Notre Dame Journal of Formal Logic Volume XIV, Number 3, July 1973 NDJFAM

A SIMPLE ALGEBRA OF FIRST ORDER LOGIC

CHARLES C. PINTER

1. Introduction¹ The idea of making algebra out of logic is not a new one. In the middle of the last century George Boole investigated a class of algebras, subsequently named Boolean algebras, which arose naturally as a way of algebraizing the propositional calculus. More recently there have appeared several algebraizations of the first-order predicate calculus, of which the most important are the polyadic algebras of Halmos [3], and the cylindric algebras of Tarski [5]. Each of these two approaches to algebraic logic has its relative merits, and presents conceptual difficulties which have proved to be a stumbling block for many an interested reader.

The purpose of this paper is to present a formulation of algebraic logic which is closely related to both polyadic and cylindric algebras and is, in a sense, intermediate between the two. The advantage of the system we are about to present is that it is based upon a small number of axioms which are extremely simple and well motivated. From a didactic point of view, this may be the most satisfactory way of introducing the student and non-specialist to the ideas and methods of algebraic logic. We will show precisely how our algebra is related to cylindric and polyadic algebras.

2. *Quantifier algebras* In this section we introduce a class of algebras to be called *quantifier algebras*,² which may be viewed as an algebraization of the first-order predicate calculus without equality. We begin by examining a special class of quantifier algebras, called quantifier algebras of formulas. The construction of these algebras has a metalogical character and extends the well-known method for constructing Boolean algebras from the propositional calculus.

Let Λ be a first-order language with a sequence $\langle v_{\kappa} \rangle_{\kappa < \alpha}$ of variables, and let θ be a theory of Λ . We let $\operatorname{Fm}^{(\Lambda)}$ designate the set of all the formulas of Λ , and $\operatorname{Fm}^{(\Lambda)}/\equiv_{\theta}$, the preceding set modulo the relation $F \equiv_{\theta} G$

^{1.} The work reported in this paper was done while the author held an NSF Faculty Fellowship.

^{2.} The term *quantifier algebra* has been used by several authors in different senses, all differing from the present one.

iff $\theta \vdash F \iff G$. We define Boolean operations on $\operatorname{Fm}^{(\Lambda)}/\equiv_{\theta}$ by: $(F/\equiv) + (G/\equiv) = F \lor G/\equiv$, $(F/\equiv) \cdot (G/\equiv) = F \land G/\equiv$, and $-(F/\equiv) = \neg F/\equiv$; 1 designates the class of all the theorems of θ , and 0 the class of all negations of theorems. It is known that $\langle \operatorname{Fm}^{(\Lambda)}/\equiv_{\theta}, +, \cdot, -, 0, 1 \rangle$ is a Boolean algebra. We define two more operations on $\operatorname{Fm}^{(\Lambda)}/\equiv_{\theta}$ as follows: $S^{\kappa}_{\lambda}(F/\equiv)$ is the equivalence class of the formula which results from F by validly replacing each free occurrence of v_{κ} by v_{λ} ; $\exists_{\kappa}(F/\equiv)$ is the class of the formula $(\exists v_{\kappa})F$. Now, $\langle \operatorname{Fm}^{(\Lambda)}/\equiv_{\theta}, +, \cdot, -, 0, 1, S^{\kappa}_{\lambda}, \exists_{\kappa}\rangle_{\kappa,\lambda<\alpha}$ is called the *quantifier algebra of formulas* associated with θ .

The foregoing discussion should help to motivate our general definition:

2.1 Definition By a quantifier algebra of degree α , briefly a QA_{α} , we mean a system $\mathfrak{A} = \langle A, +, \cdot, -, 0, 1, S_{\lambda}^{\kappa}, \exists_{\kappa} \rangle_{\kappa, \lambda < \alpha}$ where $\langle A, +, \cdot, -, 0, 1 \rangle$ is a Boolean algebra and S_{λ}^{κ} and \exists_{κ} are unary operations having the following properties for all $x, y \in A$ and $\kappa, \lambda, \mu < \alpha$:

We assume throughout, that $\alpha \ge 2$.

The operations S_{λ}^{κ} are called *substitutions* and the operations \exists_{κ} are called *quantifiers*. We observe that $(q_1)-(q_4)$ are properties of substitutions, (q_5) and (q_6) are properties of quantifiers, and $(q_7)-(q_9)$ are conditions which relate substitutions to quantifiers. The metalogical interpretation of these equations is obvious.

If \mathfrak{A} is a quantifier algebra, as above, and $x \in A$, then the *dimension set* of x is the set

$$\Delta x = \{\kappa < \alpha : \exists_{\kappa} x \neq x\}.$$

In view of (q_7) and (q_8) , Δx is also the set of all κ such that $S_{\lambda}^{\kappa} x \neq x$, for any $\lambda \neq \kappa$. **A** is said to be *locally finite* if it satisfies the condition

(Lf) for every
$$x \in A$$
, Δx is a finite set.

It is easy to show that every quantifier algebra of formulas is a quantifier algebra in the sense of Definition 2.1, and is, in fact, locally finite. Conversely, it is not hard to show that if \mathfrak{A} is any locally finite quantifier algebra, there is a theory θ such that \mathfrak{A} is (isomorphic with) the quantifier algebra of formulas associated with θ . Furthermore, adapting a result by Hoehnke [6], if θ_1 and θ_2 are first-order theories, then the quantifier algebras associated with θ_1 and θ_2 , respectively, are isomorphic iff θ_1 and θ_2 are equivalent by definitions.

2.2 Lemma If $\mathfrak{U} = \langle A, +, \cdot, -, 0, 1, \mathbf{S}_{\lambda}^{\kappa}, \mathbf{\exists}_{\kappa} \rangle_{\kappa, \lambda < \alpha}$ is a quantifier algebra, then the following statements hold for all $x, y \in A$ and all $\kappa, \lambda, \mu < \alpha$:

(i) $\exists_{\kappa} 0 = 0$ (ii) $\exists_{\kappa} (x \cdot \exists_{\kappa} y) = \exists_{\kappa} x \cdot \exists_{\kappa} y$ (iii) $\exists_{\kappa} (x \cdot \exists_{\kappa} y) = \exists_{\kappa} x \cdot \exists_{\kappa} y$ (iv) $S_{\lambda}^{\kappa} S_{\mu}^{\kappa} = S_{\mu}^{\mu} if \mu \neq \kappa$ (v) $S_{\lambda}^{\kappa} S_{\nu}^{\mu} = S_{\nu}^{\mu} S_{\lambda}^{\kappa} if \kappa \neq \mu, \nu \text{ and } \mu \neq \lambda$ (iii) $\exists_{\kappa} \exists_{\lambda} = \exists_{\lambda} \exists_{\kappa}$

Proof: We derive, successively, the following statements:

(1) $x \leq y$ implies $S_{\lambda}^{\kappa} x \leq S_{\lambda}^{\kappa} y$. (2) $x \leq y$ implies $\exists_{\kappa} x \leq \exists_{\kappa} y$. (3) $S_{\lambda}^{\kappa} x \leq \exists_{\kappa} x$.

(1) is an immediate consequence of (q_2) ; (2) is an immediate consequence of (q_5) . Finally, (3) follows from (1), (q_6) and (q_7) .

(4) $\exists_{\kappa} x \text{ is the least element of } \{y \in \text{range } \mathbf{S}_{\lambda}^{\kappa} : y \ge x\}, \text{ if } \kappa \neq \lambda.$

Indeed, by (q_7) , $\exists_{\kappa} x \epsilon$ range S_{λ}^{κ} and by (q_6) , $\exists_{\kappa} x \ge x$. Note that if $y \epsilon$ range S_{λ}^{κ} , then for some $z \epsilon A$, $y = S_{\lambda}^{\kappa} z = \exists_{\kappa} S_{\lambda}^{\kappa} z = \exists_{\kappa} y$. Thus, if $y \epsilon$ range S_{λ}^{κ} and $y \ge x$, then by (2), $\exists_{\kappa} x \le \exists_{\kappa} y = y$.

It follows from (4) and Halmos ([2], Theorem 5) that \exists_{κ} is a quantifier (in the sense of Halmos) for each $\kappa < \alpha$, hence we have (i) and (ii). Next, using (q_7) - (q_9) repeatedly, we have, for any $\mu \neq \kappa$, λ ,

$$\exists_{\lambda} \exists_{\kappa} \exists_{\lambda} x = \exists_{\lambda} \exists_{\kappa} S_{\mu}^{\lambda} \exists_{\lambda} x = \exists_{\lambda} S_{\mu}^{\lambda} \exists_{\kappa} \exists_{\lambda} x = S_{\mu}^{\lambda} \exists_{\kappa} \exists_{\lambda} x = \exists_{\kappa} S_{\mu}^{\lambda} \exists_{\lambda} x = \exists_{\kappa} \exists_{\lambda} x.$$

Now by (q_6) and (2), $\exists_{\lambda} \exists_{\kappa} x \leq \exists_{\lambda} \exists_{\kappa} \exists_{\lambda} x = \exists_{\kappa} \exists_{\lambda} x$; symmetrically, $\exists_{\kappa} \exists_{\lambda} x \leq \exists_{\lambda} \exists_{\kappa} x$, giving (iii). (iv) follows from (q_7) and (q_8) ; for if $\mu \neq \kappa$, then $S_{\lambda}^{\kappa} S_{\mu}^{\kappa} = S_{\lambda}^{\kappa} \exists_{\kappa} S_{\mu}^{\kappa} = \exists_{\kappa} S_{\mu}^{\kappa} = \exists_{\kappa} S_{\mu}^{\kappa} = S_{\mu}^{\kappa}$. If we let $\mu = \lambda$ in (iv), we get

(5)
$$S_{\lambda}^{\kappa}S_{\lambda}^{\kappa} = S_{\lambda}^{\kappa}$$
.

It remains only to prove (v); first, we need the following:

(6) Let f and g be Boolean endomorphisms such that ff = f and gg = g; if range f and kernel f are both closed under g, then fg = gf.

From the hypotheses $gf(x) \epsilon$ range f and ff = f, we conclude that fgf(x) = gf(x). Now, $gf(x) \oplus fg(x) = fgf(x) \oplus fg(x) = fg(f(x) \oplus x)$; (\oplus is the operation of symmetric difference). But clearly, $f(x) \oplus x \epsilon$ kernel f, hence by hypothesis, $g(f(x) \oplus x) \epsilon$ kernel f, and therefore $fg(f(x) \oplus x) = 0$. Thus, $gf(x) \oplus fg(x) = 0$, which proves (6).

(7) If $\mu \neq \kappa, \lambda, \nu$, then range S^{μ}_{ν} is closed under S^{κ}_{λ} .

Indeed, if $\mu \neq \kappa$, λ , ν then $S_{\lambda}^{\kappa}S_{\nu}^{\mu}x = S_{\lambda}^{\kappa}\exists_{\mu}S_{\nu}^{\mu}x = \exists_{\mu}S_{\lambda}^{\kappa}S_{\nu}^{\mu}x \epsilon$ range S_{ν}^{μ} .

(8) If $\kappa \neq \mu$, ν then kernel \mathbf{S}^{μ}_{ν} is closed under $\mathbf{S}^{\kappa}_{\lambda}$.

Indeed, suppose $S_{\nu}^{\mu}x = 0$; then $\exists_{\kappa}S_{\nu}^{\mu}x = \exists_{\kappa}0 = 0$ by 2.2 (i). Thus, by (q_{ϱ}) , $S_{\nu}^{\mu}\exists_{\kappa}x = 0$. But by (3), $S_{\lambda}^{\kappa}x \leq \exists_{\kappa}x$, so by (1), $S_{\nu}^{\mu}S_{\lambda}^{\kappa}x \leq S_{\nu}^{\mu}\exists_{\kappa}x = 0$. It follows that $S_{\lambda}^{\kappa}x \in \text{kernel } S_{\nu}^{\mu}$. From (5), (6), (7) and (8), we immediately get (v). Q.E.D.

 (q_6) , together with 2.2 (i) and (ii), show that the operations \exists_{κ} are quantifiers in the sense of Halmos [2] and of Henkin, Monk and Tarski [5].

3. Quantifier algebras and polyadic algebras An extended notion of substitutions and quantifiers is used in polyadic algebras. Roughly speaking, (from the metalogical point of view), instead of merely quantifying over a single variable, one may quantify over an arbitrary set of variables; similarly, the simultaneous substitution of arbitrarily many variables is permitted.

In the definition which follows, I is taken to be an arbitrary set. I^{I} designates the set of all functions from I into I; if $\tau \epsilon I^{I}$ then, in the metalogical interpretation, S_{τ} may be regarded as the operation of simultaneously replacing each variable v_{κ} by $v_{\tau(\kappa)}$. For each $\tau \epsilon I^{I}$ and $J \subseteq I, \tau \mid J$ designates the restriction of τ to J.

3.1 Definition: An *I*-polyadic algebra is a system $\langle A, +, \cdot, -, 0, 1, S_{\tau}, \mathbf{J}_{J} \rangle_{\tau \in I} I_{, J \subseteq I}$ where $\langle A, +, \cdot, -, 0, 1 \rangle$ is a Boolean algebra and \mathbf{S}_{τ} and \mathbf{J}_{J} are unary operations which satisfy the following conditions for all $x, y \in A$, $\sigma, \tau \in I^{I}$ and $J, K \subseteq I$:

It is customary to write \exists_{κ} for $\exists_{\{\kappa\}}$. A mapping $\tau \in I^{I}$ such that $\tau(\kappa) = \lambda$ and $\tau(\mu) = \mu$ for every $\mu \neq \kappa$ is called a *replacement* and is noted by (κ/λ) . We write $\mathbf{S}_{\lambda}^{\kappa}$ for $\mathbf{S}_{(\kappa/\lambda)}$.

The connections between quantifier algebras and polyadic algebras are easy to describe. Note that we may always identify *I* with some ordinal *a*. Now, every α -polyadic algebra is a quantifier algebra of degree α ; more precisely, if $\langle A, +, \cdot, -, 0, 1, S_{\tau}, \exists_J \rangle_{\tau \in \alpha^{\alpha}, J \subset \alpha}$ is a polyadic algebra, then $\langle A, +, \cdot, -, 0, 1, S_{\lambda}^{\kappa}, \exists_{\kappa} \rangle_{\kappa, \lambda < \alpha}$ is a quantifier algebra. (Another way of saying this is: a polyadic algebra becomes a quantifier algebra by removing some of its operations.)

The converse is true for locally finite quantifier algebras of infinite degree. Indeed, if $\langle A, +, \cdot, -, 0, 1, S_{\lambda}^{\kappa}, \exists_{\kappa} \rangle_{\kappa,\lambda < \alpha}$ is such an algebra, it is possible to adjoin extended quantifiers and substitutions as follows: if $x \in A$ and $J \subseteq \alpha$, we define $\exists_J x$ by

(3.2)
$$\exists_J x = \exists_{\kappa_1} \ldots \exists_{\kappa_n} x$$
, where $\{\kappa_1, \ldots, \kappa_n\} = J \cap \Delta x$.

Furthermore, it has been established in [3] that if $\tau \epsilon \alpha^{\alpha}$ and J is a finite subset of α , then $\tau | J = \tau_1 \dots \tau_n | J$ for some replacements τ_1, \dots, τ_n . Now, we define $S_r x$ by

(3.3)
$$S_{\tau}x = S_{\lambda_1}^{\kappa_1} \dots S_{\lambda_n}^{\kappa_n}x$$
, where $\tau | \Delta x = (\kappa_1/\lambda_1) \dots (\kappa_n/\lambda_n) | \Delta x$.

B. Galler has proved in [1] that if $\alpha \ge \omega$ and $\langle A, +, \cdot, -, 0, 1, S_{\lambda}^{\kappa}, \exists_{\kappa} \rangle_{\kappa,\lambda < \alpha}$ is an algebra satisfying (q_1) - (q_9) and (Lf), (together with 2.2 (i)-(v) which follow from (q_1) - (q_9)), and if operations \exists_J and S_{τ} are introduced by (3.2) and (3.3) respectively, then $\langle A, +, \cdot, -, 0, 1, S_{\tau}, \exists_J \rangle_{\tau \in \alpha} \alpha_{,J \subseteq \alpha}$ is a polyadic algebra. We may paraphrase this as follows: if we adjoin operations S_{τ} and \exists_J to a locally finite quantifier algebra of infinite degree by means of (3.2) and (3.3), we get a polyadic algebra.

4. Quantifier algebras with equality and cylindric algebras By adjoining certain distinguished elements to quantifier algebras, we get an algebraization of the first-order predicate calculus with equality. In the metalogical interpretation, the distinguished element $\mathbf{e}_{\kappa\lambda}$ is taken to be the equivalence class of the formula $v_{\kappa} = v_{\lambda}$.

4.1 Definition: A quantifier algebra with equality is an algebra $\langle A, +, \cdot, -, 0, 1, \mathbf{S}_{\lambda}^{\kappa}, \mathbf{\exists}_{\kappa}, \mathbf{e}_{\kappa\lambda} \rangle_{\kappa,\lambda < \alpha}$ such that $\langle A, +, \cdot, -, 0, 1, \mathbf{S}_{\lambda}^{\kappa}, \mathbf{\exists}_{\kappa} \rangle_{\kappa,\lambda < \alpha}$ is a quantifier algebra and $\mathbf{e}_{\kappa\lambda}$ are distinguished elements which satisfy

 $\begin{array}{ll} (\mathbf{q}_{10}) & \mathbf{S}_{\lambda}^{\kappa} \mathbf{e}_{\kappa\lambda} = 1 \\ (\mathbf{q}_{11}) & x \cdot \mathbf{e}_{\kappa\lambda} \leq \mathbf{S}_{\lambda}^{\kappa} x. \end{array}$

We present, next, a few properties of quantifier algebras with equality. We let min X designate the least element of X if X is an ordered set having one.

4.2 Lemma: If $\langle A, +, \cdot, -, 0, 1, \mathbf{S}_{\lambda}^{\kappa}, \mathbf{\exists}_{\kappa}, \mathbf{e}_{\kappa\lambda} \rangle_{\kappa,\lambda < \alpha}$ is a quantifier algebra with equality, the following conditions hold for all $x \in A$ and $\kappa, \lambda, \mu < \alpha$:

(i) $x \cdot \mathbf{e}_{\kappa\lambda} = \mathbf{S}_{\lambda}^{\kappa} x \cdot \mathbf{e}_{\kappa\lambda}$ (ii) $\mathbf{J}_{\kappa} \mathbf{e}_{\kappa\lambda} = \mathbf{1}$ (iii) $\mathbf{S}_{\lambda}^{\kappa} \mathbf{e}_{\kappa\lambda} = \mathbf{I}$ (iv) $\mathbf{e}_{\kappa\lambda} = \min \{x : \mathbf{S}_{\lambda}^{\kappa} x = 1\}$ (v) $\mathbf{e}_{\kappa\kappa} = \mathbf{I}$

Proof: The proof (i) is due to Halmos [4]: by (q_{11}) , $S_{\lambda}^{\kappa} x \cdot e_{\kappa\lambda} \cdot -x \leq S_{\lambda}^{\kappa} x \cdot S_{\lambda}^{\kappa}(-x) = S_{\lambda}^{\kappa}(x \cdot -x) = 0$. Thus, $S_{\lambda}^{\kappa} x \cdot e_{\kappa\lambda} \leq x$; combining this with (q_{11}) yields (i). We have seen, in (3) of the proof of 2.2, that $S_{\lambda}^{\kappa} x \leq \exists_{\kappa} x$; from this fact and (q_{10}) we immediately get (ii).

Next,
$$\exists_{\kappa}(x \cdot \mathbf{e}_{\kappa\lambda}) = \exists_{\kappa}(\mathbf{S}_{\lambda}^{\kappa}x \cdot \mathbf{e}_{\kappa\lambda})$$
 by (i)
 $= \exists_{\kappa}(\exists_{\kappa}\mathbf{S}_{\lambda}^{\kappa}x \cdot \mathbf{e}_{\kappa\lambda})$ by (q₈)
 $= \mathbf{S}_{\lambda}^{\kappa}x \cdot \exists_{\kappa}\mathbf{e}_{\kappa\lambda}$ by 2.2 (ii) and (q₈)
 $= \mathbf{S}_{\lambda}^{\kappa}x$ by (ii).

This proves (iii); (iv) follows immediately from (q_{10}) and (i), and (v) is an immediate consequence of (iv). Now, by (q_3) and (q_4) , $S^{\lambda}_{\lambda}S^{\lambda}_{\kappa} = S^{\lambda}_{\lambda}$; thus, $S^{\lambda}_{\lambda}e_{\lambda\kappa} = S^{\lambda}_{\lambda}S^{\lambda}_{\kappa}e_{\lambda\kappa} = 1$, so by (iv), $e_{\kappa\lambda} \leq e_{\lambda\kappa}$; symmetrically, $e_{\lambda\kappa} \leq e_{\kappa\lambda}$, which proves (vi). To prove (vii), we note that by (q_9) , $S^{\lambda}_{\mu} \exists_{\kappa}(-e_{\lambda\mu}) = \exists_{\kappa}S^{\lambda}_{\mu}(-e_{\lambda\mu}) = 0$, that is, $S^{\lambda}_{\mu}[-\exists_{\kappa}(-e_{\lambda\mu})] = 1$; thus by (iv), $e_{\lambda\mu} \leq -\exists_{\kappa}(-e_{\lambda\mu})$, that is, $\exists_{\kappa}(-e_{\lambda\mu})] \leq -e_{\lambda\mu}$. Combining this with (q_6) gives $\exists_{\kappa}(-e_{\lambda\mu}) = -e_{\lambda\mu}$; thus by (q_7) , $-S^{\kappa}_{\nu}e_{\lambda\mu} = S^{\nu}_{\nu} \exists_{\kappa}(-e_{\lambda\mu}) = \exists_{\kappa}(-e_{\lambda\mu}) = -e_{\lambda\mu}$, that is, $S^{\nu}_{\nu}e_{\lambda\mu} = e_{\lambda\mu}$.

To prove (viii), we note that by (q₄) and (q₁₀), $S^{\lambda}_{\mu}(S^{\kappa}_{\mu}e_{\kappa\lambda}) = S^{\lambda}_{\mu}S^{\kappa}_{\lambda}e_{\kappa\lambda} = 1$, hence by (iv), $e_{\lambda\mu} \leq S^{\kappa}_{\mu}e_{\kappa\lambda}$; symmetrically, $e_{\kappa\lambda} \leq S^{\kappa}_{\mu}e_{\lambda\mu}$. Thus, $S^{\kappa}_{\mu}e_{\kappa\lambda} \leq S^{\kappa}_{\mu}S^{\mu}_{\kappa}e_{\lambda\mu} = S^{\kappa}_{\mu}e_{\lambda\mu} = e_{\lambda\mu}$, where the last step follows by (vii). Finally, (ix) is an immediate consequence of (iii) and (viii). Q.E.D.

4.3 Definition: By a cylindric algebra of degree α we mean a system $\langle A, +, \cdot, -, 0, 1, \exists_{\kappa}, \mathbf{e}_{\kappa\lambda} \rangle_{\kappa,\lambda < \alpha}$ such that $\langle A, +, \cdot, -, 0, 1 \rangle$ is a Boolean algebra, and \exists_{κ} and $\mathbf{e}_{\kappa\lambda}$ satisfy the following conditions for all $x \in A$ and $\kappa, \lambda < \alpha$:

 $\begin{array}{ll} (C_1) & \exists_{\kappa} 0 = 0 & (C_5) & \mathbf{e}_{\kappa\kappa} = 1 \\ (C_2) & x \leq \exists_{\kappa} x & (C_6) & \mathbf{e}_{\lambda\mu} = \exists_{\kappa} (\mathbf{e}_{\lambda\kappa} \cdot \mathbf{e}_{\kappa\mu}) & \text{if } \kappa \neq \lambda, \mu \\ (C_3) & \exists_{\kappa} (x \cdot \exists_{\kappa} y) = \exists_{\kappa} x \cdot \exists_{\kappa} y & (C_7) & \exists_{\kappa} (\mathbf{e}_{\kappa\lambda} \cdot x) \cdot \exists_{\kappa} (\mathbf{e}_{\kappa\lambda} \cdot -x) = 0 & \text{if } \kappa \neq \lambda. \\ (C_4) & \exists_{\kappa} \exists_{\lambda} = \exists_{\lambda} \exists_{\kappa} & \end{array}$

Cylindric algebras are equivalent to quantifier algebras with equality. Let us state this result precisely: if $\langle A, +, \cdot, -, 0, 1, \exists_{\kappa}, \mathbf{e}_{\kappa\lambda} \rangle_{\kappa,\lambda < \alpha}$ is a cylindric algebra, and if operations $\mathbf{S}_{\lambda}^{\kappa}$ are defined by

(4.4)
$$\mathbf{S}_{\lambda}^{\kappa}x = x \text{ if } \kappa = \lambda; \mathbf{S}_{\lambda}^{\kappa}x = \mathbf{J}_{\kappa}(x \cdot \mathbf{e}_{\kappa\lambda}) \text{ if } \kappa \neq \lambda,$$

then $\langle A, +, \cdot, -, 0, 1, \mathbf{S}_{\lambda}^{\kappa}, \mathbf{B}_{\kappa}, \mathbf{e}_{\kappa\lambda} \rangle_{\kappa,\lambda < \alpha}$ is a quantifier algebra with equality. Indeed, $(q_1) - (q_{11})$ are all theorems of the theory of cylindric algebras; their proofs may be found in Chapter 1 of [5]. Conversely, if $\langle A, +, \cdot, -, 0, 1, \mathbf{S}_{\lambda}^{\kappa}, \mathbf{B}_{\kappa}, \mathbf{e}_{\kappa\lambda} \rangle_{\kappa,\lambda < \alpha}$ is a quantifier algebra with equality, then $\langle A, +, \cdot, -, 0, 1, \mathbf{B}_{\kappa}, \mathbf{e}_{\kappa\lambda} \rangle_{\kappa,\lambda < \alpha}$ is a cylindric algebra. Indeed, this clearly follows from Lemma 4.2.

REFERENCES

- [1] Galler, B., "Cylindric and polyadic algebras," Proceedings of the American Mathematical Society, vol. 8 (1957), pp. 176-183.
- Halmos, P., "Algebraic logic, I. Monadic Boolean algebras," Compositio Mathematica, vol. 12 (1956), pp. 217-249.
- [3] Halmos, P., "Algebraic logic, II. Homogenous locally finite polyadic Boolean algebras of infinite degree," *Fundamenta Mathematicae*, vol. 43 (1956), pp. 255-325.
- [4] Halmos, P., "Algebraic logic, IV. Equality in polyadic algebras," *Transactions* of the American Mathematical Society, vol. 86 (1957), pp. 1-27.
- [5] Henkin, L., D. Monk, and A. Tarski, *Cylindric Algebras*, North-Holland, Amsterdam (1971).
- [6] Hoehnke, H. J., "Zur Strukturgleichheit axiomatischer Klassen," Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, vol. 12 (1966), pp. 69-83.

Bucknell University Lewisburg, Pennsylvania and University of California, Berkeley Berkeley, California