Notre Dame Journal of Formal Logic Volume XVII, Number 2, April 1976 NDJFAM

SHORTEST SINGLE AXIOMS FOR THE CLASSICAL EQUIVALENTIAL CALCULUS

JEREMY GEORGE PETERSON

1 Introduction The first shortest single axioms for the classical equivalential calculus EC were found by Łukasiewicz [1], who published in 1939 the following three:

(1) EEpqEErqEpr, (2) EEpqEEprErq, (3) EEpqEErpEqr.

Lukasiewicz was believed to have shown that (1), (2), and (3) are the only shortest single axioms, but in 1963, Meredith ([4], pp. 185-186) proved that each of

(4) EEEpqrEqErp, (5) EpEEqEprErq

also possesses this property. In the same paper Meredith claimed further that each of

(6)	EÞEEqErÞEqr,	(7)	EEpEqrErEpq,	(8)	EEpqErEEqrp
(9)	EEpqErEErqp,	(10)	EEEpEqrrEqp,	(11)	EEEþEqrqErþ

is a single axiom for EC (a misprint in (9) was corrected in [5], Appendix I, p. 307).

In this paper we shall prove Meredith's claim in respect of the axioms (7)-(11), but show that in fact (6) is not a single axiom for EC. Meredith ([4], pp. 185-186) showed in addition that (4) remains a single axiom for EC when the ordinary rule of detachment (the rule to infer β from $E\alpha\beta$ and α) is replaced by reverse detachment (the rule to infer α from $E\alpha\beta$ and β). We shall show that (7)-(11) also have this property, but that none of (1), (2), (3), (5), or (6) is a single axiom for EC under reverse detachment. The question, which of (1)-(11) is a single axiom for EC under ordinary detachment or under reverse detachment, is thus completely settled. Whether or not there exist any shortest single axioms other than (1)-(5) and (7)-(11) for EC under ordinary detachment remains unknown. The derivations given in this paper are simplified by the use of Meredith's condensed detachment operator D ([5], Appendix II, pp. 318-319). These derivations were found

with the aid of a computer program based on iteration of an algorithm for the above D.

2 (7)-(11) with ordinary detachment We start with (7):

1.	EEpEqrErEpq	
2.	EEpqEEpEqrr	= D1.1
3.	EþEEqrEqErp	= D1.2
4.	EEpqEpEqEErEstEtErs	= D3.1
5.	EEþEEEqrEqErpss	= D2.3
6.	EEpqEEEpEqrrEEsEtuEuEst	= D4.2
7.	EpEEqEEersErEsqEtpt	= D 1.5
8.	EEEpqEEEEpEqrrEEsEtuEuEstvv	= D 2.6
9.	EpEEEqpEqrr	= D 8.7
10.	EþEqEErqErþ	= D1.9
11.	EEEpqEprErq	= D1.10
12.	EEþqEqþ	= D11.1
13.	EEpqEErpErp	= D12.11
14.	EEpqEEprErq	= D1.D1.13
This	s is Łukasiewicz's axiom (2).	
We	start with (9):	
1.	EEþqErEErqþ	
2.	EÞEEÞEqEEqrsEsr	= D1.1
3.	EpEEpEEqErEErstEtsq	= D1.2
4.	EEEEpqErEErqpEsEEstuEut	= D2.1
	EEEEpqErEErqpEEsEtEEtuvEvus	= D3.1
6.	EEEEEpqrqpr	= D4.4
7.	EEEEEEpqrqprEsEEstuEut	= D 2.6
8.	EþEEþqEEEErsqsr	= D 1.6
9.	EpEEpEEqrEEEEstrtsq	= D1.8
10.	EEEE pqErEErqpEEstEEEE uvtvus	= D9.1
11.	EpEEpEqrEEEEEstutsuEvEEvrq	= D1.7
12.	EEEEpEEpqrs Erqs	= D5.7
13.	EEEpqEEEErspsrq	= D10.7
14.	EEþEEþqErqr	= D 7.11
15.	EEEþqþq	= D14.1
16.	EEÞEEÞqrErq	= D5.14
17.	EEEÞEEÞqrs EErqs	= D12.14
18.	EEþqEEEqrþr	= D13.1 6
19.	EEÞEEÞEEqrsqEsr	= D5.18
20.	EEEþqErEErsEþsq	= D18.14
21.	EEEpqEErprq	= D18.15
	EEpqEEEEErqpsrs	= D17.18
23.	EEþqEqþ	= D21.16
24.	EEÞEEqrErþq	= D21.19
25.	EEEÞEEÞqErqsEsr	= D20.24

268

26.	EEEEpqprErq	= D21.24
27.	EEEpqrEpErq	= D24.22
	EEpqEEprEqr	= D26.25
29.	EEEpqErqEpr	= D23.28
30.	EEþqEEþrErq	= D27.29
Thi	s is Łukasiewicz's axiom (2).	
We	start with (11):	
1.	EEEpEqrqErp	
2.	EþEqEEErqþr	= D1.1
3.	<i>EpEEEqpEEErEstsEtrq</i>	= D2.1
4.	EEE pEEE qErsrEs qEEE tEuvuEvtp	= D3.1
5.	EEpqEEEqErprEEEsEtutEus	= D1.4
6.	EEEEpEqrqErpEEEsEtutEus	= D4.4
7.	EEEpqErEEqEspsr	= D4.5
8.	EEEpEEEqprqEsrs	= D7.5
9.	EEÞEqEErsEpEEsEtrtq	= D 7.6
10.	EEÞEqEEErqprEEEsEtutEus	= D8.3
11.	EEEEpEEEqErsrEsqtpt	= D 1.10
12.	EEEEpEqEEErqprEEsEtutEvEusv	= D 9.10
13.	EEEþEEqErsrEsqþ	= D12.1
14.	EEEEpEqrqEEEsEtutEusErp	= D13.11
15.	EEpEqEErEEEsrtsEptq	= D7.1 0
16.	EEEEpEqEEErqprsEtEuEEEvusvt	= D 15.10
17.	EEEpqErEEEsrqsp	= D16.1
18.	EEEEþqrþErq	= D17.1
19.	EÞEEqEþrErq	= D14.18

This is Meredith's axiom (5).

From the results above we prove that (8) and (10) are single axioms for **EC** using the notion of a dual.

The dual α^d of a formula α is defined as follows:

(i) $\alpha^{d} = \alpha$ if α is a variable, (ii) $\alpha^{d} = E_{\gamma}{}^{d}\beta^{d}$ if $\alpha = E\beta\gamma$.

Lemma α is an axiom for EC with ordinary detachment iff α^d is an axiom for EC with reverse detachment.

Proof: It is easily seen that β is derivable from α by ordinary detachment iff β^d is derivable from α^d by reverse detachment. Since β belongs to **EC** iff β^d belongs to **EC**, this proves the lemma.

From the lemma, $(8) = (11)^d$ and $(10) = (9)^d$ are axioms with reverse detachment. We show that from each of (8) and (10) with ordinary detachment we may deduce reverse detachment.

We start with (8), $E\alpha\beta$ and β :

1.	EEpqErEEqrþ		
2.	$E \alpha \beta$		
3.	β		
4.	EÞEEEqEErqsÞEsr	= D1.1	
5.	EEE p EEq prEs EEEt EEut vs Evu Erq	= D4.4	
6.	EEEÞEqErþrq	= D5.1	
7.	EþEEqþEErEqEsrs	= D 1.6	
8.	EEpβEEqEpErqr	= D7.3	
9.	ΕΕϸΕαΕϥϸϥ	= D8.2	
10.	α	= D6.2	
and derive α , i.e., reverse detachment holds.			

We start with (10), $E\alpha\beta$ and β :

1.	EEEpEqrrEpq	
2.	E lpha eta	
3.	β	
4.	EþEqErEþErq	= D1.1
5.	EEpEqErEpErqEsEtEuEsEut	= DDDD4.4.4.4.4
6.	EEÞEÞqq	= D1.5
7.	EpEqEpq	= D6.4
8.	EEpEqEpqElphaeta	= DD7.7.2
9.	Εβα	= D1.8
10.	α	= D9.3

Thus (7)-(11) are single axioms for **EC** with ordinary detachment.

3 (6) with ordinary detachment The matrix

	Ε	0	1	2
*	0	0	2	1
	1	1	0	2
	2	2	1	0

satisfies (6) but does not satisfy (1). Thus (6) is not a single axiom for EC with ordinary detachment.

4 (1)-(11) with reverse detachment By the lemma and since $(8)^d$ -(11)^d (i.e., (11), (10), (9), and (8)) are single axioms with ordinary detachment, (8)-(11) are single axioms for **EC** with reverse detachment. Similarly (4) = (4)^d is an axiom under either ordinary or reverse detachment as proved by Meredith [4].

It may be shown that EEppEqq is not derivable from $(1)^d - (3)^d$, $(5)^d - (7)^d$ by ordinary detachment (this may be verified by hand calculations for $(1)^d$, $(3)^d$, $(5)^d$, and $(6)^d$, but for $(2)^d$ and $(7)^d$ has been verified only by computer). Hence none of these is an axiom for **EC** with ordinary detachment. Thus none of (1)-(3), (5)-(7) is a single axiom for **EC** with reverse detachment.

270

REFERENCES

- Lukasiewicz, Jan, "Der Aquivalenzenkalkül," Collectanea Logica, vol. 1 (1939), pp. 145-169. English translation in [3], pp. 88-115 and in [2], pp. 250-277.
- [2] Łukasiewicz, Jan, Jan Łukasiewicz: Selected Works, ed. by L. Borkowski, North-Holland Publishing Co., Amsterdam (1970).
- [3] McCall, S., Polish Logic, 1920-1930, Clarendon Press, Oxford (1967).
- [4] Meredith, C. A., and A. N. Prior, "Axiomatics of the propositional calculus," Notre Dame Journal of Formal Logic, vol. IV (1963), pp. 171-187.
- [5] Prior, A. N., Formal Logic, 2nd ed., Clarendon Press, Oxford (1962).

The University of Auckland Auckland, New Zealand