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Some Remarks on (Weakly)

Weak Modal Logics

R. E. JENNINGS and P. K. SCHOTCH*

The weakest modal logics have not come in for much attention from
logicians or philosophers principally, it seems, because they are supposedly
incapable of supporting interpretations of much philosophical succulence.
But from the point of view of general semantic theory they deserve more
attention than they get, for it is only by a study of weak modal logics that
we come to appreciate many of the limitations of the now standard seman-
tical methods. A multitude of examples bears this out. In the theory of first-
order definability in modal logic valuable insights would have been lost had
we restricted our attention to extensions of S4. The McKinsey formula Mo,
DOp -> ODp, is characterized by a first-order condition on transitive binary
relations, but KM0 is not defined by any first-order condition. Similarly,
looking to logics weaker than K reveals limitations of first-order definability
which would otherwise go unnoticed. Here it is that we see that while D,
Dp -> Op, and G, ODp -» DOp, are definable in a first-order language with
a single binary predicate, neither is definable in a first-order language with a
single ternary or n-ary (n>3) predicate (see [3]).

Furthermore, weak modal logics preserve philosophically significant
distinctions which are lost in stronger logics. If a proposed interpretation
requires even so obvious a distinction as that between Con, ~1D1, and D,
Dp -> Op, or that between D\ D(Dp -> Op), and £>*, DDp -> DOp, then a
logic weaker even than K is required. These two facts are not unrelated. Taken
together they amount to this: formulas like D and G are first-order definable
only if we restrict ourselves to a first-order language so crude that it cannot
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make distinctions of obvious philosophical significance. Any first-order lan-
guage sensitive enough to do justice to those elementary distinctions is a
language in which these formulas are not definable.

Nor are the present authors the first to feel this concern. H. MacColl,
C. I. Lewis, and H. B. Smith, all important early figures in modern modal
logic, were eager to develop modal logics which preserved a maximum number
of modal and other distinctions. In light of the concerns of those pioneers,
the recent (post-Kripke) concern with reduction principles in strong modal
logics seems a mere fad. C. West Churchman, a student of Smith, put the
matter admirably in an analogy which cuts against the claims of those who
suppose that T (Up -> p), B (p -> DOp), S4 (Dp~» UUp), S5 (Op -» DOp)
represent crucially important intuitions about necessity. Following Church-
man's account, the usual informal motivation for the adoption of some fairly
strong set of modal reduction principles may be put in this way:

Most of us have some intuitive understanding of expressions like "Da"
and "Oa", perhaps even of those like "DDce", "DOa" and "ODcx". Those
with highly developed modal intuitions may indeed even be able to
fathom expressions of the form "ODOa". However not even those with
the most exquisite modal sensitivity can dredge up intuitions which
answer to something like "D42O19n23O98a". We may go further: not only
does nobody have any intuitions about such expressions, modal assertions
of any but the most unassuming complexity are counterintuitive. Since
nothing comprehensible can be expressed by such assertions we should
take care to see that their content reduces to exactly that of some more
comprehensible one. That is, we must ensure that complex iterations of
modal operators are logically equivalent to simpler iterations or perhaps
even to uniterated modalities. Since it can be shown that the principles
which accomplish such a reduction are consistent, nothing stands in the
way of carrying out this programme which so recommends itself to our
intuitions.

Compare this informal line with the following one:

Every successful student of the calculus has an intuitive understanding

of expressions like: -r and -j-f since we have all had experience of

their physical counterparts, viz., velocity and acceleration. However our
intuitions drop off very sharply after this. Many perhaps can appreciate,
at some intuitive level, the notion of a change in the rate of acceleration,

"d 3 / "
i.e., -7-3 > while those capable of extremely abstract thought may indeed

"dV"
find some way of making a useful distinction by means of -7-4 . However

d87f "
even the most sophisticated must find an expression like -77^ com-
pletely bewildering. In order to avoid what are, in effect, contentless
assertions we ought to introduce into our analysis a restriction to the
effect that all higher-order derivatives are equal to some sufficiently
lower-order derivative, i.e., we must require something along the lines
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-dnf df dnf d2f dnf d3f, „ c . , , . , .
of -7-pj- = -77 or -j-n = -7~2 or -fjn = ~n% for all n. Since such a restriction may
be shown to be consistent this approach will do much to free mathe-
matical analysis from its overly abstract and counterintuitive elements.

Of course this last proposal would be universally scorned by working
mathematicians. It would so restrict the class of functions appropriate to
mathematical analysis that most of modern mathematics would collapse. The
moral here is that an intuitive understanding of our formal machinery is both
admirable and desirable but, after all, the function of formal theories is to
extend beyond the realm of the intuitive. By insisting upon staying always
within sight of intuitions, be they linguistic or physical, we lose the ability
to make crucial distinctions. Crucial, that is, for the sake of generality but
perhaps crucial also for the application of the formalism. It is not just mathe-
matics which would suffer upon the advent of naive intuitions of this sort.
Virtually all of the areas in which mathematics finds useful applications would
be similarly impoverished. How can we say then that there do not exist impor-
tant applications of modal logic which would be similarly thrown out if strong
modal reduction principles became universally adopted?

A second related strain of discomfiture also afflicts us. We (modal logi-
cians) have an interest in noting the smallest logics amenable to particular sorts
of semantic analysis. So, for example, we have an interest in E which is deter-
mined by the universal class of neighbourhood or Scott-Montague frames, and
we have an interest in K which is determined by the class of all normal binary
relational frames. E, we could say, is the fundamental logic for neighborhood
semantics and K the fundamental logic for binary relational semantics. It is
for this reason that, for example, Segerberg [5] moves so briskly from the
logic E to the logic K, paying little attention initially to the logic C or other
logics that lie between the two. A quick perusal will show that disregarding
for a moment the fact that E and K are the fundamental representatives of
neighbourhood and binary relational semantics, there are several logics available
to us according as we adopt or reject different principles. The four principles
in question are:

RE f-a«>j3=> \-E\ot<*np
RR ha->]3=> hDa-^DjS
RN h a = » h D a
K hDp A Dq ->D(p A q).

The logics obtained may be seen to form a lattice:

E

A,v
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where E adopts RE; Nq adopts RR; TV adopts RR and RN; C adopts RR and K;
and K adopts RR, RN, and K. Kn represents not one but a countably infinite
sequence of logics in which K is taken to be Kx and each Kn C Kn-l. We have
used generalized relational frame techniques in [4], to analyze, in first-order
language, the sequence Kn of logics weaker than K, a nonmathematical exposi-
tion of which is given in [2]. For present purposes it is sufficient to remark
that Kn is the logic determined by the class of (n + l)-ary relational frames
where the following truth condition is adopted:

F^ Da ^ Vxl9 . . ., xn, uRxl9 . . ., xn *> t= a or, . . ., or \= a.

This result shows, in effect, that for each n > 1, Kn is a fundamental logic for
a kind of semantics in just the sense in which E and K^) are known to be,
viz., that each is determined by an unrestricted class of structures. Here we
concern ourselves with more global features of this sequence of logics. In
particular, we show that the logic TV defined above appears as the limit of
this sequence.

Locale frames A locale frame is a pair <? = {U,JL) where U =fc <p and JL\

U-+22 satisfies the condition:

[Minimality] Vue U,VaCU,ae £(u) =>Vb,b Ca=> b 4 Z(u).

JL(u) is called the family of locales ofu.

Models on locale frames A locale model is a pair Tfi/ - (^,V) where ^
is a locale frame and V.At -> 2" is an assignment to atomic formulas. Truth
conditions for PC formulas are classical and for formulas of the form D]3:

1= Dj3 o 3a e £{u):a C | | /3 | |^ (where \\fL\\*" = \xeU:t= /3j).

Note on locale semantics The minimality condition on -£(w) together with
the truth condition for modal formulas make locale semantics distinct from
neighbourhood semantics. To illustrate this we remark that the neighbourhood
frame restriction associated with the logic K is that each neighbourhood family
forms a filter. By contrast, the corresponding locale frame restriction is that
each locale family contains exactly one element. In view of the specific ends
of this study, in what follows we consider only locale frames in which every
locale family is nonempty. The most general account of locale frames would be
one in which this restriction is not observed and in which, consequently, RN
fails to preserve validity. We call this restriction the normality condition.

Theorem 1 N is determined by the class of all normal locale frames.

Proof: The proof follows from the following two lemmas.

Lemma 1.1 N is sound with respect to the class of all normal locale frames.

Proof: Trivial.

Lemma 1.2 N is complete with respect to the class of all normal locale
frames.
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Proof: By a Henkin construction.

The canonical locale model The canonical locale model Th/i of a modal

logic L is a triple:

where Ui is the set of all L-maximally consistent sets, and Vi, the canonical
assignment, is given by Vi(pn) = \pn\i where \pn\i is the set of all L-maximally
consistent sets containing pn.

The definition of JLi requires some preliminary definitions. Initially, we
define X(u) for each u e UL:

X(u) = {\a\L: D a e M I .

We note that X(u) is partially ordered by set inclusion. A maximal chain C in
(X(u))2 Pi C is a totally ordered subset of X(u) of which no proper superset is
a totally ordered subset of X(u). Clearly,

U \Ci:CiCX(u)\=X(u).

iel

We now define ^L(u) by:

JLL{U) = {nC:<p * C C X(u)l

We shall have shown completeness when we have shown that for any natural
modal logic L,

F ^ a o ae u.

The proof is by induction on the length of a. For a of length /, the theorem
holds by the definition of VL, We prove only the hard direction of the induc-
tive step for a of the form Dj3.

Suppose that 1 = D|3. Then 3aeZ(u):a C ||jS||^L. By the hypothesis of
induction, 3a e JL(u)\a C \fi\L. But a = OQ for some totally ordered subset Q
of X(u). So we may infer that [7: ID7 e u & \y\i e Ct\ Ij |3 and, therefore, that
for some finite subset S71, . . ., yn\ of that set,

fe"7i A. . . A7,,-*j3.

But the set {I7/I/J is itself totally ordered by inclusion and yx, . . ., yn may

therefore be ordered in some such way for each yj, \£ 7y ->• 7/+1. Then there
is some yk -> yx A . . . A yn. Therefore, \j; yk -• /3. By RR, (̂  D7^ -> DjS. But
D7^ e u. Therefore D]3 e u. This completes the proof.

We are now in a position to prove the main result of this essay, which answers
a question of Hans Kamp's.

Theorem 2 N is the intersection of the Kn logics.

Proof: This result is obtained from the following two lemmas.
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Lemma 2.1 7VC f| £..

/eN

Proof: Trivial.

Lemma 2.2 f l Kt C # .

Proo/: Since TV is determined by the class O\j^ of all normal locale frames
and for each / e N , K\ is determined by the class Ot of all relational frames of
rank /, it suffices to show that fe?r OL ^ ^r oc for some /. This we show by

induction on the length of a, once more proving only the inductive step for
a of the form D/3.

Let |5| for a well-formed formula 6 designate the set of variables of 6.
Let card|Dj3| = n. Now suppose that for some point x and some locale model

7ft/ = <£/,/., V), we have t= D/J. We define an n-rank relational model 7ft/' =
(U'.R.V) as follows:

(/' = £/ and F ' = V.

R C Un+1 is defined in terms of its corresponding function r as follows: for
each u e U, r(u) is the union of Cartesian products of elements (£(u))n. That
is, <*!, . . ., xn) e r(u) <* (xu . . ., xn) e \ \ (fli, . • •»««) for some (au . . ., flw) e

(^(w))w. Finally, w^Xj .. ,xn<> <xu . . ., xn) e r(u). Clearly,

Make the assumption. Then Ma e •£(*), 3y $a:y e | |j3||^. Then 3^i, . . .,yn:

xRyx ...yn&yit HPII^' & . . . & ̂  ^ l i p f . Therefore ^ D j S .
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