INDEPENDENT NECESSARY CONDITIONS FOR FUNCTIONAL COMPLETENESS IN m-VALUED LOGIC

YALE N. PATT

A function f is functionally complete in m-valued logic if the set of functions which can be defined explicitly from f is exactly the set of all functions of m-valued logic. A Sheffer function is a two-place functionally complete function. Post [1] and Webb [2], among others, have identified some Sheffer functions in m-valued logic. Martin [3] identified four properties (i.e., proper substitution, co-substitution, proper closing, and t-closing), the absence of which are necessary conditions for functional completeness. In this paper, we will prove that co-substitution implies proper substitution; or with respect to our necessary conditions, if f does not have the proper substitution property, then f does not have the co-substitution property. Consequently, the co-substitution property can be discarded from our set of necessary conditions for functional completeness. Finally, we show that the remaining three necessary conditions are independent.

Theorem If f(p,q) is a two-place function satisfying the co-substitution property, then f(p,q) satisfies the proper substitution property as well.

Proof: Let $K = \{1, 2, 3, \ldots m\}$ be the set of m truth values, and D be a decomposition of K into \hat{m} disjoint non-empty classes, $2 \le \hat{m} \le m$. We will say $i \sim j$ (D) if i and j are elements of the same class, $i, j \in K$. Further, let $\hat{\mathbb{D}}$ be the decomposition of the two-dimensional space K^2 such that $(p,q) \sim (r,s)(\hat{\mathbb{D}})$ if and only if $p \sim r$ (D) and $q \sim s$ (D). Let f satisfy the co-substitution law of Martin; that is, for any h, i, j, $k \in K$, whenever $f(h,i) \sim f(j,k)$ (D), then $h \sim j$ (D) or $i \sim k$ (D).

Assume there exist $(a,b) \sim (c,d)$ $(\hat{\mathbb{D}})$ such that $f(a,b) \not\sim f(c,d)$ (\mathbb{D}) . There are $\hat{m}-1$ classes of $\hat{\mathbb{D}}$, we will call them $C_1,C_2,\ldots C_{\hat{m}-1}$, such that if $(w_i,x_i)\in C_i$ then $a\not\sim w_i$ $(\mathbb{D}),b\not\sim x_i$ $(\mathbb{D}),c\not\sim w_i$ $(\mathbb{D}),$ and $d\not\sim x_i$ $(\mathbb{D}).$ Further, if $(w_i,x_i)\in C_i$ and $(w_j,x_j)\in C_j,$ $i\neq j$, then $w_i\not\sim w_j$ (\mathbb{D}) and $x_i\not\sim x_j$ (\mathbb{D}) . Since f satisfies co-substitution, $f(a,b)\not\sim f(w_1,x_1)$ (\mathbb{D}) and $f(c,d)\not\sim f(w_1,x_1)$ (\mathbb{D}) . Further, $f(a,b)\not\sim f(w_2,x_2)$ $(\mathbb{D}),$ $f(c,d)\not\sim f(w_2,x_2)$ (\mathbb{D}) and $f(w_1,x_1)\sim f(w_2,x_2)$ (\mathbb{D}) . Continuing, we reach the case that $f(w_{\hat{m}-1},x_{\hat{m}-1})$

cannot be specified without violating the co-substitution property. Therefore, our original assumption is contradicted; that is, that $(a,b) \sim (c,d)$ (\hat{D}) and $f(a,b) \not\sim f(c,d)$ (D). But $(a,b) \sim (c,d)$ (\hat{D}) implies $f(a,b) \sim f(c,d)$ (D) is exactly the proper substitution property. Q.E.D.

Remark: Obviously, if D is the trivial decomposition consisting of m classes, then every one-place function trivially satisfies co-substitution. However, as is well known, one-place functions cannot be functionally complete, so this case is not considered.

It remains to show that the three remaining properties, i.e., proper substitution, proper closing, and t-closing are indeed independent. This, we easily do by means of examples. First, we review the definitions of t-closing and proper closing from [3]. Let t(p) be a one-place function which satisfies the following:

$$t^{m}(j) = j, 1 \le j \le m$$

 $t^{i}(j) \ne j, 1 \le i \le m - 1, 1 \le j \le m.$

Then f(p,q) is t-closing if there exists a t(p) such that, for all i, j, there exists a k such that $f(t^i(p), t^j(p)) = t^k(p)$. A function f(p,q) is proper closing if some non-empty proper subset of the m truth values is closed under f(p,q).

Example 1: $f_1(p, q)$ has the proper substitution property, but is not proper closing and is not t-closing.

			q			
			1	2	3	4
f_1 :	Þ	1	3	4	4	4
		2	3	4	3	3
		3	4	3	2	1
		4	4	3	2	1

Example 2: $f_2(p, q)$ is proper closing, but not t-closing and does not have the proper substitution property.

			q			
			1	2	3	4
f_2 :		1	3	2	1	1
		2	4	3	2	4
	Þ	3	1	2	4	3
		4	2	4	4	3

Example 3: $f_3(p,q)$ is t-closing, but not proper closing and does not have the proper substitution property.

			q			
			1	2	3	4
f ₃ :	Þ	1	2	4	3	1
		2	2	3	1	4
		3	1	3	4	2
		4	3	2	4	1

REFERENCES

- [1] Post, E. L., "Introduction to a general theory of elementary propositions," *American Journal of Mathematics*, vol. 43 (1921), pp. 163-185.
- [2] Webb, D. L., "Generation of any n-valued logic by one binary operator," Proceedings of the National Academy of Sciences, vol. 21 (1935), pp. 252-254.
- [3] Martin, N. M., "The Sheffer functions of 3-valued logic," The Journal of Symbolic Logic, vol. 19 (1954), pp. 45-51.

North Carolina State University Raleigh, North Carolina