119

Notre Dame Journal of Formal Logic
Volume XIX, Number 1, January 1978
NDJFAM

AN AUTOMATIC THEOREM PROVER FOR SUBSTITUTION
AND DETACHMENT SYSTEMS

JEREMY GEORGE PETERSON

1 As mentioned in [3], the proofs exhibited in that paper were found with
the aid of a theorem-proving computer program. This paper is a short
summary of the algorithms and heuristics used.

By a substitution and detachment system we mean any formal system
whose language contains denumerably many variables and a finite set of
connectives, including a distinguished binary connective which we call C.
The theorems are the well-formed formulae which may be derived from a
given set of well-formed formulae, called the axioms, by the rules of
modus ponens (with respect to C) and substitution. We will assume all
formulae to be in Polish prefix notation. It is known (cf. [7], p. 4) that
Meredith’s condensed detachment operator D provides an efficient method
of presenting the proof of a theorem in such a system, but it does more
than this. The result of applying modus ponens (with some appropriate
substitutions) to the formulae CapB and y may be an infinite set of substitu-
tion instances of B. Some restriction must be placed on this set if modus
ponens is to be mechanised. In using condensed detachment we choose the
one member of this set, namely DCap.y, which is most general in the sense
that every other member of the set is a substitution instance of it [7], p. 4,
as our result.

J. Kalman has proved that every theorem which can be derived by
modus ponens and substitution from a set of axioms is a substitution
instance of a theorem which may be derived by condensed detachment
alone. Thus we may use a theorem prover whose only rule of inference is
condensed detachment to prove any theorem in a substitution and detach-
ment system, if we consider that at each step not only the theorem derived
but also all substitution instances of it have been proved. In practice it is
rarely necessary to consider the substitution instances since theorems are
usually required in the strongest possible form. That we can construct
such a theorem prover follows from the fact that an algorithm is known for
condensed detachment [1].
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2 In describing the basic theorem prover two algorithms will be given.
The first generates D6.y for two given formulae 6 and y or shows that it
does not exist, and the second generates an exhaustive ‘“search’’ of the set
of all formulae derivable from a given set of axioms using condensed
detachment as the sole rule of inference. The following data structure is
assumed: the formulae are represented by strings of non-zero integers
stored left-justified in array rows such that the variables are represented
by positive integers, C is represented by -1, and the other connectives are
represented by -2, -3 etc. The algorithm for condensed detachment due to
J. Kalman [1] operates as follows. To generate DCaB.y, Robinson’s
unification algorithm [5], p. 32 is used to unify v and @ and the most general
unifier found is applied to B to yield DCaB.y. The unification fails exactly
when DCaB.y does not exist. More precisely, let a, 38, y be stored in arrays
A, B, E then the following algorithm generates DCaf.y or shows that it does
not exist:

1. Renumber the variables of y so that CaB and y have no variables in
common. I:=0..

2. Do I: = I + 1 until A[I] # E[I] or E[I] = 0.

3. If E[I] = 0-then STOP. The content of B is DCaB.y. Otherwise continue.
4. If E[I] is a variable then H: = E[I] and place the subformula of A
beginning with A[I] in the array F. Go to 7. Otherwise continue.

5. If A[I] is a variable then H: = A[I] and place the subformula of E
beginning with E[I] in the array F. Go to 7. Otherwise continue.

6. STOP. DCapB.y does not exist.

7. If H occurs in F then STOP. DCapB.y does not exist. Otherwise continue.
8. Substitute the content of F for H throughout A and B and E. Go to 2.

The basic search strategy known as the level saturation or breadth-
first method operates by listing the axioms then, starting at the top of the
list, using each theorem to perform condensed detachment with all the
theorems occurring above it on the list. If condensed detachment does not
fail it is convenient at this stage to test whether the theorem has been
previously generated before adding it to the end of the list. If the list of
axioms is in the first n rows of the array THEOREM/[L,I], then the
following algorithm performs the breadth-first search:

1. I1: =1, L: =n+ 1.

2.12: =1, If 11 =1L then STOP. All possible detachments have been
performed.

3. Form DI1.I2. If a new theorem is formed (one not previously generated)
then place it in row L of THEOREM, L: = L + 1.

4. If I1 =12 then I1: = I1 + 1. Go to 2. Otherwise continue.

5. Form DI2.I1. If a new theorem is produced then place it in row L of
THEOREM, L: = L + 1.

6. 12: =12 + 1. Go to 3.

In practice this algorithm requires a bound on the length of the
theorems to be stored related to the dimension of the array THEOREM.
This restriction is called the length heuristic by some authors (e.g., [6]).
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3 The theorem prover is coded in algol and run on the Auckland University
B6700 computer. It is about 245 lines long. In providing the derivations in
[3] the program had at its disposal about 64,000 words of storage and a
maximum of 2,700 seconds of processing time. It was not required of the
theorem prover that it find a deduction completely to the required result
but only that enough material be generated to enable a simple hand
calculation to complete the solution.

The breadth-first technique applied to axiom (1) of [3] yielded 600
theorems in 168 seconds including axioms (2), (3), (5), and (10). This
technique applied to (2) and to (3) again yielded 600 theorems very quickly
and derivations to other axioms could be easily constructed. Except for
these and (4) and (5) which are closely linked ([2], p. 185), none of the
10 axioms yielded enough information in a breadth-first search for a
derivation to another axiom to be constructed. Thus for the purposes of [3]
some heuristic considerations were necessary.

The best heuristic found in this work involves the maximum length of
the stored theorems. It is found that, as the search continues and more
theorems are generated, the maximum length of the theorems which are
accepted for storage by the program may be reduced without the program
exhausting the pairs of theorems available to it for generation and
terminating. For example when the breadth-first method is applied to (9)
with theorems of length at most 19 stored, the program terminates after
generating only two theorems. With the storage length increased to 23 the
breadth-first method generates 600 theorems in 600 seconds but no
derivation may be easily constructed to another axiom. However if, after
50 theorems have been generated, only theorems of length at most 15 are
stored, 600 theorems are generated in 412 seconds, but more importantly
120 of the first 600 theorems have only 11 primitive symbols compared
with 25 of the 600 with a constant maximum of 23, a considerable advantage
for subsequent hand calculation. The heuristic which proved most useful
for the work in [3] accepted theorems of maximum length 27 for the first
50 theorems and theorems of maximum length 15 thereafter. It also gave
preference to theorems of length 11 for one of the parents. Other combina-
tions of bounds for the length of stored theorems have been successfully
used in the search spaces generated by other axiom sets.

A fuller account of this work appears in [4], section 6, p. 23 including a
formalization of the search space and an account of the relative efficiency
of the heuristic outlined above.
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