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Model Structures and Set Algebras

for Sugihara Matrices

CHRIS MORTENSEN

1 Introduction Since the work of Lemmon on modal algebras [2], [3], it
has been known that there is a close relationship between relational model
structures, set algebras, and matrices. The type of result which Lemmon estab-
lished was to show how to construct a modal set algebra given a modal model
structure, or a model structure given an algebra, in such a way that validity
in the algebra coincides with validity in the model structure.

The extension of Lemmon's type of result to various cases of relevant
algebras and relevant model structures associated with relevant logics has been
studied by Brady in [6], by Routley and Meyer in [5] and [6], and by the
author in [4] and [6]. The purpose of this paper is to report results connecting
model structures and set algebras for the Sugihara matrices, and in particular
for two infinite Sugihara matrices, both of which are characteristic for the
important logic RM. The Sugihara matrices, or chains, and the logic RM are
investigated in Anderson and Belnap's [1]. To date, no semantics for RM has
been given which uses only a single relational model structure. This paper
provides such a semantics. Earlier results, for example in [6], of such theorems
connecting particular relational model structures and particular set algebras
have been exclusively for finite cases of such algebras. The present result is new
in that it is the first such example of an infinite algebra and model structure.

2 Sugihara matrices, algebras, and model structures Let / be the set of
integers i. . ., - 2 , - 1 , 0 , 1 ,2 , . . .}, and let / + = / U {+co,-co(. The ordering
< e on /+ , called the extensional ordering, is defined to be the natural ordering
on / together with the proviso that for x e /, -co <x <+co. The intensional
ordering, <,-, on I+ is defined by x </ y if either \x\ <e \y\ (where |—co| = +co),
orx = -y a n d x < e 0 . Letsg= bc:x e / & \x\ <e n + 1!, and let sn = s%- {0!. The
Sugihara matrices are quintuples <Z, v, ~,-*, &) where: (a) Z is /+ , / + -[0!, /,
/ - SOi, s^, or sn\ (b) x v y = max lx,y\ relative to <e; (c) ~x = the numerical
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negative of x, and ~0 = 0; (d) x^-y is defined by: if x < e y then x^-y-
~xvy, otherwise x-+ y = ~(x v ~y)', and (e) ff (the set of designated ele-
ments) = \x: -1 <ex\. If 2 = s£ or sn, we describe the matrix as a finite or
finite normal Sugihara matrix respectively, and denote it by 5° or Sn. If 2 = /
or / - {01, we call the matrix the infinite or infinite normal Sugihara matrix
respectively, and denote it by 5° or 5. If 2 = /+ or /+ - {01, we call it the com-
plete infinite or complete infinite normal Sugihara matrix respectively, and
denote it by 5°, or 5W.

We now define our language L to consist of a denumerable number of
proposition letters, closed in the usual way under v, ~, and ->. Capital letters
from the front of the alphabet function as metalinguistic variables. A & 5,
A © B, and A O B are abbreviations of ~(~i4 v ~5), ~A -> B, and ~(A -> ~5),
respectively. A function V: L -> 2 is an 5° valuation (or 5W, 5°, 5, 5^,, 5W

valuation, depending on choice of 2) iff V satisfies V(A v B) = F(̂ 4) v F(5),
K(~4) = ~F04), and F(X ~> B) = V(A)-> V(B). (Note that the left hand side
connective in these equations is the propositional operator. The right hand
side connective is the algebraic operator.) A formula A is 5° valid (or Sn) etc.,
valid) (written, as usual k=pA, etc.) iff for all S% valuations (or Sn, etc., valua-
tions) V, V(A) e &. n

Let^° = ir,r*,a1 ,af . . .1 and let ^S= lT9T*9ahaJ9. . ., an^a^xl Then
a pair (A", i? >, where K = K° (or K% for some «) is the Sugihara model structure
(or a finite Sugihara model structure), denoted by S° (or 5j}), iff: (a) the ele-
ments of AT are distinct, and * is a function *: K0^- K° satisfying a** = a for all
a e K°; (b) R is a ternary relation on K°\ and (c) if we let . . . <af-l < . . . <
at < T * < 7 T < a 1 < . . . <# ,_ !< . . . and let a<b iff a<b or a = 6, then /*
satisfies (Va6c e K°) (Rabc iff (3d)(a < d and 6 < d* and d < c) or (a < 71 and
Z? < c) or (a < r and b < c) or (a < Z? = c) or (b = c < a*). To obtain the normal
and //mfe normal Sugihara model structures, S and 5W, set r = T* in 5° and
5^ respectively. A function /: LxK°^> {1,0} is an interpretation on a Sugi-
hara model structure <£,/*> iff / satisfies: (a) UrA.a) = 1 iff I(A,a*) i= 1;
(b) I(A vB,a) = 1 iff either 7(4,a) = 1 or 7(5,fl) = 1; (c) I(A-+B,a) = 1 iff
(VZ?c) (not all of Rabc and I(A,b) = 1 and 7(5, c) =£ 1); and (d) if a<b and
7(4,0) = 1 then 7(̂ 4, b) = 1. A formula 4 is valid on S° (or 5S, S, Sn) iff for all
interpretations I on 5° (or S% etc.), 7(̂ 4, T) = 1.

If (K9R) is a Sugihara model structure, we define the associated Sugihara
(set) algebra to be the quintuple <£/,v, %->•,£» where: (a) £/C <p(K) (the
power set of K) is such that if a e x e U and a < fe then Z? e x; (b) v is set
theoretic union; (c) a e ~x iff a* j x; (d) a e x -+ y iff (Vbc) (not all of Rabc
and 6 ex and c ^ ) ; and (e)xef l iff Tex. For <£,/?> = S°, SS, 5, §, we call
the associated algebra the Sugihara algebra, finite Sugihara algebra, normal and
finite normal Sugihara algebras, respectively, and denote them by 5°, 5j}, S, and
§,, respectively. A function ^ : L -^5° (or 5^, etc.) is called an assignment on
5°, etc., iff Os(A vfl)= ^ ( 4 ) v ^ (5 ) , ^(-^1) = ^O^(A) and ^(^4 ->5) =
fl/(A)-+ Cb(E). A formula 4̂ is £p-valid or (SJJ valid, etc.) iff for all assignments
Ct/ on 5° (etc.), O/(A)eD.

3 Results The main result reported in this note is that validity in a Sugi-
hara model structure, in its associated set algebra, and in an appropriately
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chosen Sugihara matrix all coincide. Proof of these facts is quite long, and is
given in full in [4]. Here only the main steps are sketched. We begin by noting
that part of the result, namely the connection between the model structures
and their associated set algebras, is a more-or-less immediate consequence of
the general connection between model structures and set algebras established
by Routley and Meyer in [5]. Thus:

Theorem 1 t= A iff ^ A, for X = 5°, S°, S, or Sn.
si. X.

We proceed to connect the set algebras with the matrices. We note an
important preliminary fact: that the set algebras in question will all be com-
plete as lattices, since arbitrary set theoretic unions and intersections exist.
But the infinite and infinite normal Sugihara matrices originally investigated
in [1] are not complete as lattices, since they lack maximal and minimal
elements. Naturally, all the finite matrices will be complete. Since we propose
to establish isomorphism between the set algebras and suitable matrices, we
need to complete the Sugihara matrices, hence the complete Sugihara matrices
defined above. It is not difficult to show that validity in the complete matrices
coincides with validity in their incomplete counterparts. Hence we have

Theorem 2 t= A iff 1= A, for X = S°, S.

We now link the complete matrices with the set algebras. Let (2, v,~,
->, jy) be a complete (finite or infinite) Sugihara matrix and (U, v,~,~^,D) a
Sugihara algebra arising from a model structure (K,R). K is either \T, T*,ah

af, . . .! or {T, T*,ax,a^, . . .,an-i,a%-i\. T and 71* may or may not be distinct,
but all other elements are distinct. Let K+ be the set of unstarred elements
of K, including T. Then the natural correspondence f between 2 and U is
defined to be the function / : 2 -> U satisfying: (a) if 0 e 2 then /(0) = K+;
(b) for n > 0, f(n) = K+ u \a%,af, . . . a*_2! (where ao= T)\ and (c) for n < 0,
f(n) = K+-{a0,ah...,an-1\.

Theorem 3 f is a 1-1 correspondence, and x e JJ ifff(x) e D.

Theorem 4 f{~A) = ~f(A)J(A v B) =f(A)vf(B).

The proofs of these two theorems are straightforward adaptations of the
general results of Routley and Meyer [5].

Theorem 5 f(A-+B)=f(A)-+ f(B).

In order to establish Theorem 5, we need some lemmas.

Lemma 1 / / (K, R) is a Sugihara model structure, Rabc iff Rac*b*.
Lemma 2 In any Sugihara algebra, x -+ y = ~y -* ~x, and x & y - x n y.
Lemma 3 In any Sugihara model structure, Raa*a.
Lemma 4 In any Sugihara model structure, Rabc entails (a < c or b < c)
and (a<c or a <&*).
Lemma 5 In any Sugihara algebra (U, v, ~,->,Z» if b 4 x e U and a<b
then a 4 x.
Lemma 6 / / / : 2 -* U is the natural correspondence between a Sugihara
matrix and algebra, then x < y (numerically) iff fix) ^ f(y).
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In view of Lemmas 2 and 6 and the definition of v and -> in Sugihara
matrices, viz., if x <y then x -+ y = ~x v y and otherwise x -+y = ~x &^, it
suffices to prove Theorem 5 if we can prove the following for any Sugihara
algebra: if x C y then X - > J = ~ J C U J ; , and if y C x then x -> y = ~x n >\ We
split the proof into two parts and, in turn, divide each of these in two.

1. Ifx^y thenx ->y ~ ~x Uy.

1.1 If x Qy and a 4 x ^ y then a 4 ~x u ^ - Assume the antecedent. Now
a 4 ~x U ̂  iff 0 ^ ~x and a ^ >>. So we need to prove that a 4 ~x and a 4 y> We
prove first that a 4 y- Since a 4 x ~+ y, (3b, c) (Rabc & b e x & c 4 y)> By Lem-
ma 3, Rabc implies a < c or b < c. If # < c and c ^ >> then by Lemma 5, a 4 y>
Now c4y9 so by Lemma 5 bty. But x^ .y , so Z?^x, contradicting bex.
Hence not b < c, so a < c, so <z $f >> as required.

We note now that x ? j ; implies ~y C ~x. Also by Lemma 2, x ^ > ; =
~ j ; -> ~x. Thus from the assumption of the antecedent we have ~y Q ~x and
a 4 ~y ~^ ~x. So by a similar argument to the one just given, a 4 ~x.

1.2 If x^y and a 4 ~x Uy then <z^x->>\ Suppose the antecedent.
As in 1.1, we need to prove that a4~x and a4y implies a 4x -*y. Now
a 4 ~x implies a* e x. By Lemma 3, Raa*a. So Raa*a and a* e x and 0 ff j>.
Hence a ^x -*y.

2. If ^ C x thenx -+ y = ~x H y.

2.1 If .y C x and a ^ x -> j then a ^ ~x n >>. Suppose the antecedent.
We need to prove a 4 ^x C^y, i.e., a 4 ~x or a 4 y- Since a 4 x ^ y, for some
Z?, c we have ifafrc and 6 e x and c 4 y* Now by Lemma 4, Rabc implies a < c or
a <b*. If a <c then, since c ff j>, by Lemma 5 a ^ ~>>; so that a 4 ^x or a 4 y-
Hence, suppose instead a < b*. Now b e x, so b* 4 ~x. So by Lemma 5, a ^ ~x;
so that a 4~xora4y>

2.2 If y C x and ^ ^ H } ; then a 4 x^ y. Now a ^ ~x n ,y iff a 4 ~x or
fl ̂ . So we need to prove both a 4 ~x implies a 4 x -+ y and a 4 y implies
a 4 x -+ y. Suppose first a 4 y- Now y C x, so not every world is in >>. Select the
largest world relative to < not iny. Denote it by b\ i.e., b 4y> Now a 4y and b
is the largest world not in y, so a < Z>. By the third disjunct of the definition of
R, viz., a<b = c, we can thus have .Ra&Z?. But we must also have b e x, because
when we construct members of the set algebra we make such sets of worlds
progressively larger by adding the largest of the remaining nonmembers. If
we add any smaller member than the largest nonmember of y to y then by
Lemma 5 we must also add the largest: members of the algebra are closed
upwards under <. So since b is the largest nonmember of y, b is in every
proper superset of y. But y C x, so b e x. Thus Rabb and b e x and 6 ^ 7 .
So a 4 x -+ y.

Now let a 4 ~x. Since y C x, ~x C ~y. Hence, by an identical argument
to the one just given, a 4 ~y ~* ~x. But ~y -* ~x = x -* y. Thus, a 4 x -> j>.

From the preceding theorems it follows that the natural correspondence /
is an isomorphism which also preserves designated elements. Hence validity
in the various Sugihara matrices coincides with validity in the various complete
Sugihara set algebras. Combining this with Theorems 1 and 2, we have:



SUGIHARA MATRICES 89

Theorem 6 The following statements are equivalent:

(I) i=A (2) I=A (3) \=A.
^n An £n

The following are equivalent:

(4) \=A. (5) \=A. (6) 1=4.
^w 2n £n

The following are equivalent:

(7) \f0A. (8) 1^/1. (9) ^A. (10) IpA

77ze following are equivalent:

(II) 1=4. (12) 1=4. (13) 1=4. (14) 1=4.

4 Concluding remarks We conclude with some observations on the con-
nection between model structures and matrices. The connection between
syntax and semantics for a logic is in a sense prima facie mysterious. Some
of the mystery can be removed by showing that syntax and semantics are
different sides of the same coin. Several ways of doing this are current in the
literature. The Lindenbaum algebra, a linguistic construction, links algebraic
semantics with syntax. Similarly, the canonical model links worlds semantics
with syntax; and tableau constructions can be semantically or alternatively
proof theoretically oriented, the difference in some cases being difficult
to discern. In addition to the syntax-semantics link, connections between
different semantics for the one logic are worth making, else we might wonder
why different kinds of semantics characterise the one logic. Theoretically this
might be done via the syntax, but it is always worth making the connection
directly, especially if we wish to remain open on the doctrine that semantics
can be genuinely explanatory rather than covert syntax. A matrix is a puzzle:
how does it arise to characterise a logic? One important aspect of Lemmon's
work, developing as it did from Stone's representation theorem for Boolean
Algebras was to show that matrices characterising modal logics are algebras and
can be viewed as deriving from model structures. If we regard, as many have,
the worlds semantics as explanatory of modal logics, Lemmon's results thus
provide an explanation of algebraic semantics and matrices of those logics.

The present results can be viewed along these lines. The connection
between the worlds semantics and the complete Sugihara matrices via the
Sugihara set algebras 'explains' the matrices, by allowing them to be seen as
transformations of worlds structures. This raises several questions, however.
One is, from whence the incomplete Sugihara matrices S° and S, which are not
isomorphic with any of the set algebras? The answer is that RM has a certain
compactness feature, in that for purposes of validity of a particular formula
we only need consider a finite Sugihara algebra, and the union of all such is
incomplete as a lattice. It follows that the hope of showing all matrices to be
explicable in the direct way indicated above is unwarranted. Nevertheless,
large classes of matrices have proved themselves, to be amenable to this treat-
ment. If we adopt this view of 'explanation', we can conclude that there is a
sense in which the 'real' Sugihara matrices are those explained directly in
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terms of worlds structures, namely those with maximal and minimal elements
i+co, -oo\. We can also conclude that, in looking for explanations of matrices,
none of those which lack maximal and minimal elements, indeed which are
incomplete as lattices, are directly so explicable.

Another question is how we manage to deal with algebraic structures such
as chains, using as we do an essentially Boolean power-set construction on the
set of worlds. The answer is that the so-called Hereditary Condition in the
Routley-Meyer worlds semantics for relevant logics forces a collapse of certain
elements in the power set algebra on the set of worlds, and thus generates
non-Boolean set algebras. On these matters see Mortensen [4] and Routley and
Meyer [5].
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