Does IPC Have a Binary Indigenous Sheffer Function?

HERBERT E. HENDRY

The question is whether there is a binary function * such that: (1) each of the intuitionist functions \sim , &, v, and \supset is definable in terms of * (i.e., * is a Sheffer function for { \sim , &, v, \supset }), and (2) * is definable in terms of \sim , &, v, and \supset (i.e., * is indigenous to { \sim , &, v, \supset }).¹ The answer is: No.

The proof that follows will make reference to the Gödelian three-valued system G_3 , G_3 is determined by the following tables²:

		&			v			\supset		~
	Т	Ι	F	Т	Ι	F	T	Ι	F	
T	Т	Ι	F	Т	Т	T I F	Т	Ι	F	F
Ι	Ι	Ι	F	Т	Ι	I	Τ	Т	F	F
F	F	F	F	T	Ι	F	T	Т	T	T

with T as the designated value. It is easily verified that all theorems of the intuitionist propositional calculus (*IPC*) are tautologies of G_3 . (The converse does not hold.)

Assume for a contradiction that * is an indigenous Sheffer function for *IPC*. Then, there is some formula *D* containing no connectives other than \sim , &, v, and \supset such that $(p * q) \equiv D$ is a theorem³ of *IPC*. It follows that $(p * q) \equiv D$ is a tautology of G_3 . Thus * is an indigenous Sheffer function for G_3 . Consider the matrix that defines *:

*	T	Ι	F_{-}
T	$\begin{array}{c} \alpha_1 \\ \gamma_1 \\ \alpha_3 \end{array}$	γ_2	α_2
I		β	δ_2
F		δ_1	α_4

Received January 7, 1980

{*T*, *F*} is closed under the G_3 -functions. So α_1 , α_2 , α_3 , and α_4 must each be classical. When only classical values are involved \sim and & behave exactly as do their classical counterparts. But { \sim , &} is functionally complete in classical logic. Therefore, α_1 , α_2 , α_3 , and α_4 must agree with the values of one of the two Sheffer functions \downarrow and \mid for classical logic. So the matrix for * must be one of the following:

*	T	Ι	F			Ι	
T I F	$F \\ \gamma_1 \\ F$	γ_2 β δ_1	$F \\ \delta_2 \\ T$	T I F	$\begin{vmatrix} F \\ \gamma_1 \\ T \end{vmatrix}$	$\gamma_2 \\ \beta \\ \delta_1$	$ \begin{array}{c} T \\ \delta_2 \\ T \end{array} $

 G_3 has only six singulary functions:

р	$\sim p$	$\sim \sim p$	$(p \& \sim p)$	$\sim (p \& \sim p)$	$(p \lor \sim p)$
\overline{T}	F	Т	F	Т	Т
Ι	F	Т	F	Т	Ι
F	Т	F	F	Т	Т

This can be verified by observing that the result of applying any one of \sim , &, v, and \supset to these six functions is itself one of the six functions. It follows that $\beta = F$. For otherwise (p * p) would not be a G_3 -function. So the matrix for * must be one of the following:

In either event $\sim p = (p * p)$. Assume that M_1 is the matrix for *. Then no one of $\gamma_1, \gamma_2, \delta_1$, and δ_2 can be *I*. For, if $\gamma_1 = I$, $(p * \sim p)$ is not a G_3 -function. If $\gamma_2 = I$, $(\sim p * p)$ is not a G_3 -function. If $\delta_1 = I$, $(\sim p * p)$ is not a G_3 -function. And, if $\delta_2 = I$, $(p * \sim p)$ is not a G_3 -function. Thus $\gamma_1, \gamma_2, \delta_1$, and δ_2 are classical, and * never assumes the value *I*. It follows that * cannot be a Sheffer function for G_3 . Thus M_2 must be the matrix for *. Then, $\gamma_1 = \gamma_2 = F$. For, if γ_1 is either *T* or *I*, $(p * \sim p)$ is not a G_3 -function; and if γ_2 is either *T* or *I*, $(\sim p * p)$ is not a G_3 -function. Neither δ_1 nor δ_2 can be *F*. For, if $\delta_1 = F$, $(\sim p * p)$ is not a G_3 -function; and if $\delta_2 = F$, $(p * \sim p)$ is not a G_3 -function. Thus the matrix for * is narrowed down to:

where δ_1 and δ_2 are either T or I. δ_1 and δ_2 can't both be T. Otherwise * would never assume the value I. This leaves just three alternatives: (1) $\delta_1 = T$ and $\delta_2 = I$, (2) $\delta_1 = I = \delta_2$, or (3) $\delta_1 = I$ and $\delta_2 = T$. Consider now two rows of the truth table for $(p \supset q)$:

$$\begin{array}{c|cc} p & q & (p \supset q) \\ \hline T & I & I \\ I & I & T \end{array}$$

It can easily be verified that no one of the remaining three alternatives is sufficient to define a function that agrees with $(p \supset q)$ in these two rows. More specifically it can be verified that the only functions definable in terms of the remaining candidates must agree with the values of one of $p, q, \sim p$, or $\sim \sim p$ in these rows. Thus $(p \supset q)$ cannot be defined in terms of *, and, contrary to our assumption, * is not a Sheffer function for $\{\sim, \&, \lor, \supset\}$. QED

The relationship between the Gödelian systems and IPC is the following:

 $IPC \subset \ldots \subset G_n \subset G_{n-1} \subset \ldots \subset G_3 \subset G_2 \subset G_1$

where G_2 is classical two-valued logic, and G_1 is the "system" having all wellformed formulas as tautologies. The only feature of *IPC* that was appealed to in the above proof was that *IPC* \subset G_3 . So the same argument shows that where n > 3 there is no indigenous binary Sheffer function for G_n .

Even though *IPC* has no indigenous binary Sheffer function, the question of how $\{\sim, \&, \lor, \supset\}$ might be replaced by a more economical set of primitives still arises. McKinsey [4] has proved that $\{\sim, \&, \lor, \supset\}$ is not redundant, i.e., that no one of its members can be defined in terms of the others.⁴ Thus economy cannot be obtained by mere deletion. Still, some economies are possible, for & and \supset can be replaced by \equiv . The proof is as follows: $(p \supset q) \equiv$ $[q \equiv (p \lor q)]$ and $(p \& q) \equiv [(p \equiv q) \equiv (p \lor q)]$ are both theorems of *IPC*. Thus $\{\sim, \&, \lor, \supset\}$ may be replaced by $\{\sim, \lor, \equiv\}$. What further economies are available is an open question.

NOTES

- 1. See [3] for more on the concept of an indigenous (vs alien) Sheffer function.
- 2. *T*, *I*, and *F* are used rather than 1, 2, and 3 in order to facilitate comparison with classical two-valued logic. G_3 is the third system in the Gödelian sequence G_n where the elements of G_n are 1, ..., *n* with 1 designated and the operations \sim , &, \lor , and \supset are so defined that: $\sim i = n$ if $i \neq n$; $\sim i = 1$ if i = n; $(i \& j) = \max(i, j)$; $(i \lor j) = \min(i, j)$; $(i \supset j) = 1$ if $i \ge j$; and $(i \supset j) = j$ if i < j. See [1].
- 3. $(p \equiv q) = [(p \supset q) \& (q \supset p)].$
- 4. Although there can be little doubt concerning the soundness of McKinsey's proof, his characterization of that proof is defective. See [2].

REFERENCES

 Gödel, Kurt, "Zum intuitionistischen Aussagenkalkül," Anzeiger der Akademie Wissenschaften Wien, mathematisch, naturwissenschaftliche Klasse, vol. 69 (1932), pp. 65-66.

HERBERT E. HENDRY

- [2] Hendry, H. E., and A. M. Hart, "Some observations on a method of McKinsey," Notre Dame Journal of Formal Logic, vol. 19, no. 3 (1978), pp. 395-396.
- [3] Hendry, H. E., and G. J. Massey, "On the concepts of Sheffer functions," pp. 279-293, *The Logical Way of Doing Things*, ed., K. Lambert, Yale University Press, New Haven, Connecticut (1969).
- [4] McKinsey, J. C. C., "Proof of the independence of the primitive symbols of Heyting's calculus of propositions," *The Journal of Symbolic Logic*, vol. 4 (1939), pp. 155-158.

Department of Philosophy Michigan State University East Lansing, Michigan 48824