Correction of the Semantics for S4.03 and a Note on Literal Disjunctive Symmetry

RALPH H. MOON

The term disjunctive symmetry, designating that property possessed by a Kripke-model $\langle W, R, v\rangle$ just in case for each $x \in W$
(i) $\quad(\exists y)\left[x R y \&\left(x^{\prime}\right)\left(y^{\prime}\right)\left[\left(x R x^{\prime} \& y R y^{\prime}\right) \supset\left(x^{\prime} R x \vee y^{\prime} R x^{\prime}\right)\right]\right]$,
was defined in Georgacarakos's [2] where it was argued that $S 4.03$-that is, $S 4($ I1), the system obtained by adding each substitution instance of
I1 $L(L p \rightarrow q) \vee(L M L q \rightarrow p)$
to $S 4$-is characterized by the class of disjunctively symmetrical $S 4$-models.
At first sight, this characterization seems altogether fitting: I1 is a weakened version of

F $\quad L(L p \rightarrow q) \vee(M L q \rightarrow p)$,

the proper axiom for $S 4.3 .2$; and the condition used to define disjunctive symmetry is, similarly, a weakening of
(ii) $\quad(x)(y)[(x R y \& x R z) \supset(z R y \vee y R x)]$,
which specifies a class of $S 4$-models known to characterize $S 4.3 .2$ (see, e.g., [4], Lemma 7.10). It turns out, however, that the appearance of having simultaneously relaxed semantic and syntactic constraints is deceptive. For, although $S 4.03$ is a proper subsystem of $S 4.3 .2$ (see [1]), the system characterized by the class of disjunctively symmetrical $S 4$-models is not; rather, it is identical with S4.3.2, a fact that will be proved shortly (Theorem 1).

From all this we must conclude that there is an error in the proof of the main result of [2] and that a new semantics for $S 4.03$ is needed. ${ }^{1}$ Theorem 2, below, accomplishes this latter task. The paper ends with a brief look at a family of (mostly) new extensions of $S 4$, each of which is characterized by a class of $S 4$-models whose members are disjunctively symmetrical in a somewhat more literal sense of the term than that mentioned above.

Considerable use will be made of post-Henkin style completeness proofs and of filtration theory as developed by Segerberg in [4]. The reader is presumed to be familiar with the terminology, methods, and results of this reference.

Theorem $1 \quad$ S4.3.2 is characterized by the class of disjunctively symmetrical S4-models.

Proof:
Soundness. Suppose that some instance

$$
L(L \alpha \rightarrow \beta) \vee(M L \beta \rightarrow \alpha)
$$

of \mathbf{F} is false at a point x in an $S 4$-model $\langle W, R, v\rangle$ satisfying (i). Then
(a) $\quad L(L \alpha \rightarrow \beta)$ is false at x
and
(b) $\quad M L \beta$ is true at x
while
(c) $\quad \alpha$ is false at x.

By (a), there is a point x_{1}^{\prime} such that $x R x_{1}^{\prime}$ and
(d) $\quad L \alpha$ is true at x_{1}^{\prime}
and
(e) $\quad \beta$ is false at x_{1}^{\prime}.

Moreover, by (b), there is a point x_{2}^{\prime} such that $x R x_{2}^{\prime}$ and
(f) $\quad L \beta$ is true at x_{2}^{\prime}.

Since $\langle W, R, v\rangle$ satisfies (i), there is a point y such that $x R y$ and
(g) $\quad\left(x^{\prime}\right)\left(y^{\prime}\right)\left[\left(x R x^{\prime} \& y R y^{\prime}\right) \supset\left(x^{\prime} R x \vee y^{\prime} R x^{\prime}\right)\right]$.

Now, given (c) and (d), $x_{1}^{\prime} \mathbb{R} x$; so, by (g),
(h) $\quad\left(y^{\prime}\right)\left(y R y^{\prime} \supset y^{\prime} R x_{1}^{\prime}\right)$.

Similarly, (e) and (f) require that $x_{2}^{\prime} \mathbb{R} x$; so, by (g) again,
(j) $\quad\left(y^{\prime}\right)\left(y R y^{\prime} \supset y^{\prime} R x_{2}^{\prime}\right)$.

Taken together, (h) and (e) imply that
(k) $\quad M L \beta$ is false at y.

On the other hand, (j) and (f) imply that
(1) $\quad L M L \beta$ is true at y.

This, however, contradicts (k).
Completeness. The canonical model for $S 4.3 .2, K_{S 4.3 .2}$, is known to satisfy (ii) (see, e.g., [4], Lemma 7.10), and (i) is readily deducible from (ii) in the presence of reflexivity. $K_{S 4.3 .2}$ is therefore disjunctively symmetrical.
Theorem $2 \quad S 4.03$ is characterized by the class of S4-models satisfying
(iii) $\quad(x)(y)\left[(x R y \supset y R x) \vee(\exists z)\left[x R z \&\left(z^{\prime}\right)\left(z R z^{\prime} \supset z^{\prime} R y\right)\right]\right]$.

Proof:
Soundness. Suppose that some instance

$$
L(L \alpha \rightarrow \beta) \vee(L M L \beta \rightarrow \alpha)
$$

of I1 fails at a point x in an $S 4$-model $\langle W, R, v\rangle$ satisfying (iii). Then
(m) $\quad L(L \alpha \rightarrow \beta)$ is false at x
and
(n) $\quad L M L \beta$ is true at x
but
(o) $\quad \alpha$ is false at x.

By (m), there is a point y such that $x R y$ and
(p) $\quad L \alpha$ is true at y
while
(q) $\quad \beta$ is false at y.

Given that $x R y$ and $y \mathbb{R} x$ (by (o) and (p)), (iii) requires that there be a point z such that $x R z$ and
(r) $\quad\left(z^{\prime}\right)\left(z R z^{\prime} \supset z^{\prime} R y\right)$.

By (n), $M L \beta$ is true at z; so there is a point z^{\prime} such that $z R z^{\prime}$ and
(s) $\quad L \beta$ is true at z^{\prime}.

Together, (r) and (s) imply that β is true at y; but this contradicts (q).
Completeness. Suppose that γ is a nontheorem of S4.03. Then there is a point t in the canonical model for $S 4.03, K_{S 4.03}$, at which γ is false. Let Ψ be the smallest set containing γ that is closed under the formation of subformulas and modalities (Ψ will be finite, since $S 4.03$ is a normal extension of $S 4$), and let $K^{\prime}=\left\langle W^{\prime}, R^{\prime}, v^{\prime}\right\rangle$ be a Lemmon-filtration of $K_{S 4.03}$ through $\Psi . K^{\prime}$ will be finite, reflexive, and transitive; and γ will fail at $[t]$ in K^{\prime}.

All that remains to be shown is that K^{\prime} satisfies (iii). So suppose, for a reductio, that it does not. Then there are points $[x]$ and $[y]$ in W^{\prime} such that $[x] R^{\prime}[y]$ but
(t) $\quad[y] \mathbb{R}^{\prime}[x]$.

Moreover,
(u) $([z])\left\{[x] R^{\prime}[z] \supset\left(\exists\left[z^{\prime}\right]\right)\left([z] R^{\prime}\left[z^{\prime}\right] \&\left[z^{\prime}\right] \not R^{\prime}[y]\right)\right\}$.

Given that K^{\prime} is a Lemmon-filtration, (t) and the Filtration Theorem ([4], p. 66) imply that there is a formula $L \alpha \in \Psi$ such that
(v) $L \alpha$ is true at $[y]$
but
(w) $\quad L \alpha$ is false at $[x]$.

Since K^{\prime} is finite, $[x]$ bears R^{\prime} to at most finitely many points in W^{\prime}-say $\left[z_{1}\right], \ldots,\left[z_{n}\right]$; and by (u), for each $1 \leqslant i \leqslant n$, there is a point $\left[z_{i}^{\prime}\right]$ such that $\left[z_{i}\right] R^{\prime}\left[z_{i}^{\prime}\right]$ and
(x) $\left[z_{i}^{\prime}\right] \mathbb{R}^{\prime}[y]$.

Consequently, there are formulas $L \beta_{1}, \ldots, L \beta_{n} \in \Psi$ such that for each $1 \leqslant i \leqslant n$
(y) $\quad L \beta_{i}$ is true at $\left[z_{i}^{\prime}\right]$
while
(z) $\quad L \beta_{i}$ is false at $[y]$.

By Theorem 7.5 of [4], K^{\prime} is a finest filtration, which implies that there is a point $u \in[x]$ and a point $w \in[y]$ such that $u R_{S 4.03} w$. With $L \alpha \in \Psi$ and $u \in[x]$, (w) and the Filtration Theorem guarantee that
($\left.a^{\prime}\right) \quad L \alpha$ is false at u.
Similarly, since $L \alpha, L \beta_{1}, \ldots, L \beta_{n} \in \Psi$ and $w \in[y]$, (v), and (z) imply that
(b') $\quad L \alpha$ is true at w
and, for $1 \leqslant i \leqslant n$,
(c') $L \beta_{i}$ is false at w.
From (b^{\prime}) and (c^{\prime}) we may conclude that $L\left(L \alpha \rightarrow \sum_{i} L \beta_{i}\right)$ is false at u and,
therefore, that
(d') $\quad L\left(L L \alpha \rightarrow \sum_{i} \beta_{i}\right)$ is false at u.
Pick any point u^{\prime} such that $u R_{S 4.03} u^{\prime}$. Then $[u] R^{\prime}\left[u^{\prime}\right]-$ that is, $[x] R^{\prime}\left[u^{\prime}\right]-$ which means $\left[u^{\prime}\right]=\left[z_{i}\right]$, for some $1 \leqslant i \leqslant n$. Say $\left[u^{\prime}\right]=\left[z_{j}\right]$. By (y), this implies that $M L \beta_{j}$ is true at $\left[u^{\prime}\right]$; and since $M L \beta_{j} \in \Psi, M L \beta_{j}$ is true at u^{\prime}, from which it follows that $M L\left(\sum_{i} L \beta_{i}\right)$ is true at u^{\prime}. As u^{\prime} was selected arbitrarily,
(e') $\quad L M L\left(\sum_{i} L \beta_{i}\right)$ is true at u.
Finally, letting $\sigma=L \alpha$ and $\tau=\sum_{i} L \beta_{i}$, we have, by (a^{\prime}), (d^{\prime}), and (e^{\prime}), that

$$
L(L \sigma \rightarrow \tau) \vee(L M L \tau \rightarrow \sigma) \text { is false at } u
$$

in $K_{S 4.03}$, which is impossible.
Corollary $3 \quad S 4.03$ is decidable.
Proof: The completeness portion of the proof of Theorem 2 shows that $S 4.03$ has the finite model property; and this, together with the finite axiomatizability of $S 4.03$, guarantees decidability.

When taken together with the semantic characterizations of S4.01, Z1, and $K 1$ known in the literature, Theorem 2 also yields semantics for $S 4.01$ (I1), Z1(I1), and $K 1(\mathbf{I} 1)$-systems introduced by Georgacarakos in [1], where they are called $S 4.05, Z 1.5$, and $K 1.1 .5$, respectively. In particular, defining an $S 4.03$-model to be an $S 4$-model satisfying (iii), we have

Corollary $4 \quad$ (a) $S 4.05$ is characterized by the class of finite S4.03-models in which every proper final cluster is last; (b) K1.1.5 is characterized by the class of S4.03-models in which each point is contained in or precedes a simple final cluster; and (c) Z1.5 is characterized by the class of S4.03-models that satisfy
(iv) $\quad(x)(y)\left[(x R y \supset y R x) \vee(\exists z)\left[y R z \&\left(z^{\prime}\right)\left(z R z^{\prime} \supset z^{\prime}=z\right)\right]\right]$.

After working with disjunctive symmetry as it is defined at the start of this paper, it is natural to wonder which extensions of $S 4$ are characterized by those classes of Kripke-models that are disjunctively symmetrical in the more literal sense of the phrase. Put more precisely, we want to know, for each $n \geqslant 1$, what system is characterized by the class of $S 4$-models that satisfy
$\operatorname{LDS}_{\boldsymbol{n}} \quad(x)\left(y_{1}\right) \ldots\left(y_{n}\right)\left[\left(\prod_{i} x R y_{i} \& \prod_{i<j} y_{i} \neq y_{j}\right) \supset \sum_{i} y_{i} R x\right]$.
An answer is easily obtained, and we shall state it without proof as
Theorem 5 Let LDS_{n} be the formula

$$
p \vee L\left(L p \rightarrow q_{1}\right) \vee \ldots \vee L\left[\left(L p \& \prod_{1 \leqslant i<n} q_{i}\right) \rightarrow q_{n}\right] .
$$

Then, for each $n \geqslant 1, S 4\left(\mathbf{L D S}_{n}\right)$ is characterized by the class of $S 4$-models satisfying LDS $_{n}$.
$S 4\left(\right.$ LDS $\left._{1}\right)$ is obviously just $S 5$. Not so obvious, perhaps, is the fact that $S 4\left(\mathbf{L D S}_{2}\right)$ is also a system known in the literature, namely, $Z 8$. This will be proved in several stages, beginning with

Lemma 6 Each substitution instance of LDS $_{2}$ is a theorem of $Z 8$.
Proof: $Z 8$ is characterized by the class of $S 4$-models that satisfy (ii) and (iv); so if some instance

$$
\alpha \vee L(L \alpha \rightarrow \beta) \vee L[(L \alpha \& \beta) \rightarrow \gamma]
$$

of LDS_{2} were a nontheorem of $Z 8$, it would have to fail in an $S 4$-model $\langle W, R, v\rangle$ satisfying both of those conditions. We assume, for a reductio, that it does. Then there is a point $x \in W$ such that
(f') $\quad \alpha$ is false at x
and
($\left.\mathrm{g}^{\prime}\right) \quad L(L \alpha \rightarrow \beta)$ is false at x
and
(h') $\quad L[(L \alpha \& \beta) \rightarrow \gamma]$ is false at x.
By $\left(\mathrm{g}^{\prime}\right)$, there is a point y such that $x R y$ and
$\left(\mathrm{j}^{\prime}\right) \quad L \alpha$ is true at y
while
(k^{\prime}) $\quad \beta$ is false at y.
Similarly, by (h^{\prime}), there is a point z such that $x R z$ and
(1^{\prime}) $\quad L \alpha \& \beta$ is true at z
while
(m^{\prime}) $\quad \gamma$ is false at z.
Now (f^{\prime}) and (j^{\prime}) imply that
$\left(\mathrm{n}^{\prime}\right) \quad y \mathbb{R} x$
and (f^{\prime}) and (l^{\prime}) imply that
(o^{\prime}) $\quad z \not R x$.
Further, (o^{\prime}) and condition (ii) yield
(p^{\prime}) $\quad y R z$.
By (n ') and condition (iv), y bears R to a 'terminal' point z '; and since $y R z$ but $z \neq y$ (by (k^{\prime}) and (l^{\prime})), z^{\prime} must be distinct from y. This, in light of the fact that z^{\prime} is terminal, means that
(q^{\prime}) $\quad z^{\prime} R \mathbb{R} y$.
But $x R y$ and $x R z^{\prime}$; thus (q^{\prime}) and (ii) give

$$
y R x
$$

contradicting (n^{\prime}).
The straightforward semantic proof of the following lemma is left to the reader.

Lemma 7 Each substitution instance of \mathbf{F} is a theorem of $S 4\left(\mathbf{L D S}_{2}\right)$.
Lemma 8 Each substitution instance of
Z2

$$
L(L M p \rightarrow M L p) \vee L(M q \rightarrow L M q)
$$

is a theorem of $S 4\left(\mathbf{L D S}_{2}\right)$.
Proof: Suppose an instance

$$
L(L M \alpha \rightarrow M L \alpha) \vee L(M \beta \rightarrow L M \beta)
$$

of $\mathbf{Z 2}$ were to fail in an $S 4$-model $\langle W, R, v\rangle$ satisfying $L D S_{2}$. Then there would be a point $x \in W$ such that
(r) $\quad L(L M \alpha \rightarrow M L \alpha)$ is false at x
and
$\left(\mathrm{s}^{\prime}\right) \quad L(M \beta \rightarrow L M \beta)$ is false at x.
$\mathrm{By}\left(\mathrm{r}^{\prime}\right)$, there is a point y such that $x R y$ and
(t^{\prime}) $\quad L M \alpha$ is true at y
while
(u^{\prime}) $\quad M L \alpha$ is false at y.
Now (t^{\prime}), in the presence of reflexivity, guarantees that y bears R to a point at which α is true; and if α is false at y, then that point must be distinct from y. Similarly, (u^{\prime}) guarantees that y bears R to a point at which α is false; and if α is true at y, then that point is distinct from y. So we may conclude that there is a point z such that $y R z$ and $y \neq z$. But this, together with $L D S_{2}$ and the fact that $x R y$, requires that $y R x$. Consequently,
(v^{\prime}) $\quad L M \alpha$ is true at x
and
(w^{\prime}) $\quad M L \alpha$ is false at x.
By (s^{\prime}), there is a point u such that $x R u$ and
(x^{\prime}) $\quad M \beta$ is true at u
but
(y^{\prime}) $\quad L M \beta$ is false at u.
And, by (y^{\prime}), there is a point v such that $u R v$ and
($\left.\mathrm{z}^{\prime}\right) \quad M \beta$ is false at v.
Since $x R v,\left(v^{\prime}\right)$ and (w^{\prime}) imply that
($\mathrm{a}^{\prime \prime}$) $\quad M \alpha$ is true at v
and
($\mathrm{b}^{\prime \prime}$) $\quad L \alpha$ is false at v.
Employing an argument similar to the one used in establishing (v^{\prime}) and (w^{\prime}), we may infer from ($\mathrm{a}^{\prime \prime}$) and ($\mathrm{b}^{\prime \prime}$) that there is a point w such that $v R w$ and $v \neq w$. Given $L D S_{2}$ and the fact that $u R v$, it follows that $v R u$ and so, by (z^{\prime}), that
($\mathrm{c}^{\prime \prime}$) $\quad M \beta$ is false at u.
This, however, contradicts (x^{\prime}).

Since $Z 8$ is $S 4(\mathbf{F}, \mathbf{Z 2})$, Lemmas 6, 7, and 8 suffice for
Theorem $9 \quad S 4\left(\mathrm{LDS}_{2}\right)=Z 8$.
Theorems 5 and 9, taken together, provide a new semantic characterization of $Z 8$. At least one other result of this sort can also be obtained using Theorem 9. Defining an $S 4.3 .2$-model to be an $S 4$-model satisfying (ii), we have

Corollary $10 \quad Z 8$ is characterized by the class of S4.3.2-models in which every proper cluster is first.

Proof: The proof of soundness-that each instance of LDS $_{2}$ is valid in each $S 4.3 .2$-model satisfying the stated condition-is left to the reader.

Completeness. Assume that γ is a nontheorem of $Z 8$. Then γ fails at a point t in the canonical model $K_{Z 8}$ for $Z 8$. Moreover, $K_{Z 8}$ satisfies (ii), since $Z 8$ is an extension of S4.3.2.

Let $K^{\prime}=\left\langle W^{\prime}, R^{\prime}, v^{\prime}\right\rangle$ be the model generated from $K_{Z 8}$ by t. Then K^{\prime}, too, satisfies (ii) and rejects γ at t (see [4], Theorem 3.10). Now suppose that K^{\prime} fails to satisfy the stated condition. This can only mean that there is a proper cluster C in K^{\prime} which is not first. Thus there is a point $z \in W^{\prime}$ to which none of the points in C bears R^{\prime}.

Let x and y be distinct points in C. Then
($\mathrm{d}^{\prime \prime}$) $\quad x \mathbb{R}^{\prime} z$.
Since t generates K^{\prime},
($\mathrm{e}^{\prime \prime}$) $t R^{\prime} x$
(f $\left.\mathrm{f}^{\prime \prime}\right) \quad t R^{\prime} y$
and
($\left.\mathrm{g}^{\prime \prime}\right) \quad t R^{\prime} z$.
By ($\mathrm{d}^{\prime \prime}$), ($\mathrm{g}^{\prime \prime}$), and transitivity,
($\mathrm{h}^{\prime \prime}$) $x \mathbb{R}^{\prime} t$.
Therefore, there is a formula α such that
($\mathrm{j}^{\prime \prime}$) $\quad L \alpha$ is true at x
while
($\mathrm{k}^{\prime \prime}$) $\quad \alpha$ is false at t.
But x and y are in the same cluster; so
($1^{\prime \prime}$) $L \alpha$ is true at y
as well; and, moreover, since $x \neq y$, there is a formula β_{1} such that
($\mathrm{m}^{\prime \prime}$) β_{1} is true at y
but
$\left(\mathrm{n}^{\prime \prime}\right) \quad \beta_{1}$ is false at x.

By ($\mathrm{l}^{\prime \prime}$) and ($\mathrm{m}^{\prime \prime}$),
($\mathrm{o}^{\prime \prime}$) $\quad\left(L \alpha \& \beta_{1}\right) \rightarrow \sim \beta_{1}$ is false at y
and, by ($\mathrm{j}^{\prime \prime}$) and ($\mathrm{n}^{\prime \prime}$)
($\mathrm{p}^{\prime \prime}$) $\quad L \alpha \rightarrow \beta_{1}$ is false at x.
Putting ($\mathrm{k}^{\prime \prime}$), ($\mathrm{o}^{\prime \prime}$), and ($\mathrm{p}^{\prime \prime}$) together with ($\mathrm{e}^{\prime \prime}$) and ($\left.\mathrm{f}^{\prime \prime}\right)$, we may infer that an instance of LDS_{2}, namely,

$$
\left.\alpha \vee L\left(L \alpha \rightarrow \beta_{1}\right) \vee L\left[L \alpha \& \beta_{1}\right) \rightarrow \sim \beta_{1}\right]
$$

is false at t; but, given Theorem 9 , this is impossible.
As for the remaining members of the $S 4\left(\mathrm{LDS}_{n}\right)$ family, semantic considerations readily show that each, save $S 4\left(\mathrm{LDS}_{3}\right)$, is a proper subsystem of $Z 8$ and its extensions, independent of the other well-known extensions of $S 4$ (for which, see the diagram on p. 574 of [3]) and of $S 4.03, Z 1.5$, and K1.1.5. The account of $S 4\left(\mathrm{LDS}_{3}\right)$ differs only in that it is a proper extension of $S 4.01$.

NOTE

1. The error occurs on p. 506 of [2]: $L M L \gamma \in \Gamma_{i}$ is inferred from $M L \gamma \in \Gamma_{j}$, when the latter only warrants the conclusion that $M L \gamma \in \Gamma_{i}$.

REFERENCES

[1] Georgacarakos, G. N., "Additional extensions of S4," Notre Dame Journal of Formal Logic, vol. 18 (1977), pp. 477-488.
[2] Georgacarakos, G. N., "Semantics for S4.03," Notre Dame Journal of Formal Logic, vol. 18 (1977), pp. 504-506.
[3] Goldblatt, R. I., "A new extension of S4," Notre Dame Journal of Formal Logic, vol. 14 (1973), pp. 567-574.
[4] Segerberg, K., An Essay in Classical Modal Logic, Filosofiska Studier, Uppsala, Sweden, 1971.

