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A NOTE ON THE AXIOM OF CHOICE AND THE

CONTINUUM HYPOTHESIS

ROLF SCHOCK

In response to a request from Roy Davies for details on the proof of
Lemma 3 of [4], the author worked out his proof sketch of (5) of Lemma 1
and found it to be erroneous. In fact, if x is infinite and well-ordered, then
x=+ ~ x and so xr+ex^ although x~ ex=+ and not x~ ex~\ that is, x$ c x=φ
only holds when x is finite or not well-ordered.

Although disappointing, this error is not disastrous. With the aid of an
alternative to (5), an iteration of a part of the antecedent of Lemma 3 leads
to Theorem 3 with an analogous iteration and all the remaining lemmas and
theorems of [4]. Some additional reasoning is needed, but far less than
usual in proofs of the implication of the axiom of choice by the generalized
continuum hypothesis. Also, the arithmetic of transfinite numbers is not
employed. It is the aim of the present note to provide the corrections and
additional reasoning, but some new results are also established.1

In what follows, { } is the empty set while {x} and {xy} are the sets
whose only members are x and x and 3; respectively. Also, x- y is {a:ae x
and not a e y}, x, y is {{x\ {xy}}, and x x y is {a, b: a e x and b e 3;}. Additional
notation is as in [4]. In particular, x+ is x ϋjVfand (J is von Neumann's
operation. The set-theoretic framework employed is Zermelo-Fraenkel
set theory without the axioms of choice or regularity. Since the theory of
cardinal numbers cannot be developed within this framework, neither
cardinal arithmetic nor cardinal notation can be employed.

In the place of (5) of Lemma 1, put

(5) x* < x= φφ.

There is no problem if x is finite. Assume instead that x is infinite.

1. A previous short correction notice was printed on p. 464 of the Zeitschrift fur
mathematische Logik und Grundlagen der Mathematik, vol. 17 (1971), but the
author was not sent the galley proof to read. The formula "x$ -< # = φ φ " was
there misprinted as the erroneous "x$ Qx^ψφ".
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If x is not well-ordered, then there is no ordinal n such that n ~x and
so x$ is x=. Consequently, x# < # = φ < Λrφφ. Assume then that x is well-
ordered and let w be the set of all well-orderings of subsets of x. Clearly,
w c (x x χ)φ. Let / be the function which assigns to any n e x$ the set of all
members of w isomorphic to e within n. Since/ is one-to-one and its range
is included in wφ, x# ^ wψ. But wφ ̂  (x x x)ψφ while x x x ~ x ~ x= since
x is well-ordered. Consequently, x# < x=ψφ. If # = W < # * , * = Φ is well-
ordered by (2) of Lemma 1 and x=V ~ #=Φ= by Lemma 2. Hence, not
ΛΓφ̂ eΛΓ̂  by (1) of Lemma 1 and so x$ c x=ψ= by (2) of Lemma 1. That is,
x# ^ x=ψ < x=φφ ^ x*. This is impossible and so x* < x=ψφ.

This new version of (5) also follows from result 1.43 on cardinals of
[6] in Zermelo-Fraenkel set theory with a theory of cardinals.

For the proof of the modification of Lemma 3, an additional lemma
is needed.

Lemma 2.1 If neω < x andxφ < (n+ x x) U y, then xψ< y.

Proof: Assume that ωex. Let x', z, z', z", and yr be sets such that
ω ~ zr ~ z" ~ z c χt zr and zrr are disjoint, z is zr U z", xr is x - zr, andyf

is y - x. Then x' ~ x and x'ψ ~ xφ <x u y* ~ x' \J y'. Let/be a one-to-one
function from ω unto zr, letg be a one-to-one function from x'φ into x' Ό y',
and let Λrff be {s: s e x'φ and g(s) e x'}. Clearly, g restricted to x'φ - x" is a
one-to-one function into y' and so # f φ - x" ^ yf c y.

Now let h be a function on # f φ such that, if g(s) is <ze#f, then h(s) is
{/({})«}. Otherwise, /z(s) is s. Since there are no sex" and neω such that
f(n)es, h is a one-to-one function into #φ - x" and #φ ̂  ̂  - x". To
establish the lemma, it will first be shown that xφ < x'ψ - x".

Let d be a set disjoint from # f φ such that <2 ~ ΛΓ̂P - x". By the
non-arithmetical theorem of Tarski on p. 158 of [5], there are mutually
disjoint aλ through b2 such that ax ~ a2, x'φ - x" is aγ U bl9 d is a2 U 62, and
Λ/Γ U δi ~ Λτff ~ jvff U &2 Also, by the function-theoretic argument for the
lemma of Sierpiήski on p. 169 of [5], xψ ~ x'ψ and x" U b2 ~ x" imply
b2 < Λr'φ - x?'. Since xφ ~ ΛΓφ - Λ:fr, #φ < ̂ . But rf is α2 U δ2, α2 < x'ψ - ̂ "
because ax - «2, and so d < (ΛΓ'Φ - Λ:rf) u b2 < { }++ x (Λrfφ - ΛΓ") ̂  { }++ x xψ^
xψ since ωeΛΓ. That is, xφ<x'φ - x" and so xψ^ y. Consequently, xψ^
({}+xx)Uy implies xψ^y. Also, if neω and xφ^ (n+x x) U y implies
xty** y for any y, then, since (n++ x JV) U 3; is (w+ x ΛΓ) U (({w+} x Λ:) U y), AΓψ ̂
({w+} x x) U 3; and so xφ4y. The statement then holds by mathematical
induction.

This lemma seems to be a new result.

The modified version of Lemma 3 is

Lemma 3 If there is no y such that either x < y <xφor xφ < y < xψφ and
x is well-ordered, so is xφ.

Proof: Assume the antecedent and that xψ is not well-ordered. Con-
sequently, ω < x. By Lemma 2, x ~ x= and so xψ ~ x=ψ and xψφ ~ x=ψψ.
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By Lemma 2 and the new (5) of Lemma 1, x= < x$ < x=φφ. If not x$ < x=φ,
not x# e xrφfl by (1) of Lemma 1. But, if x=ψ e xβ, xήfβ < x ~ x= < x=φ.
This is impossible by (3) of Lemma 1 and so Λ Γ ^ is x% by (2) of Lemma 1.
Since not x=yft < x=ψ by (3) of Lemma 1, x=φ < x=ψ U x ^ < { }++ x #=φΦ <
x=φφ since ω<x=φ and so x=φφ < x=φ U x=ψΰ by the first assumption.
Consequently, x=ψψ<x=ψ^ by Lemma 2.1 since ω ^ # = φ . Hence, xφ is
well-ordered by (2) of Lemma 1. This is contrary to assumption and so
x# <x=φ. Consequently, xφ<x# by the first assumption and xφ is well-
ordered after all.

The corresponding modification of Theorem 3 is

Theorem 3 //CH and there is no y such that the continuum < y < the
continuum φ, then the continuum is well-ordered.

In Zermelo-Fraenkel set theory with a theory of cardinals, this
theorem also follows from result 3.4 on cardinals of [6]. Indeed, Specker's
result implies Lemma 3 without the assumption that x is well-ordered in
such a framework, but at the cost of relying on Specker's result that not
2* < x2 for cardinal x ^ 5. The proof depends not only on an involved series
of transfinite calculations with cardinals, but also on a transfinite ordinal
normal form theorem.

In spite of the fact that a few set-algebraic inequalities are employed
in the present proof of Lemma 3, it can perhaps be claimed that, together
with Theorem 1 or Lemma 4 of [4], the proof provides an approximation to
what the author was after: a relatively short and set-theoretically
transparent proof for the fact that GCH implies AC which does not rely on
transfinite arithmetic.2 Such proofs can perhaps also be applied in other
set theories in which cardinal arithmetic cannot be developed.

Lemma 2.1 has some additional consequences which are of interest.

Lemma 2.2 If neω and x is infinite, then n x x < xφ.

Proof: Assume the antecedent. If y has four members, let m be (y x n)~
and let / be a one-to-one function from m into x. Let g be a function on
nxx such that, for any a ex, g({ }, a) is {/({})#}. If i+en, theng(i+,a) is
{f(j++)a} where j is the z'th empty or even ordinal if there is no hej++ such
that a is f(h). Otherwise, g(i+,a) is {f(j+) f(b)} where b is the ft'th ordinal
greater than j + . The latter clause is proper if there are j + + many h left in
m after those smaller than j + + are excluded; that is, the sum of j + + and j + +

must be smaller than m. Since j is twice i, the sum is exactly four times
i+. But i+ en and so four times i+e m. Hence, g is defined for i+, a and so
a function from nxx into xφ. Also, since g restricted to {i} x x for an few

2. About a year after this study had been written, the author was informed that
G. Takeuti and W. Zaring also proved that GCH implies AC without the use of
transfinite arithmetic in their textbook Introduction to Axiomatic Set Theory
(New York, Springer-Verlag^ 1971). However, the present proof was initiated at
least as early in [4] and differs considerably from that of Takeuti and Zaring.
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is obviously one-to-one and its range is disjoint from the range of g re-
stricted to {h} x x for all hei, g must be one-to-one. Finally, the range of
g consists entirely of doubletons and so is a proper subset of xφ. Thus, g
is a one-to-one function from n x x into a proper subset q of xφ. If
xψ ~ n x x ~ q, xφ is one-to-one with a proper subset of itself and so
Dedekind infinite; that is, ω < xφ ~ q. But then ω ~ p Q q for some p. Let
/ ' be a function which assigns to any ten the intersection of p with the
range of g restricted to {i} x x. Since p is well-ordered, a subset of p is
infinite just when Dedekind infinite. But p is finite if f(i) is for any ie n.
Hence, there is an ie n such that {i}x x is Dedekind infinite and so ω ̂  {*'} x
#~ΛΓ. Also, xφ<nxx<{n+xx)u{}. Hence, # φ < { } b y Lemma 2.1.
This is impossible and so not xφ~ w x i

Proven results in the literature which imply Lemma 2.2 without the
assumption that x can be well-ordered in Zermelo-Fraenkel set theory with
a theory of cardinals (such as 2.52 of [6] and 2 on p. 115 of [l]) rely on both
transfinite arithmetic and Specker's difficult result that not 2X ̂  x2 for
cardinal x ^ 5. Also, the assumption that n-x ^ 2X for finite cardinal n and
infinite cardinal x is usually made without proof. The author has only been
able to find a single proof through a large amount of transfinite arithmetic
of this inequality (on p. 147 of [5]).

Lemma 2.3 If there is no y such that x < y < xφ and {}+ < x, then
ω < x ~ { }++ x x.

Proof: Assume the antecedent. Then x is infinite and so x ^ x+ ^ { }++ x
x < xfy by Lemma 2.2. Consequently, x ~ x+ ~ { }++ x x by reapplying the
assumption and ω < x ~ {}++ x x.

3.1 and 3.2 of [6] are analogues on cardinals obtained by means of not
2*<? x2 for cardinal x^ 5 to this lemma. Notice that Lemma 2.3 explains
the application of Lemma 2.1 in the proof of Lemma 4 of [4]. It also
provides a deeper justification for the application of Lemma 2.1 in the
proof of the present version of Lemma 3.

In the alternative proof of Theorem 1 of [4], it was assumed without
proof that the union of a well-ordered set of well-ordered sets was
well-ordered. The axiom of regularity and the assumption that #φ is
well-ordered when x is for any x were presupposed. For the sake of
completeness, a lemma by which the union principle follows from these
presuppositions will be established.

Lemma 2.4 If m and n are ordinals and m+ U ψ ^ n, then m+ \j <n.

Proof: Assume the antecedent and let / be a one-to-one function from
m+yj# %$ into n. Also for j e m+, let ^ b e a function on m+ such that g(j) is
gj U {a, b: aej+\J - j\J and b is fj({gj(e): ce a})} where gj is {a, b: ag(i) b
for some ie j} and / ; is the one-to-one function into B*~ - Bj induced by /
from Aj - Aj with Bj the range of / restricted to Aj and Aj [{gj{c): cea}:
aej\J} Such a g exists by transfinite recursion on m+ since g(j) is
function of j and the range of g restricted to j for j e m+.
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Assume now that jem+ and, for any ίej,g(i) is a one-to-one function
from i+\J into i+\J= c n. If gj is defined for c and c' and£y(c) isgy(c'),
then there are i e j and V e j such that c e z'+U and cr e z'+U Let wbe i u z'.
Since he u implies h+κJ c w+U, g(u) is defined for c and c'. Also, g"(w) c gj
and is one-to-one by the inductive assumption. Hence, g(u){c) is g(u)(cr), c
is c', and gy is one-to-one. Since ce ae j+\J c m+\J implies that c c ί+\J
for some j e j and gy(c) < j+\J, gj(c) < m+(J and so gj{c) e m+\J for c e ae
j+\J by (1) of Lemma 1 of [4]. Hence, if aej+\J, {gj{c): c e a} is in the
domain of / and g{j) is a function from j + U into j + U~ £ n>

Assume finally that g{j) is defined for a and a' and that g(j)(a) is
g(j)(a') If {βαf} c jU? « is β' since ^ is one-to-one. Assume then that
{aar} c j + (J - j U Since/y is one-to-one and both {̂ "/(c): c € a} and {gy(c):
c e a'} are in the domain of / / , these sets are identical. Hence, a is af

because gj is one-to-one and g(j) is as well since not both aej\j and
#' e j + U " jU or vice versa. By applying transfinite induction up to ra+, it
follows that g{m) is a one-to-one function from m+U into n.

Of course, this lemma also provides a direct proof of Theorem 1. The
original proofs are in [2] and [3].

In conclusion, some new results which supplement Lemma 2.1 will be
proved.

Lemma 2.5 If ω < x and y < ω x x, then xψU y < xψ.

Proof: Assume the antecedent. Let yf be y - x% let z\ x', and/be as in
the proof of Lemma 2.1, and let g be a one-to-one function from y1 into
ωxx'. Also, let h be a function on j v '^uy such that &(s) is {/(w)α} if
se y' and ^(s) is n, a, for some n and α. Otherwise, /z(s) is 5. Then M s a
one-to-one function from x'ψ U yr into xψ and so ΛΓ̂  U y < x'φ U yr < Λ φ.

T h e o r e m 4 If ω <x, then ωxx <ΛΓφ.

This is an immediate consequence of Lemma 2.5 and Specker's result.

By replacing ω with non-empty w such that { }++ x ω<w and imitating
the proof of the above theorem, a more general statement can be estab-
lished.

Theorem 5 //{ }++ x w <w <x, then w x x < xψ.
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