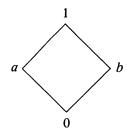
Notre Dame Journal of Formal Logic Volume 26, Number 1, January 1985

Principal Congruences of Tetravalent Modal Algebras

ISABEL LOUREIRO*

Abstract We show that tetravalent modal algebras form a discriminator variety. Consequently, we obtain a characterization for congruences and mainly for principal congruences.

1 Discriminator variety T and congruences We begin with the four-element algebra S_4 (there is no connection with the modal system S_4 of Lewis and Langford) of type (2,2,1,1,0). Its operations are the two lattice operations \land, \lor on



with the two unary operations:

x	0	а	b	1
~ <i>x</i>	1	а	b	0
∇x	0	1	1	1

*I am grateful to the referee for his valuable remarks.

Received November 4, 1983; revised March 14, 1984

and the nullary operation 1. For convenience, we also consider the term $\Delta x = -\nabla - x$.

This algebra is a De Morgan algebra (i.e., a bounded distributive lattice with a De Morgan negation ~ verifying $\sim x = x$ and $\sim (x \land y) = -x \lor \neg y$, having one more unary operation ∇ (the possibility) satisfying the identities $\sim x \lor \nabla x = 1$ and $x \land \sim x = -x \land \nabla x$. The variety <u>*T*</u> generated by the algebra S_4 (called Tetravalent Modal Algebras Variety) and some of its properties have been studied in [3].

Now from [2], we recall the notion of the Birula-Rasiowa transformation Φ , that is a mapping from the set of prime filters of a tetravalent modal algebra A, into itself, defined by $\Phi(P) = \mathbf{C} \sim P$, where \mathbf{C} denotes set-theoretical complement and $\sim P = \{ \sim x : x \in P \}$.

If π_0 is a family of prime filters in A, closed under Φ , and we set $a \equiv b \pmod{mod. \pi_0}$ iff for each $P \in \pi_0$, $a \in P \Leftrightarrow b \in P$, then we have that $\equiv (mod. \pi_0)$ is a congruence relation on A and the kernel of the natural homomorphism h from A onto the quotient algebra $A/_{\equiv} = A/_{\pi_0}$ (i.e.: $\{x \in A : h(x) = 1\}$), is the set $N_h = \bigcap_{P \in \pi_0} P$. Moreover, it is not hard to prove that if N is a strong filter in A

(i.e. a filter N verifying $x \in N \Rightarrow \Delta x \in N$), then the family $\pi[N]$ of all prime filters in A, which contain N, is closed under Φ and $N = \bigcap_{P \in \pi[N]} P$.

Now define

$$x \dagger y = [\Delta(x \land y) \lor \neg \Delta(x \lor y)] \land [\nabla(x \land y) \lor \neg \nabla(x \lor y)]$$

and

$$t(x, y, z) = [(x \dagger y) \land z] \lor [\sim (x \dagger y) \land x] .$$

Using some of the identities valid in any algebra $A \in \underline{T}$, the following properties for the operation \dagger can be easily obtained:

 $\begin{array}{ll} (P_1) & x = y \Rightarrow x \dagger y = 1 \\ (P_2) & x \dagger y = y \dagger x \\ (P_3) & x \dagger 1 = \Delta x \\ (P_4) & \Delta(x \dagger y) = x \dagger y \\ (P_5) & \nabla(x \dagger y) = x \dagger y \\ (P_6) & \sim (x \dagger y) \text{ and } (x \dagger y) \text{ are Boolean complements.} \end{array}$

It is not difficult to check that t is the ternary discriminator function on S_4 , i.e., that on S_4 :

$$t(x, y, z) = \begin{cases} z \text{ if } x = y \\ x \text{ if } x \neq y \end{cases}.$$

This means that the algebra S_4 is quasiprimal and thus the variety <u>T</u> is a discriminator variety. From this fact follow many important features of <u>T</u>; for instance, by the famous theorem of McKenzie [4], <u>T</u> has a finite set of equational axioms (an explicit set of six axioms was given in [2]). Moreover, the subdirectly irreducible algebras in <u>T</u> are precisely S_4 and its subalgebras $S_3 = \{0, a, 1\}$ and

 $S_2 = \{0, 1\}$. These are the only directly indecomposable algebras in <u>T</u> and every finite algebra in <u>T</u> is uniquely representable as a product of copies of S_2 , S_3 , and S_4 . Moreover, <u>T</u> is congruence-uniform, congruence-regular, arithmetical, and enjoys the congruence-extension property [5].

Congruence-regularity of \underline{T} will allow us to characterize any congruence of an algebra $A \in \underline{T}$, by means of a family of prime filters in A. Thus, we have:

1.1 Theorem Let
$$A \in \underline{T}$$
 and $\alpha \in Con(A)$. Then we have:
 $\alpha = \equiv (mod. \pi[[1]_{\alpha}])$.

Proof: If $A \in \underline{T}$ and $\alpha \in Con(A)$, it is well known that the class $[1]_{\alpha}$ is the kernel of the natural homomorphism $h: A \to A/\alpha$. By [1], $[1]_{\alpha}$ is a proper strong filter in A. Therefore $\pi[[1]_{\alpha}]$ is a family of prime filters in A, closed under Φ , such that:

(a) $[1]_{\alpha} = \bigcap_{P \in \pi[[1]_{\alpha}]} P.$

On the other hand, we have:

(b)
$$[1]_{\equiv (mod. \pi[[1]_{\alpha}])} = \bigcap_{P \in \pi[[1]_{\alpha}]} P.$$

From (a), (b) and congruence-regularity of \underline{T} , it follows $\alpha = \equiv (mod. \pi[[1]_{\alpha}])$.

2 Principal congruences The main use of the quasiprimality of S_4 will be an analysis of the principal congruence structure on algebras of \underline{T} . We know [5] that for any algebra $A \in \underline{T}$ and any $a, b, c, d \in A$, we have:

$$(c,d) \in \theta(a,b)$$
 iff $t(a,b,c) = t(a,b,d)$.

Using our explicit formula for t, we can now deduce our main result about principal congruences:

2.1 Theorem Let $A \in \underline{T}$, $a, b \in A$. Then:

$$\theta(a,b) = \theta(a \dagger b, 1) \quad .$$

Proof: For the statement, it is sufficient that we have $(a \dagger b, 1) \in \theta(a, b)$ and $(a, b) \in \theta(a \dagger b, 1)$. Then, we must prove:

(I) $t(a,b,a \dagger b) = t(a,b,1)$ (II) $t(a \dagger b,1,a) = t(a \dagger b,1,b)$.

We have:

$$t(a,b,a \dagger b) = [(a \dagger b) \land (a \dagger b)] \lor [\sim (a \dagger b) \land a]$$

= $(a \dagger b) \lor [\sim (a \dagger b) \land a]$
= $[(a \dagger b) \land 1] \lor [\sim (a \dagger b) \land a]$
= $t(a,b,1)$.

Thus, we get (I).

Now we have:

(a)
$$t(a \dagger b, 1, a) = [[(a \dagger b) \dagger 1] \land a] \lor [\sim [(a \dagger b) \dagger 1] \land (a \dagger b)]$$

= $[\Delta(a \dagger b) \land a] \lor [\sim \Delta(a \dagger b) \land (a \dagger b)]$
= $(a \dagger b) \land a.$

Similarly we get:

(b) $t(a \dagger b, 1, b) = (a \dagger b) \land b$.

Let us prove:

(c)
$$(a \dagger b) \land a = (a \dagger b) \land b$$
.

Obviously we have t(a, b, a) = t(a, b, b), since $(a, b) \in \theta(a, b)$. Thus:

$$t(a,b,a) = [(a \dagger b) \land a] \lor [\sim (a \dagger b) \land a]$$

= [(a \dagger b) \langle \sigma(a \dagger b)] \langle a
= 1 \langle a = a = t(a,b,b)
= [(a \dagger b) \land b] \lor [\sim (a \dagger b) \land a] .

This condition implies $(a \dagger b) \land b \le a$ and we get $(a \dagger b) \land b \le (a \dagger b) \land a$. The other inequality is proved similarly and we have (c). Thus, condition (II) holds, which completes the proof.

As a consequence of this theorem, we obtain a description of the class $[1]_{\theta(a,b)}$:

2.2 Corollary Let $A \in \underline{T}$, $a, b \in A$. Then:

$$[1]_{\theta(a,b)} = F[a \dagger b] ,$$

being $F[a \dagger b]$ the principal filter, in A, generated by $a \dagger b$.

Proof: If $x \in A$ and $x \in [1]_{\theta(a,b)}$, then, by the previous result, $(x,1) \in \theta(a \dagger b, 1)$. From this, we get the following equivalences:

 $t(a \dagger b, 1, x) = t(a \dagger b, 1, 1)$ $\Leftrightarrow (a \dagger b) \land x = (a \dagger b) \land 1$ $\Leftrightarrow (a \dagger b) \land x = (a \dagger b) \Leftrightarrow a \dagger b \le x \Leftrightarrow x \in F[a \dagger b] .$

Therefore

$$[1]_{\theta(a,b)} = F[a \dagger b] \quad .$$

Finally, using Theorem 1.1, there follows a characterization of the principal congruence $\theta(a, b)$ by means of an explicit family of prime filters:

2.3 Corollary Let $A \in \underline{T}$, $a, b \in A$. Then: $\theta(a, b) = \equiv (mod. \pi[F[a \dagger b]])$

ISABEL LOUREIRO

REFERENCES

- Loureiro, I., "Homomorphism kernels of a tetravalent modal algebra, *Portugaliae Mathematica*, vol. 39 (1980), to appear.
- [2] Loureiro, I., "Axiomatisation et propriétés des algèbres modales tétravalentes," *Comptes Rendus de l'Academie des Sciences de Paris*, t.295 (22 Novembre 1982) Série I, pp. 555-557.
- [3] Loureiro, I., "Álgebras Modais Tetravalentes," Ph.D. Thesis, Faculdade de Ciências de Lisboa, 1983.
- [4] McKenzie, R., "Para primal algebras: A study of finite axiomatizability and definable principal congruences in locally finite varieties," *Algebra Universalis*, 8 (1978), pp. 336-348.
- [5] Werner, H., "Discriminator algebras," Studien zur Algebra und ihre Anwendungen 6, Akademie Verlag, Berlin (1978).

Centro de Matemática e Aplicações Fundamentais 2, Av. Gama Pinto 1699 Lisboa Codex Portugal