A SHORT EQUATIONAL AXIOMATIZATION OF ORTHOMODULAR LATTICES

BOLESŁAW SOBOCIŃSKI

By definition, cf. e.g., [2], p. 53, an orthomodular lattice is an ortholattice satisfying the following formula: ${ }^{1}$
K1 [ab]: $a, b \in A . a \leqslant b . \supset . a \cup\left(a^{\perp} \cap b\right)=b$
In this note it will be proved that:
(A) Any algebraic system

$$
\mathfrak{A}=\langle A, \cup, \cap, \perp\rangle
$$

where \cup and \cap are two binary operations and ${ }^{\perp}$ is a unary operation defined on the carrier set A, is an orthomodular lattice, if it satisfies the following three mutually independent postulates:
$C 1$ [abcd]: $a, b, c, d \in A$.Ј. $a \cup\left((a \cup((b \cup c) \cup d)) \cap a^{\perp}\right)=$ $\left(\left(d^{\perp} \cap c^{\perp}\right)^{\perp} \cup b\right) \cup a$
C2 [ab]: $a, b \in A$.จ. $a=a \cup\left(b \cap b^{\perp}\right)$
C3 [ab]: $a, b \in A$.フ. $a=a \cap(a \cup b)^{2}$
Proof of (A):
1 Clearly, postulates C2 and C3 are the theses of any ortholattice. It remains to prove that, in the field of an arbitrary ortholattice, $C 1$ is inferentially equivalent to formula $K 1$.
1.1 First, we shall prove that in the field of any lattice $K 1$ is inferentially equivalent to formula $R 1$ given below.
1.1.1 Assume L. Then we have at our disposal:

1. Throughout this paper A indicates an arbitrary but fixed carrier set, L a lattice, and OL an ortholattice. The so-called closure axioms are assumed tacitly.
2. Of course, in this postulate-system the operations U, \cap and ${ }^{\perp}$ are not mutually independent.

D1［ab］：$a \leqslant b . \equiv a \cup b=b . a \in A . b \in A$
L1［ab］：$a, b \in A . a \leqslant b$ ．フ．$a \cup b=b$
L2［ab］：a，$b \in A . \supset . a \leqslant a \cup b$
［L；D1］
L3［ab］：a，$b \in A$ ．จ．$a \cap b=b \cap a$
1．1．2 Now，assume L and $K 1$ ．Then：
$R 1 \quad[a b]: a, b \in A$ ．つ．$a \cup\left(a^{\perp} \cap(a \cup b)\right)=a \cup b$
PR［ab］：Hp（1）．．．．
2．$\quad a \leqslant a \cup b$ ．
［1；L2］
$a \cup\left(a^{\perp} \cap(a \cup b)\right)=a \cup b$
$[1 ; 2 ; K 1, b / a \cup b]$
1．1．3 Let us assume L and $R 1$ ．Then：
K1 $\quad[a b]: a, b \in A . a \leqslant b$ ．ว．$a \cup\left(a^{\perp} \cap b\right)=b$
PR［ab］：Hp（2）．ว．
3．$a \cup b=b$ ．
［1；2；LI］
$a \cup\left(a^{\perp} \cap b\right)=a \cup\left(a^{\perp} \cap(a \cup b)\right)=a \cup b=b$
$[1 ; 3 ; R 1 ; 3]$
1．1．4 Thus，from the deductions presented above，it follows that in the field of any lattice we have

$$
\{K 1\} \rightleftarrows\{R 1\}
$$

1．2 Now，let us assume an arbitrary ortholattice．Then，obviously，in its field，the equivalence $\{K 1\} \rightleftarrows\{R 1\}$ and the formula $L 3$ hold．Moreover，we have at our disposal：

M1 $\quad[a b c d]: a, b, c, d \in A$ ．ว．$a \cup((b \cup c) \cup d)=\left(\left(d^{\perp} \cap c^{\perp}\right)^{\perp} \cup b\right) \cup a$
［ OL，cf．［1］，p．251］
M2［b］：b $\in A . \supset .\left(b \cup\left(b \cap b^{\perp}\right)\right) \cup\left(b \cap b^{\perp}\right)=b$
［OL］
M3［ab］：$a, b \in A . \supset .\left(\left(\left(b \cap b^{\perp}\right)^{\perp} \cap\left(b \cap b^{\perp}\right)^{\perp}\right)^{\perp} \cup b\right) \cup a=a \cup b$
［OL］
1．2．1 Assume OL and R1．Then：
$C 1 \quad[a b c d]: a, b, c, d \in A$ ．つ．$a \cup\left((a \cup((b \cup c) \cup d)) \cap a^{\perp}\right)=$ $\left(\left(d^{\perp} \cap c^{\perp}\right)^{\perp} \cup b\right) \cup a$
PR［abcd］：Hp（1）．．．

$$
\begin{array}{rlrl}
a \cup\left((a \cup((b \cup c) \cup d)) \cap a^{\perp}\right) & =a \cup\left(a^{\perp} \cap(a \cup((b \cup c) \cup d))\right) \\
& {\left[1 ; L 3, a / a \cup((b \cup c) \cup d), b / a^{\perp}\right]} \\
& =a \cup((b \cup c) \cup d) & {[R 1, b /(b \cup c) \cup d]} \\
& =\left(\left(d^{\perp} \cap c^{\perp}\right)^{\perp} \cup b\right) \cup a & {[M 1]}
\end{array}
$$

1．2．2 Assume OL and C1．Then：
$R 1 \quad[a b]: a, b \in A . \supset . a \cup\left(a^{\perp} \cap(a \cup b)\right)=a \cup b$
PR［ab］：Hp（1）．ग．

\[

\]

1.3 From sections 1.1 and 1.2 it follows at once that in the field of any ortholattice

$$
\{K 1\} \rightleftarrows\{R 1\} \rightleftarrows\{C 1\}
$$

Therefore, it is proved that formulas C1, C2, and C3 are the theses of any orthomodular lattice.

2 Now, let us assume C1, C2, and C3. Then:
C4 [ab]: $a, b \in A . \supset . a=\left(\left(b \cap b^{\perp}\right)^{\perp} \cap\left(b \cap b^{\perp}\right)^{\perp}\right)^{\perp} \cup a$
PR [ab]:Hp (1). . .

$$
\begin{array}{rlr}
a & =a \cup\left(a \cap a^{\perp}\right)=a \cup\left(\left(a \cup\left(b \cap b^{\perp}\right)\right) \cap a^{\perp}\right) & {[1 ; C 2, b / a ; C 2]} \\
& =a \cup\left(\left(a \cup\left(\left(b \cap b^{\perp}\right) \cup\left(b \cap b^{\perp}\right)\right)\right) \cap a^{\perp}\right) & {\left[C 2, a / b \cap b^{\perp}\right]} \\
& =a \cup\left(\left(a \cup\left(\left(\left(b \cap b^{\perp}\right) \cup\left(b \cap b^{\perp}\right)\right) \cup\left(b \cap b^{\perp}\right)\right)\right) \cap a^{\perp}\right) & {\left[C 2, a / b \cap b^{\perp}\right]} \\
& =\left(\left(\left(b \cap b^{\perp}\right)^{\perp} \cap\left(b \cap b^{\perp}\right)^{\perp}\right)^{\perp} \cup\left(b \cap b^{\perp}\right)\right) \cup a & {\left[C 1, b / b \cap b^{\perp}, c / b \cap b^{\perp}, d / b \cap b^{\perp}\right]} \\
& =\left(\left(b \cap b^{\perp}\right)^{\perp} \cap\left(b \cap b^{\perp}\right)^{\perp}\right)^{\perp} \cup a & {\left[C 2, a /\left(\left(b \cap b^{\perp}\right)^{\perp} \cap\left(b \cap b^{\perp}\right)^{\perp}\right)^{\perp}\right]}
\end{array}
$$

$C 5 \quad[b]: b \in A . \supset . b \cap b^{\perp}=\left(\left(b \cap b^{\perp}\right)^{\perp} \cap\left(b \cap b^{\perp}\right)^{\perp}\right)^{\perp}$
PR [b]: $\mathrm{Hp}(1) . \supset$.

$$
\begin{array}{rlr}
b \cap b^{\perp} & =\left(\left(b \cap b^{\perp}\right)^{\perp} \cap\left(b \cap b^{\perp}\right)^{\perp}\right)^{\perp} \cup\left(b \cap b^{\perp}\right) \quad\left[1 ; C 4, a / b \cap b^{\perp}\right] \\
& =\left(\left(b \cap b^{\perp}\right) \cap\left(b \cap b^{\perp}\right)^{\perp}\right)^{\perp} \quad\left[C 2, a /\left(\left(b \cap b^{\perp}\right)^{\perp} \cap\left(b \cap b^{\perp}\right)^{\perp}\right)^{\perp}\right]
\end{array}
$$

C6 [ab]: $a, b \in A$.ว. $a=\left(b \cap b^{\perp}\right) \cup a$
$C 7 \quad[a b c d]: a, b, c, d \in A . \supset .((a \cup c) \cup d) \cap\left(b \cap b^{\perp}\right)^{\perp}=\left(d^{\perp} \cap c^{\perp}\right)^{\perp} \cup a$
PR [abcd]: Hp (1)...
$\left.((a \cup c) \cup d) \cap\left(b \cap b^{\perp}\right)^{\perp}=\left(\left(b \cap b^{\perp}\right) \cup((a \cup c) \cup d)\right)\right) \cap\left(b \cap b^{\perp}\right)^{\perp}$
$[1 ; C 6, a /(a \cup c) \cup d]$
$=\left(b \cap b^{\perp}\right) \cup\left(\left(\left(b \cap b^{\perp}\right) \cup((a \cup c) \cup d)\right) \cap\left(b \cap b^{\perp}\right)^{\perp}\right)$
$\left[C 6, a /\left(\left(b \cup b^{\perp}\right) \cup((a \cup c) \cup d)\right) \cap\left(b \cap b^{\perp}\right)^{\perp}\right]$
$=\left(\left(d^{\perp} \cap c^{\perp}\right)^{\perp} \cup a\right) \cup\left(b \cap b^{\perp}\right)=\left(d^{\perp} \cup c^{\perp}\right)^{\perp} \cup a$
$\left[C 1, a / b \cap b^{\perp}, b / a ; C 2, a /\left(d^{\perp} \cap c^{\perp}\right)^{\perp} \cup a\right]$
C8 [ab]: $a, b \in A . \supset . a \cap\left(b \cap b^{\perp}\right)^{\perp}=a$
PR [ab]:Hp (1)...

$$
\begin{aligned}
a \cap\left(b \cap b^{\perp}\right)^{\perp} & =\left(a \cup\left(b \cap b^{\perp}\right)\right) \cap\left(b \cap b^{\perp}\right)^{\perp} \\
& =\left(\left(a \cup\left(b \cap b^{\perp}\right)\right) \cup\left(b \cap b^{\perp}\right)\right) \cap\left(b \cap b^{\perp}\right)^{\perp} \\
& =\left(\left(b \cap b^{\perp}\right)^{\perp} \cap\left(b \cap b^{\perp}\right)^{\perp}\right)^{\perp} \cup a=a
\end{aligned}
$$

C9 $\quad[a b c]: a, b, c \in A$.ว. $(a \cup b) \cup c=\left(c^{\perp} \cap b^{\perp}\right)^{\perp} \cup a$

$$
\left[C 7, c / b \cap b^{\perp}, d / b \cap b^{\perp} ; C 4\right]
$$

PR [abc]:Hp (1)...
$(a \cup b) \cup c=((a \cup b) \cup c) \cap\left(b \cap b^{\perp}\right)^{\perp}=\left(c^{\perp} \cap b^{\perp}\right)^{\perp} \cup a$

$$
[1 ; c 8, a /(a \cup b) \cup c ; c 7, c / b, d / c]
$$

3 Since, on the basis of deductions presented in [3], L. Beran has proved in [1] that any algebraic system which satisfies theses $C 9, C 3$, and $C 2$ is an ortholattice, it follows immediately from sections 1 and 2 that any algebraic system which satisfies postulates $C 1, C 2$, and $C 3$ is an orthomodular lattice.

4 The mutual independence of axioms C1, C2, and C3 is established by using the following algebraic tables: ${ }^{3}$
$\mathfrak{M} \mathfrak{1}$

\cup	α	β
α	α	α
β	β	β

\cap	α	β
α	α	β
β	α	β

x	x^{\perp}
α	β
β	α

$\mathfrak{W} 2$

\cup	α	β
α	β	β
β	β	β

\cap	α	β
α	α	α
β	α	β

x	x^{\perp}
α	β
β	α

$\mathfrak{M 3}$

\cup	α	β
α	α	β
β	β	α

\cap	α	β
α	β	α
β	α	β

x	x^{\perp}
α	β
β	α

Namely:
(a) $\mathfrak{M l}$ verifies $C 2$ and $C 3$, but falsifies $C 1$ for $a / \alpha, b / \beta, c / \beta$, and d / β :
(i) $\alpha \cup\left((\alpha \cup((\beta \cup \beta) \cup \beta)) \cap \alpha^{\perp}\right)=\alpha \cup((\alpha \cup(\beta \cup \beta)) \cap \beta)=\alpha \cup((\alpha \cup \beta) \cap \beta)=$ $\alpha \cup(\alpha \cap \beta)=\alpha \cup \beta=\alpha$, (ii) $\left(\left(\beta^{\perp} \cap \beta^{\perp}\right)^{\perp} \cup \beta\right) \cup \alpha=\left((\alpha \cap \alpha)^{\perp} \cup \beta\right) \cup \alpha=\left(\alpha^{\perp} \cup \beta\right) \cup$ $\alpha=(\beta \cup \beta) \cup \alpha=\beta \cup \alpha=\beta$.
(b) $\mathfrak{M Z}$ verifies $C 1$ and $C 3$, but falsifies $C 2$ for a / α and b / α : (i) $\alpha=\alpha$,
(ii) $\alpha \cup\left(\alpha \cap \alpha^{\perp}\right)=\alpha \cup(\alpha \cap \beta)=\alpha \cup \alpha=\beta$.
(c) $\mathfrak{M 3}$ verifies $C 1$ and $C 2$, but falsifies $C 3$ for a / α and b / α : (i) $\alpha=\alpha$,
(ii) $\alpha \cap(\alpha \cup \alpha)=\alpha \cap \alpha=\beta$.

5 It follows immediately from sections 1,3 , and 4 that the proof of (A) is complete.

Remark: We have to note that, although, clearly, axiom C1 is constructed in a rather mechanical way by combining formulas $R 1$ and $C 9, C 1$ is an organic formula in the sense defined in [4], p. 60, point (c).

REFERENCES

[1] Beran, L., "Three identities for ortholattices," Notre Dame Journal of Formal Logic, vol. XVII (1976), pp. 251-252.
[2] Birkhof, G., Lattice Theory, third (new) edition, American Mathematical Society Colloquium Publications, Providence, Rhode Island, vol. XXV (1967).
[3] Sobociński, B., "A short postulate-system for ortholattices," Notre Dame Journal of Formal Logic, vol. XVI (1975), pp. 141-144.
[4] Sobociński, B., "On well constructed axiom systems," Yearbook of the Polish Society of Arts and Sciences Abroad, vol. VI (1956), pp. 54-65.

University of Notre Dame
Notre Dame, Indiana

[^0]
[^0]: 3. Concerning $\mathfrak{M l}$ and $\mathfrak{M 3}$, cf. [3], p. 143.
