e., of \mathfrak{D}_{n+1}^1 . Hence, we have to investigate two eventualities, namely:

- (a) Suppose that μ_1 is a term of \mathfrak{D}_{n+1}^1 . Then, since τ_1 is a term of \mathfrak{M} , we have the following subcases:
- (7) Assume that τ_1 is a term of **A**. It implies, since $\{\tau_1\} \vdash_{\overline{R1}} \mu_1$, that $\mathbf{A} \vdash_{\overline{R1}^*} \mu_1$ and, therefore, since μ_1 is a term of \mathfrak{D}^1_{n+1} , that μ_1 is a term of $\mathbf{V}^{*1}_{1\mathbf{E}}$. Hence, since $\{\rho_1, \mu_1\} \vdash_{\overline{R2}} \mu$, $\mathbf{A} \vdash_{\overline{R1}^*,\overline{R2}} \mu$. Therefore, due to this fact, we are able to construct an augmentation \mathbf{S}^{+*1}_m of \mathbf{S}^{+*}_m adding μ to \mathbf{S}^{+*}_m as its last term. And, consequently, since ρ_1 and μ_1 are the terms of \mathfrak{D}^1_{n+1} , we are able to replace \mathfrak{D}^1_{n+1} by its augmentation

$$\mathfrak{D}_{n+1}^2 = \left\{ \mathsf{A}; \; \mathsf{V}_{1\mathsf{E}}^{*1}; \; \mathsf{V}_{2\mathsf{E}}^{*}; \; \mathsf{S}_{1}^{**}; \; \ldots; \; \mathsf{S}_{m-1}^{**}; \; \mathsf{S}_{m}^{**1}; \; \mathsf{S}_{m+1}^{**}; \; \ldots; \; \mathsf{S}_{n}^{**}; \; \mathsf{S}_{n+1}^{**}; \; \mathsf{S}_{n+2}, \; \mathsf{S}_{\sqrt{1}} \right\}$$

such that \mathfrak{D}_{n+1}^2 is a proof sequence of **b** in which μ is a term of \mathbf{S}_m^{+*1} . Hence, in $\mathfrak{D}_{n+1}^2 \mathbf{A}|_{\mathbb{R}^{1*},\mathbb{R}^2} \mu$.

- (8) Assume that τ_1 is a term of $\mathbf{V}_{1\mathbf{E}}^{*1}$. Since $\{\tau_1\}|_{\overline{\mathbb{R}^1}}\mu_1$ clearly, cf., discussion presented in point (1) of (i), it yields that $\mathbf{A}|_{\overline{\mathbb{R}^{1^*}}}\mu_1$, and, therefore, since μ_1 is a term of \mathfrak{D}_{n+1}^1 , μ_1 is a term of $\mathbf{V}_{1\mathbf{E}}^{*1}$. Hence, it is self-evident that we can solve this eventuality in exactly the same way as in point (7) above.
- (9) Assume that τ_1 is a term of $\mathbf{V}_{2\mathbf{E}}^*$. Since $\{\tau_1\}|_{\overline{R1}} \mu_1$ and μ_1 is a term of \mathfrak{D}_{n+1}^1 , such a case is impossible because otherwise μ_1 would be a term of \mathbf{E} . But, in \mathfrak{D}_{n+1}^1 , \mathbf{E} is empty.
- (b) Suppose that μ_1 is not a term of \mathfrak{D}_{n+1}^1 . Then, we have again three subcases to be investigated, namely:
- (10) Assume that τ_1 is a term of A. Then, since $\{\tau_1\}_{\overline{R1}}\mu_1$, we have clearly that $\mathbf{A}|_{\overline{R1}^*}\mu_1$. Since $\{\rho_1, \mu_1\}|_{\overline{R2}}\mu$, it implies that $\mathbf{A}|_{\overline{R1}^*}\mathcal{R}^*\mathcal{L}}\mu$. Since $\mathbf{A}|_{\overline{R1}^*}\mu_1$, we are allowed to construct an augmentation \mathbf{V}_{1E}^{*2} of \mathbf{V}_{1E}^{*1} in regard to formula μ_1 . But, since any augmentation used in our deductions must fulfill the condition established in Remark I above and since \mathbf{V}_{1E}^{*1} is already an augmentation of \mathbf{V}_{1E}^{*} in regard to formula ρ_1 , it is self-evident that \mathbf{V}_{1E}^{*2} can have one of the following forms: $\mathbf{V}_{1E}^{*2} = \{\mathbf{V}_{1E}^{*1}, \mu_1\}$ or $\mathbf{V}_{1E}^{*2} = \{\mathbf{V}_{1E}^{*1}, \mu_1, \rho_1\}$. Moreover, since $\mathbf{A}|_{\overline{R1}^*,\overline{R2}}\mu$, we are also allowed to construct an augmentation \mathbf{S}_m^{*+1} of \mathbf{S}_m^{*+} adding μ to \mathbf{S}_m^{*+} as its last term. Then, consequently, we are able to replace \mathfrak{D}_{n+1}^{*1} by its augmentation

$$\mathfrak{D}_{n+1}^2 = \{ \mathbf{A}; \, \mathbf{V}_{1\mathbf{E}}^{*2}; \, \mathbf{V}_{2\mathbf{E}}^{*2}; \, \mathbf{S}_{1}^{**}; \, \ldots; \, \mathbf{S}_{m-1}^{**}; \, \mathbf{S}_{m}^{**1}; \, \mathbf{S}_{m+1}^{**}; \, \ldots; \, \mathbf{S}_{n}^{**}; \, \mathbf{S}_{n+1}^{+}; \, \mathbf{S}_{n+2}, \, \ldots; \, \mathbf{S}_{N}^{*} \}$$
 such that \mathfrak{D}_{n+1}^2 is a proof sequence of **b** in which μ is a term of \mathbf{S}_{m}^{**1} . Hence, in \mathfrak{D}_{n+1}^2 , $\mathbf{A}|_{\mathbf{R}_{1}^{*},\mathbf{R}_{2}}\mu$.

- (11) Assume that τ_1 is a term of $\mathbf{V_{1E}^{*1}}$. Then, since $\{\tau_1\}|_{\overline{R_1}} \mu_1$, clearly, cf, point (2) of (i), we have $\mathbf{A}|_{\overline{R_1^{**}}} \mu_1$. Hence, since $\{\rho_1, \mu_1\}|_{\overline{R_2}} \mu$, $\mathbf{A}|_{\overline{R_1^{**}},\overline{R_2}} \mu$. Therefore, it is self-evident that, since ρ_1 is a term of \mathfrak{D}_{n+1}^1 , we are able to solve this eventuality exactly in the same way as in point (10) above.
- (12) Assume that τ_1 is a term of \mathbf{V}_{2E}^* . This, together with the assumption that $\{\tau_1\}|_{\overline{R1}}\mu_1$, yields that although μ_1 is not a term of \mathfrak{D}_{n+1}^1 it possesses the same formal properties which the formula μ_1 discussed in point (3) of (i) above has. Therefore, using, as in point (3), exactly the same reasonings as those which were presented in section 4 we can construct the suitable augmentations \mathbf{V}_{1E}^{*2} and \mathbf{V}_{2E}^{*1} and \mathbf{V}_{2E}^{*1} respectively, cf., 4.1, such that \mathbf{V}_{2E}^{*1} will contain μ_1 as its last term. And, consequently, cf., 4, we can replace \mathfrak{D}_{n+1}^{1} by its augmentation

$$\mathfrak{D}_{n+1}^{2} = \left\{ A; \ \mathsf{V}_{1\mathsf{E}}^{*2}; \ \mathsf{V}_{2\mathsf{E}}^{*1}; \ \mathsf{S}_{1}^{+*}; \ \ldots; \ \mathsf{S}_{m}^{+*}; \ \ldots; \ \mathsf{S}_{n}^{+*}; \ \mathsf{S}_{n+1}^{+}; \ \mathsf{S}_{n+2}; \ \ldots; \ \mathsf{S}_{y} \right\}$$

such that \mathfrak{D}_{n+1}^2 is a proof sequence of **b** in which μ_1 is a term of V_{1E}^{*2} and ρ_1 is a term of V_{2E}^{*1} . Hence, in \mathfrak{D}_{n+1}^2 **A** $|_{R_1^*,R_2}$ $\{\rho_1,\,\mu_1\}$. Therefore, since $\{\rho_1,\,\mu_1\}|_{R_2^2}$ μ , **A** $|_{R_1^*,R_2}$ μ . Whence, due to this fact, we are able to construct

an augmentation S_m^{+*1} of S_m^{+*} adding μ to S_m^{+*} as its last term and, consequently, to replace \mathfrak{D}_{n+1}^2 by its augmentation

 $\mathfrak{D}_{n+1}^3 = \{ \mathbf{A}; \, \mathbf{V}_{1E}^{*2}; \, \mathbf{V}_{2E}^{*1}; \, \mathbf{S}_{1}^{**}; \, \ldots; \, \mathbf{S}_{m-1}^{**}; \, \mathbf{S}_{m}^{**}; \, \mathbf{S}_{m+1}^{**}; \, \ldots; \, \mathbf{S}_{n}^{**}; \, \mathbf{S}_{n+1}^{*}; \, \mathbf{S}_{n+2}, \, \ldots; \, \mathbf{S}_{y} \}$ such that \mathfrak{D}_{n+1}^3 is a proof sequence of **b** in which μ is a term of \mathbf{S}_{m}^{**} . Hence,

such that \mathfrak{D}_{n+1}^3 is a proof sequence of **b** in which μ is a term of S_m^{+*1} . Hence, in \mathfrak{D}_{n+1}^3 , $\mathbf{A}|_{\overline{\mathbb{R}^{1^*},\mathbb{R}^2}}\mu$.

- (iv) It is obvious that the eventualities discussed in points (1)-(12) above exhaust all possible subcases generated by the assumption that in \mathfrak{D}_{n+1} σ_1 is a term of **A** and, moreover, that these eventualities are mutually disjoint. Therefore, the deductions presented in this section show that if Case 1 holds for its instance mentioned above, then Lemma 1 is proved.
- **6.6.2** σ_1 is a term of V_{1E}^* . It implies that in \mathfrak{D}_{n+1} there is a term η such that η is a term of \mathbf{A} and $\{\eta\}|_{\overline{R1}^*}\sigma_1$. Hence, since $\{\sigma_1\}|_{\overline{R1}}\rho_1, \{\eta\}|_{\overline{R1}^*}\rho_1$ and, therefore, $\mathbf{A}|_{\overline{R1}^*}\rho_1$. Whence, we have to consider two possibilities:
- (v) Formula ρ_1 is a term of \mathfrak{D}_{n+1} . In such a case, since τ_1 is a term of \mathfrak{M} , it is self-evident that we can solve this possibility exactly in the same way as in point (a) of (iii) in section **6.6.1**.
- (vi) Formula ρ_1 is not a term of \mathfrak{D}_{n+1} . In such a case, since τ_1 is a term of \mathfrak{M} , we can solve this eventuality in exactly the same way as in point (b) of (iii) in section **6.6.1**.
- (vii) Thus, if Case 1 holds for its instance, discussed in this section, Lemma 1 is proved.
- **6.6.3** σ_1 is a term of V_{2E}^* . Since $\{\sigma_1\}_{\overline{R1}} \rho_1$, we have to investigate two cases:
- (viii) Formula ρ_1 is a term of \mathfrak{D}_{n+1} . Since $\{\sigma_1\}_{\overline{\mathbb{R}^1}}\rho_1$, such a case is impossible because otherwise ρ_1 would be a term of \mathbf{E} , cf., 3.3. But, in \mathfrak{D}_{n+1} , \mathbf{E} is empty.
- (ix) Formula ρ_1 is not a term of \mathfrak{D}_{n+1} . This together with the assumption that $\{\sigma_1\}|_{\overline{R1}}\rho_1$ yields that although ρ_1 is not a term of \mathfrak{D}_{n+1} it belongs to the class of the formulas whose formal properties were discussed already in 6.1 and points (3), (6), and (12) in section 6.6.1. Therefore, using, as in those points, exactly the same reasonings as those which were presented in section 4, we are able to construct the suitable augmentations V_{1E}^{*1} and V_{2E}^{*1} of V_{1E}^{*1} and V_{2E}^{*1} respectively, cf., 4.1, such that V_{1E}^{*1} will contain ρ_1 as its last term. And, consequently, cf., 4, we are able to replace \mathfrak{D}_{n+1} by its augmentation

$$\mathfrak{D}_{n+1}^{1} = \left\{ A; \ \mathsf{V}_{1\mathsf{E}}^{*1}; \ \mathsf{V}_{2\mathsf{E}}^{*1}; \ \mathsf{S}_{1}^{+*}; \ \ldots; \ \mathsf{S}_{m}^{+*}; \ \ldots; \ \mathsf{S}_{n}^{+*}; \ \mathsf{S}_{n+1}^{+}; \ \mathsf{S}_{n+2}; \ \ldots \ \mathsf{S}_{y} \right\}$$

such that \mathfrak{D}_{n+1}^1 is a proof sequence of **b** in which ρ_1 is a term of V_{2E}^{*1} . Hence, in \mathfrak{D}_{n+1}^1 , $\mathbf{A}_{\mathbb{R}^{1^*},\mathbb{R}^2}\rho_1$. In the discussion presented in this section below instead of \mathfrak{D}_{n+1} we shall consider always \mathfrak{D}_{n+1}^1 defined above as the proof sequence under investigation.

Since ρ_1 is not a term of \mathfrak{D}_{n+1} , we have to analyze, cf., (iii) in **6.6.1**, two cases, namely:

- (c) Suppose that μ_1 is a term of \mathfrak{D}_{n+1}^1 . Then, since τ_1 is a term of \mathfrak{M} , there are the following three subcases:
- (13) Assume that τ_1 is a term of \mathbf{A} . Hence, since $\{\tau_1\}_{\overline{R1}} \mu_1$, $\mathbf{A}|_{\overline{R1^*}} \mu_1$ and, therefore, since μ_1 is a term of \mathfrak{D}_{n+1} , μ_1 is a term of $\mathbf{V}_{2\overline{E}}^*$. Therefore, since $\{\rho_1, \mu_1\}_{\overline{R2}} \mu$ and ρ_1 is a term of \mathfrak{D}_{n+1}^1 , $\mathbf{A}|_{\overline{R1^*},\overline{R2}} \mu$. Hence, we are allowed to construct an augmentation \mathbf{S}_m^{+*1} of \mathbf{S}_m^{+*} adding μ to \mathbf{S}_m^{+*} as its last term. And, consequently, since ρ_1 and μ_1 are terms of \mathfrak{D}_{n+1}^1 , to replace \mathfrak{D}_{n+1}^1 by its augmentation
- $\mathfrak{D}_{n+1}^2 = \{ \mathbf{A}; \, \mathbf{V}_{1\mathbf{E}}^{*1}; \, \mathbf{V}_{2\mathbf{E}}^{*1}; \, \mathbf{S}_{1}^{**}; \, \ldots; \, \mathbf{S}_{m-1}^{**}; \, \mathbf{S}_{m}^{**1}; \, \mathbf{S}_{m+1}^{**}; \, \ldots; \, \mathbf{S}_{n}^{**}; \, \mathbf{S}_{n+1}^{+}; \, \mathbf{S}_{n+2}, \, \ldots; \, \mathbf{S}_{y} \}$ such that \mathfrak{D}_{n+1}^2 is a proof sequence of **b** in which μ is a term of \mathbf{S}_{m}^{**1} . Hence, in \mathfrak{D}_{n+1}^2 , $\mathbf{A}_{|\mathbf{R}|^*,\mathbf{R}^2}$ μ .
- (14) Assume that τ_1 is a term of V_{1E}^{*1} . Since $\{\tau_1\}|_{\overline{R1}} \mu_1$, clearly, cf., point (2) in **6.6.1**, $A|_{\overline{R1}^*} \mu_1$ and, therefore, since μ_1 is a term of \mathfrak{D}_{n+1}^1 , μ_1 is a term of V_{1E}^{*1} . Hence, obviously, we can solve this eventuality in the same way as in point (13) above.
- (15) Assume that τ_1 is a term of $\mathbf{V}_{2\mathbf{E}}^{*1}$. Since $\{\tau_1\} \mid_{\overline{R1}} \mu_1$ and μ_1 is a term of \mathfrak{D}_{n+1}^1 , such a case is impossible because otherwise μ_1 would be a term of \mathbf{E} . But, in \mathfrak{D}_{n+1}^1 , \mathbf{E} is empty.
- (d) Suppose that μ_1 is not a term of \mathfrak{D}_{n+1}^1 . Then:
- (16) Assume that τ_1 is a term of **A**. Since $\{\tau_1\}_{\overline{R1}}\mu_1$, $\mathbf{A}_{\overline{R1}^*}\mu_1$. Therefore, preserving the condition established in Remark I, cf., point (10) in **6.6.1**, we are able to construct an augmentation \mathbf{V}_{1E}^{*2} of \mathbf{V}_{1E}^{*1} adding μ_1 to \mathbf{V}_{1E}^{*1} as its term and consequently, to replace \mathfrak{D}_{n+1}^{1} , defined in this section by its augmentation

$$\mathfrak{D}_{n+1}^{3} = \left\{ A; \ \mathsf{V}_{1\mathsf{E}}^{*2}; \ \mathsf{V}_{2\mathsf{E}}^{*1}; \ \mathsf{S}_{1}^{+*}; \ \ldots; \ \mathsf{S}_{m}^{+*}; \ \ldots; \ \mathsf{S}_{n}^{+*}; \ \mathsf{S}_{n+1}^{+}; \ \mathsf{S}_{n+2}; \ \ldots; \ \mathsf{S}_{y} \right\}$$

such that \mathfrak{D}_{n+1}^3 is a proof sequence of **b** in which μ_1 is a term of $\mathbf{V}_{1\mathbf{E}}^{*2}$. Hence, in \mathfrak{D}_{n+1}^3 , $\mathbf{A}|_{\mathbf{R}^{1*}}\mu_1$. Since $\mathbf{A}|_{\mathbf{R}^{1*},\mathbf{R}^2}\{\rho_1,\,\mu_1\}$ and $\{\rho_1,\,\mu_1\}|_{\mathbf{R}^2}\mu$, $\mathbf{A}|_{\mathbf{R}^{1*},\mathbf{R}^2}\mu$. Therefore, we can construct an augmentation \mathbf{S}_m^{+*} of \mathbf{S}_m^{+*} adding μ to \mathbf{S}_m^{+*} as its last term and, consequently, to replace \mathfrak{D}_{n+1}^3 by its augmentation

$$\mathfrak{D}_{n+1}^4 = \{ \mathbf{A}; \, \mathbf{V}_{1\mathbf{E}}^{*2}; \, \mathbf{V}_{2\mathbf{E}}^{*1}; \, \mathbf{S}_{1}^{**}; \, \ldots; \, \mathbf{S}_{m-1}^{**}; \, \mathbf{S}_{m}^{**1} \, \mathbf{S}_{m+1}^{**}; \, \ldots; \, \mathbf{S}_{n}^{**}; \, \mathbf{S}_{n+1}^{*}; \, \mathbf{S}_{n+2}, \, \ldots; \, \mathbf{S}_{y} \}$$
 such that \mathfrak{D}_{n+1}^4 is a proof sequence of \mathbf{b} in which μ is a term of \mathbf{S}_{m}^{**1} . Hence, in $\mathfrak{D}_{n+1}^4 \, \mathbf{A} |_{\mathbf{R}_{1}^{*},\mathbf{R}_{2}^{*}} \, \mu$.

- (17) Assume that τ_1 is a term of $\mathbf{V}_{1\mathbf{E}}^{*1}$. Since $\{\tau_1\}_{\overline{\mathbb{R}^1}}\mu_1$, clearly, cf, point (2) in 6.6.1, $\mathbf{A}_{\overline{\mathbb{R}^{1^*}}}\mu_1$. Therefore, since μ_1 is not a term of \mathfrak{D}_{n+1}^1 , it is self-evident that we can solve this subcase exactly in the same way as in point (16) above.
- (18) Assume that τ_1 is a term of $\mathbf{V}_{2\mathbf{E}}^{*1}$. Obviously, this, together with the assumption that $\{\tau_1\}_{|\overline{R1}} \mu_1$, yields that although μ_1 is not a term of \mathfrak{D}_{n+1}^1 we can apply to it the same methods of deduction which were used in regard to formula ρ_1 at the beginning of this section, cf., also points (3), (6), and (12)

in **6.6.1**. Therefore, preserving the condition established in Remark I and using exactly the same reasonings as those which were presented in section **4**, we are able to construct the suitable augmentations V_{1E}^{*3} and V_{2E}^{*3} of V_{1E}^{*1} and V_{2E}^{*1} respectively, cf., **4.1**, such that V_{2E}^{*3} will contain μ_1 as its term. And, consequently, cf., **4**, we are able to replace \mathfrak{D}_{n+1}^1 , defined in this section by its augmentation

$$\mathfrak{D}_{n+1}^{5} = \left\{ \mathbf{A}; \ \mathbf{V}_{1\mathbf{E}}^{*3}; \ \mathbf{V}_{2\mathbf{E}}^{*3}; \ \mathbf{S}_{1}^{**}; \ \ldots; \ \mathbf{S}_{m}^{+*}; \ \ldots; \ \mathbf{S}_{n}^{+*}; \ \mathbf{S}_{n+1}^{+}; \ \mathbf{S}_{n+2}; \ \ldots; \ \mathbf{S}_{N}^{+} \right\}$$

such that \mathfrak{D}_{n+1}^5 is a proof sequence of **b** in which μ_1 is a term of $\mathbf{V}_{2\mathbf{E}}^{*3}$. Hence, in \mathfrak{D}_{n+1}^5 , $\mathbf{A}|_{\overline{\mathbb{R}^{1^*}, \mathbb{R}^2}} \mu_1$. Therefore, since $\mathbf{A}|_{\overline{\mathbb{R}^{1^*}, \mathbb{R}^2}} \{\rho_1, \mu_1\}$ and $\{\rho_1, \mu_1\}|_{\overline{\mathbb{R}^2}} \mu$, $\mathbf{A}|_{\overline{\mathbb{R}^{1^*}, \mathbb{R}^2}} \mu$. Hence, due to this we are allowed to construct an augmentation \mathbf{S}_m^{+*1} of \mathbf{S}_m^{+*} adding μ to \mathbf{S}_m^{+*} as its last term and, consequently, to replace \mathfrak{D}_{n+1}^5 by its augmentation

$$\mathfrak{D}_{n+1}^6 = \left\{ \mathbf{A}; \ \mathsf{V}_{1}^{*3}; \ \mathsf{V}_{2}^{*3}; \ \mathsf{S}_{1}^{+*}; \ \ldots; \ \mathsf{S}_{n-1}^{+*}; \ \mathsf{S}_{m}^{+*1}; \ \mathsf{S}_{m+1}^{**}; \ \ldots \ \mathsf{S}_{n}^{+*}; \ \mathsf{S}_{n+1}^{+*}; \ \mathsf{S}_{n+2}^{+}; \ \ldots; \ \mathsf{S}_{N}^{+} \right\}$$

such that \mathfrak{D}_{n+1}^6 is a proof sequence of **b** in which μ is a term of S_m^{+*1} . Hence, in \mathfrak{D}_{n+1}^6 , $A|_{R_1^* \to R_2} \mu$.

- (x) It is obvious that the eventualities discussed in points (13)-(18) above exhaust all possible subcases generated by the assumption that in \mathfrak{D}_{n+1} , σ_1 is a term of $\mathbf{V}_{2\mathbf{E}}^*$ and, moreover, that these eventualities are mutually disjoint. Therefore, the deductions presented in this section show that if Case 1 holds for its instance analyzed above, then Lemma 1 is proved.
- **6.6.4** Since in sections **6.6.1-6.6.3** all subcases of Case 1 are solved, we can conclude that if Case 1 holds for \mathfrak{D}_{n+1} , then Lemma 1 is proved. Moreover, since all discussed subcases are mutually disjoint, we know that the solution obtained for Case 1 is unique.

To be continued.

University of Notre Dame Notre Dame, Indiana