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AN AXIOM SYSTEM FOR THREE-VALUED LUKASIEWICZ
PROPOSITIONAL CALCULUS

LUISA ITURRIOZ

0 Introduction In 1920, Lukasiewicz has introduced the notion of three-
valued logic. It was not constructed as a formalized axiomatic deductive
system but was built up by means of the truth-table method. The matrix
defining this logic is the following [3], p. 166:

C 1 0 I , 1 1 N

0 1 1 1 1
1 I i i I
2 2 * •»• 2

1 0 £ 1 0

The three-valued Lukasiewicz logic was later axiomatised by Wajsberg in
1931 (see [3], p. 291). Moisil has given an axiomatisation in order to show
that the three-valued Lukasiewicz propositional calculus is an extension of
the intuitionistic one. We give here another axiomatisation, different from
that of Moisil, showing that the three-valued Lukasiewicz propositional
calculus is an extension of a fragment of the three-valued intuitionistic
propositional calculus (see [l]; [3], p. 286), answering a problem suggested
by A. Monteiro.

Lukasiewicz characteristic matrix can be considered as an algebraic
structure. In 1940, Moisil has introduced the notion of three-valued
Lukasiewicz algebra as an attempt to give an algebraic approach to the
three-valued propositional calculus considered by Lukasiewicz. Following
Monteiro [6], we can define a three-valued Lukasiewicz algebra in the
following way, where the primitive operations are those chosen by Moisil.
Thus an abstract algebra {A, Λ, V, ~, V, 1) is said to be a three-valued
Lukasiewicz algebra provided that (A, Λ, V, 1) is a distributive lattice where
1, ~, and V are two unary operations on A such that

~ ~x = x
~{x A y) = ~xv ~y
~ x v Vx = 1

X Λ~X = ~ΛΓΛVΛΓ

V(Λ: Λ 3;) = Vx /\Vy
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Moisil [4], has shown that three-valued Lukasiewicz algebras are
Heyting algebras. Because of the existence of a De Morgan negation they
are in reality symmetrical Heyting algebras [7].

In finding our axiom system the definition of a three-valued Lukasie-
wicz algebra given in [8] has been very useful. Following [8], p. 459, an
abstract algebra (A, Λ, V,=Φ>, ~, 1) is said to be a three-valued Lukasiewicz
algebra if (A, Λ, V, =#>, 1) is a Hubert-Bernays algebra (or relatively
pseudo-complemented lattice), ~ is an unary operation on A and the
following equations hold

((X =ΦZ) =φ y) =φ(((y =φχ) =>y) =±>y) = 1
~~χ = %

~(x Λy) = ~xv~y
(x Λ ~ x) Λ (3; v ~ 3;) = x Λ ~ x.

In discussing the axiom system we shall use some familiar notions
about propositional calculus (see [10]). To save space the following
definitions are not as complete as they could be.

Let X = (A°,F) be a. formalized language where A0 = {V, Λ, V, =^, ~, (, )}
is the alphabet and F the set of all formulas over A°. Formation-rules are
as usual. Elements p in V are called propositional variables; Λ, V,=5>, ~
propositional connectives and the parentheses are auxiliary signs. Let D
be the subset of F of derivables formulas as it will be defined in section 1
below. A formalized language with a selected subset of derivables formulas
make up a propositional calculus.

By a valuation of £ in a three-valued Lukasiewicz algebra A we shall
understand any mapping

v: V->A,

that is, any point v = {vp}peVoί the Cartesian product Av. Every formula a
in <£ uniquely determines a mapping

aA: Av ->A

defined by induction on the length of a as follows:

PA(V) = v(p)
(a Λ β)A(v) = aA(v) Λ βA(v)
(a v β)A(v) = aA(v) v βA(v)

(a=Φβ)A(v) = aA(v)=ΦβA(v)
(~a)A(υ) = ~(aA(υ)).

If A is a three-valued Lukasiewicz algebra, a formula a of -C will be
said valid in A provided that aA(v) = 1 for every valuation v of -C in A.

We are going to give an axiom system in such a way that the set of the
three-valued Lukasiewicz algebras is characteristic; that is, formula a is
derivable in the propositional calculus if and only if a is valid in every
three-valued Lukasiewicz algebra.

1 The axiom system In the axiom system below Λ and v may be interpreted
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as conjunction and disjunction respectively, => as intuitionistic implication

and ~ as a negation. To avoid a clumsy statement of the rule of substitu-

tion, axiom schemas are considered instead of axioms. The result to be

presented here were first announced at the 1964 Meeting of the Union

Matematica Argentina [2].

Axiom schema

(1.1) x=>(y=Φx)

(1.2) (x =Φ {y=¥z)) =» «x=Φy) => (x =*> z))

(1.3) (x*y)=Φx

(1.4) (x*y)=>y

(1.5) (z=>χ)=Φ((z=Φy)=Φ(z=Φ(x*y)))

(1.6) x^>(xvy)

(1.7) y^(xvy)

(1.8) (x^z)^((y^z)=Φ((xvy)^z))

(1.9) ((*=#*) =>y)=^(((y=>χ)=Φy)=>y)

(1.10) ~~χ=Φχ

(1.11) # = = > - - *

(1.12) (ΛΓΛ~X) ==>(y v~y)

Rules of inference

X X ^* ΛJ

(1.13) — z Modus Ponens

(1.14) —Contraposition rule

Recall that axioms (l.l)-(l.δ) and rule (1.13) characterize the positive

propositional calculus of Hubert and Bernays (see [10], p. 236). For

references of axiom (1.9) see [ l l ] and [9].

2 The axiom system is characteristic Let D be the least set of formulas

of oQ containing the logical axioms (1.1)-(1.12) and closed under the rules

(1.13) and (1.14). The set of formulas F of the formalized language can be

considered as an abstract algebra 3 = (F, Df Λ, V,=#, ~); V is the set of

generators of 3. For a, β e 3 let a = β if and only if a =#> β e D and β =Φ a e D.

It is well known that, by (l.l)-(l.δ), (1.13), and (1.14), = is a congruence on

F.

It is possible to show by (1.1)-(1.8) and (1.13) that (see [10], p. 216):

(2.1) (x=¥(x=Φy)) ^(x^y)

(2.2) (χ=Φy)=Φ((y=φZ)=Φ>(x=Φz)).

The general symmetrical modal logic introduced by Moisil, [5], p. 411,

is characterized by axioms and rules of inference (1.1), (2.1), (2.2), (1.3)-

(1.8), (1.10), (1.11), (1.13), (1.14), and Moisil has also shown, [5], pp. 412-

413, that the more interesting theorems in this logic are those showing that

the negation ~ is a duality. That is

(2.3) (~xv~y)=Φ~(xAy)

(2.4) ~ (#v 3;) ==>(-# Λ- y)
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(2.5) (~x*~y)=Φ~(xvy)
(2.6) ~(xΛy)=Φ(~xv~y).

Let I F I be the set of equivalence c l a s s e s \a\ a lgebra i sed in a s tandard
way: \a\^ \β\ if and only if α ==>/3eZ), l α U | β | = | or A β |, | α | v | β | = l α v β l ,
I α I = H β I = I α ==> β |, ~ I α | = I ~ α I. F u r t h e r , a i s der ivable if and only if I a I
i s the unit e lement of \F\.

Theorem 1 The Lindenbaum algebra 8 = S / Ξ = ( | F | , \D\, Λ, V, =Φ, ~) is a

three-valued Lukasiewicz algebra.

Proof: This follows immediately from (1.1)-(1.14), (2.3)-(2.6). \ϋ\= 1 is
the unit element of 8.

Since 2 = 3/= is a three-valued Lukasiewicz algebra we can interpret
formulas of -(* as mappings from 8 V into 2. The valuation v°: V —> 8 such
that

y°(jf>) = 1̂ 1 for every propositional variable p of -C

will be called the canonical valuation of -C in δ.

Lemma For every formula a of J£

a*(v°)= \a\

for the canonical valuation v°.

Proof: In fact, for every propositional variable p

Pz(v°) = v°(p) = 1̂ 1

By induction on the length of a:

(αAβ)8(z;0) = az(v°) * β*(v°) = | α | A | β | = | α A β |
(avβ)ίi(v0) = aίl(v0)wβAv0) = | α | v | 0 | = k v β |

(a=^βh(v°) = aίl(v0)=Φβ (v°) = \a\=^\β\= \a=Φβ\
(~ah(v°) = ~(aίi(v0)) = ~\a\= | ~ « |

We close with the following result. The method of the proof will be
similar to that, which can be found in [10] for other propositional calculus.

Theorem 2 For every formula a of the propositional calculus the following
conditions are equivalent:

(a) a is derivable in the propositional calculus
(b) a is valid in every three-valued Lukasiewicz algebra

Proof: It is routine to show that a derivable formula in the propositional
calculus is valid in every three-valued Lukasiewicz algebra. On the other
hand, suppose a is valid in every three-valued Lukasiewicz algebra, so a is
valid in 8, that is a%(v) = 1 for every valuation v e S v. In particular, if v is
the canonical valuation v° e 2V, a%{v°) = 1. Because of lemma above, I oil = 1
so ae D.
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