Notre Dame Journal of Formal Logic Volume XVII, Number 2, April 1976 NDJFAM

SHORTEST SINGLE AXIOMS FOR THE CLASSICAL EQUIVALENTIAL CALCULUS

JEREMY GEORGE PETERSON

1 Introduction The first shortest single axioms for the classical equivalential calculus EC were found by Łukasiewicz [1], who published in 1939 the following three:
(1) EEpqEErqEpr,
(2) EEpqEEprErq,
(3) EEpqEErpEqr.

Łukasiewicz was believed to have shown that (1), (2), and (3) are the only shortest single axioms, but in 1963, Meredith ([4], pp. 185-186) proved that each of
(4) EEEpqrEqErp,
(5) EpEEqEprErq
also possesses this property. In the same paper Meredith claimed further that each of
(6) EpEEqErpEqr,
(7) EEpEqrErEpq,
(8) EEpqErEEqrp
(9) EEpqErEErqp,
(10) EEEpEqrreqp,
(11) EEEpEqrqErp
is a single axiom for EC (a misprint in (9) was corrected in [5], Appendix I, p. 307).

In this paper we shall prove Meredith's claim in respect of the axioms (7)-(11), but show that in fact (6) is not a single axiom for EC. Meredith ([4], pp. 185-186) showed in addition that (4) remains a single axiom for EC when the ordinary rule of detachment (the rule to infer β from $E \alpha \beta$ and α) is replaced by reverse detachment (the rule to infer α from $E \alpha \beta$ and β). We shall show that (7)-(11) also have this property, but that none of (1), (2), (3), (5), or (6) is a single axiom for EC under reverse detachment. The question, which of (1)-(11) is a single axiom for EC under ordinary detachment or under reverse detachment, is thus completely settled. Whether or not there exist any shortest single axioms other than (1)-(5) and (7)-(11) for EC under ordinary detachment remains unknown. The derivations given in this paper are simplified by the use of Meredith's condensed detachment operator D ([5], Appendix II, pp. 318-319). These derivations were found
with the aid of a computer program based on iteration of an algorithm for the above D.

2 (7)-(11) with ordinary detachment We start with (7):

1. EEpEqrErEpq
2. $E E p q E E p E q r r=\mathrm{D} 1.1$
3. EpEEqrEqErp
= D1.2
4. EEpqEpEqEErEstEtErs
= D3.1
5. EEpEEEqrEqErpss
= D2.3
6. EEpqEEEpEqrrEEsEtuEuEst
= D4. 2
7. EpEEqEEErsErEsqEtpt
= D1.5
8. EEEpqEEEEpEqrrEEsEtuEuEstvv
= D2.6
9. EpEEEqpEqrr
= D8.7
10. EpEqEErqErp
= D1.9
11. EEEPqEprErq
= D1.10
12. EEpqEqp
= D11.1
13. EEpqEErpErp
= D12.11
14. EEpqEEprErq
= D1.D1.13
This is Łukasiewicz's axiom (2).
We start with (9):
15. EEpqErEErqp
16. EpEEpEqEEqrsEsr
= D1.1
17. EpEEpEEqErEErstEtsq
= D1.2
18. EEEEpqErEErqpEsEEstuEut
= D2.1
19. EEEEDqErEEvqpEEsEtEEtuvEvus
= D3.1
20. EEEEEpqrqpr
= D4.4
21. EEEEEEEpqrqprEsEEstuEut $=\mathrm{D} 2.6$
22. EpEEpqEEEErsqsr
= D1.6
23. EpEEpEEqrEEEEstrtsq
= D1.8
24. EEEEpqErEErqpEEstEEEEuvtvus
= D9.1
25. EpEEpEqrEEEEEEstutsuEvEEvrq
= D1.7
26. EEEEpEEpqrsErqs
= D 5.7
27. EEEpqEEEErspsrq
= D10.7
28. EEpEEpqErqr
= D7.11
29. EEEpqpq
= D14.1
30. EEpEEpqrErq
= D5.14
31. EEEpEEpqrsEErqs
= D12.14
32. EEpqEEEqrpr
= D13.16
33. EEpEEpEEqrsqEsr
= D5.18
34. EEEpqErEErsEpsq
= D18.14
35. EEEpqEErprq
= D18.15
36. EEpqEEEEErqpsrs
= D17.18
37. EEpqEqp
= D21.16
38. EEpEEqrErpq
= D21.19
39. EEEDEEpqErqsEsr
= D20.24

26.EEEEpqprErq $=\mathrm{D} 21.24$ 27. $E E E p q r E p E r q$ $=\mathrm{D} 24.22$ 28. $E E p q E E p r E q r$ $=\mathrm{D} 26.25$ 29. $E E E p q E r q E p r$ $=\mathrm{D} 23.28$ 30. EEpqEEprErq	$=\mathrm{D} 27.29$

This is Łukasiewicz's axiom (2).
We start with (11):

1. EEEpEqrqErp
2. EpEqEEErqpr
= D1.1
3. EpEEEqpEEErEstsEtrq =D2.1
4. EEEpEEEqErsrEsqEEEtEuvuEvtp = D3.1
5. EEpqEEEqErprEEEsEtutEus =D1.4
6. EEEEpEqrqErpEEEsEtutEus = D4.4
7. EEEpqErEEqEspsr $=\mathrm{D} 4.5$
8. EEEpEEEqprqEsrs $=D 7.5$
9. EEpEqEErsEpEEsEtrtq $=\mathrm{D} 7.6$
10. EEpEqEEErqprEEEsEtutEus = D8.3
11. EEEEpEEEqErsrEsqtpt =D1.10
12. EEEEpEqEEErqprEEsEtutEvEusv = D9.10
13. EEEpEEqErsrEsqp =D12.1
14. EEEEpEqrqEEEsEtutEusErp $=\mathrm{D} 13.11$
15. EEpEqEErEEEsrtsEptq = D7.10
16. EEEEpEqEEErqprsEtEuEEEvusvt $=\mathrm{D} 15.10$
17. EEEpqErEEEsrqsp =D16.1
18. EEEEpqrpErq =D17.1
19. EpEEqEprErq $=\mathrm{D} 14.18$

This is Meredith's axiom (5).
From the results above we prove that (8) and (10) are single axioms for EC using the notion of a dual.

The dual α^{d} of a formula α is defined as follows:
(i) $\alpha^{\mathrm{d}}=\alpha$ if α is a variable,
(ii) $\alpha^{\mathrm{d}}=E \gamma^{\mathrm{d}} \beta^{\mathrm{d}}$ if $\alpha=E \beta \gamma$.

Lemma α is an axiom for EC with ordinary detachment iff α^{d} is an axiom for $\mathbf{E C}$ with reverse detachment.

Proof: It is easily seen that β is derivable from α by ordinary detachment iff β^{d} is derivable from α^{d} by reverse detachment. Since β belongs to EC iff β^{d} belongs to EC, this proves the lemma.

From the lemma, $(8)=(11)^{\text {d }}$ and $(10)=(9)^{\text {d }}$ are axioms with reverse detachment. We show that from each of (8) and (10) with ordinary detachment we may deduce reverse detachment.

We start with (8), $E \alpha \beta$ and β :

1. EEpqErEEqrp
2. $E \alpha \beta$
3. β
4. EpEEEqEErqspEsr
= D1.1
5. EEEpEEqprEsEEEtEEutvsEvuErq
= D4.4
6. EEEpEqErprq
= D5.1
7. EpEEqpEErEqEsrs
= D1.6
8. EEp $\beta E E q E p E r q r$
= D7. 3
9. $E E p E \alpha E q p q$
= D8.2
10. α
= D6.2
and derive α, i.e., reverse detachment holds.
We start with (10), $E \alpha \beta$ and β :
11. EEEpEqrrEpq
12. $E \alpha \beta$
13. β
14. EpEqErEpErq = D1.1
15. EEpEqErEpErqEsEtEuEs Eut
= DDDD4.4.4.4.4
16. EEpEpqq
= D1.5
17. $E p E q E p q$
= D6.4
18. EEpEqEpqE $\alpha \beta$
= DD7.7.2
19. $E \beta \alpha$
= D1.8
20. α
$=\mathrm{D} 9.3$
Thus (7)-(11) are single axioms for EC with ordinary detachment.
3 (6) with ordinary detachment The matrix

* | E | 0 | 1 | 2 |
| :--- | :--- | :--- | :--- |
| 0 | 0 | 2 | 1 |
| 1 | 1 | 0 | 2 |
| 2 | 2 | 1 | 0 |

satisfies (6) but does not satisfy (1). Thus (6) is not a single axiom for EC with ordinary detachment.
4 (1)-(11) with reverse detachment By the lemma and since (8) ${ }^{d}-(11)^{d}$ (i.e., (11), (10), (9), and (8)) are single axioms with ordinary detachment, (8)-(11) are single axioms for EC with reverse detachment. Similarly (4) $=(4)^{d}$ is an axiom under either ordinary or reverse detachment as proved by Meredith [4].

It may be shown that EEPpEqq is not derivable from (1) ${ }^{d}-(3)^{d},(5)^{d}-(7)^{d}$ by ordinary detachment (this may be verified by hand calculations for (1) ${ }^{d}$, $(3)^{d},(5)^{d}$, and (6) ${ }^{\text {d }}$, but for (2) ${ }^{\mathrm{d}}$ and (7) ${ }^{\mathrm{d}}$ has been verified only by computer). Hence none of these is an axiom for EC with ordinary detachment. Thus none of (1)-(3), (5)-(7) is a single axiom for EC with reverse detachment.

REFERENCES

[1] Łukasiewicz, Jan, "Der Aquivalenzenkalkül," Collectanea Logica, vol. 1 (1939), pp. 145-169. English translation in [3], pp. 88-115 and in [2], pp. 250-277.
[2] Łukasiewicz, Jan, Jan Łukasiewicz: Selected Works, ed. by L. Borkowski, NorthHolland Publishing Co., Amsterdam (1970).
[3] McCall, S., Polish Logic, 1920-1930, Clarendon Press, Oxford (1967).
[4] Meredith, C. A., and A. N. Prior, "Axiomatics of the propositional calculus," Notre Dame Journal of Formal Logic, vol. IV (1963), pp. 171-187.
[5] Prior, A. N., Formal Logic, 2nd ed., Clarendon Press, Oxford (1962).

The University of Auckland Auckland, New Zealand

