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On the Existence of Polynomial Time

Algorithms for Interpolation Problems

in Propositional Logic

E. DAHLHAUS, A. ISRAELI, and J. A. MAKOWSKY*

/ Introduction

1.1 The interpolation problem Let φ and φ be propositional formulas with
Φ(x>y)jψ(y9z) where x,y,z are disjoint lists of propositional variables. In other
words, the only variables φ and φ have in common are the variables of y. Let
us assume further that φ Λ φ is unsatisfiable. The question is whether there is
a propositional formula θ(y)9 built only from the variables shared by φ and φ,
such that

(ϊ)φ-»θ and
(ii) θ-+->φ

are valid.
The interpolation theorem states that this is always the case. We call such

a θ the Craig interpolant (in the sequel shortly interpolant) for φ and φ. (Note
that we deviate from traditional usage in that one usually calls this the inter-
polant for φ and ~~*φ). The interpolation theorem was first stated and proved
for first-order logic by Craig [9]. For a discussion of the first-order case with-
out equality the reader is referred to [32]. The statement for propositional logic
follows from Craig's theorem trivially. One can also give direct proofs, e.g. by
looking at the Boolean function defined by θ = 3xφ(x,y). By functional com-
pleteness of propositional logic there is a formula θ(y) which represents θ. It
is easily seen that θ satisfies (i) and (ii). There is a vast literature about various
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interpolation theorems for many kinds of propositional and higher-order logics,
such as propositional temporal logics, intuitionistic logics and modal logics, and
first-order logics extended by generalized quantifiers or infinitary operations.
For an extensive bibliography the reader is referred to [22] and [5]. Complex-
ity issues connected with the interpolation theorem were first studied by Kreisel
and Friedman for the first-order case and Mundici for the propositional case
[10],[24].

The purpose of this paper is to study the complexity of various interpola-
tion problems in possibly quantified propositional logic. We continue here the
investigations started by Mundici in [24]-[27] and relate the interpolation prob-
lems to the complexity hierarchies between deterministic logarithmic space (L)
and deterministic polynomial space (PSpace).

1.2 The quantified interpolation problem We now introduce the interpola-
tion problems for quantified Boolean formulas, i.e. formulas of the form Q\X\,
• >QnXnΦ- Here Qz is 3 or V and φ is any quantifier-free Boolean formula.
For any (quantified) Boolean formula </>, 3(V)jcφ is interpreted as "for some
x G {0,1) φ is true" (respectively "for all x G {0,1} φ is true"). Let Σ(0) = Π(0)
be the class of quantifier-free Boolean formulas. We define Σ(k + 1) as the set
of all formulas of the form lxxlx2 lxnΦ with φ EΠ(k) and U(k + 1) by
looking at formulas of the form Vx{ix2... Vxnφ with φ G Σ(k). Finally Σ* is
the union of all Σ(k). Note that Σ* are all quantified Boolean formulas. The
Σ(k) interpolation problem, Σ(k)-INT is defined as follows: Given two for-
mulas Φ(x,y),ψ(y,z) G Σ(k) with disjoint vectors of free variables x,y,z such
that their conjunction is not satisfiable, find a quantifier-free propositional for-
mula, θ(y)9 with its free variables all among y9 such that both

(i) φ -» θ and
(ii) Θ-+ ^φ

are valid.
θ(y) is called an interpolant for φ(x,y),ψ(y,z). The U(k) interpolation

problem, U(k)-INT and Σ*-/WTare defined in the obvious way. Analogously
we define the Σ(k) and U(k) satisfiability problem, which we denote by Σ(k)-SAT
and U(k)-SATrespectively.

By a similar argument as above for the quantifier-free case there is always
a quantifier-free interpolant for the Σ* interpolation problem. Consider two
Σ(k + l)-formulas φ = 3vφι(v,x,y) and ψ = lw\l/ι(w,y,z), where φ{ and ψx

are U(k)-formulas. Then the interpolation of φ(x,y) and ψ(y,z) and of
Φι(v,x,y) and ψι(w9y9z) are trivially equivalent problems. That means that
Σ(k + l)-/7VTand U(k)-INTare polynomially equivalent problems.

There are various ways of measuring the complexity of the interpolation
problem: We can look at the length (or some other size) of the shortest inter-
polant or at the complexity of the most efficient computation of an interpolant,
which then possibly is bigger than the shortest interpolant. Formulas can be rep-
resented as trees or as directed acyclic graphs (DAGs). The leaves or the bot-
tom vertices (vertices of indegree 0) are labeled by variables and all other ver-
tices are labeled by Λ, V, or -i. Any vertex labeled by ~i has an indegree of 1.
Any vertex labeled by Λ or v has an indegree of two. We consider only DAGs
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with exactly one top vertex (outdegree is 0). Then the interpretation of a for-
mula in DAG description is the canonical interpretation of the top vertex. Note
that formulas in DAG form are nothing else than switching circuits. We also call
formulas in DAG form reduced formulas. We say that Σ(k)-INT can be com-
puted in polynomial time (Σ(k)-INT can be computed in logarithmic space) and
we write, by abuse of notation, Σ(k)-INTred e P, (Σ(k)-INTred e L), if there
is a polynomial time (logarithmic space) algorithm which gives us an interpolant
possibly in DAG-representation. Note that if the input implication is not a
tautology, then for an algorithm computing INTred or INT no condition is im-
posed on the output. We denote Σ(0)-INTred also by INTred. We omit the index
in INTred, if we require that the interpolant be given in tree representation. For
the case that the input implication φ -• ψ also has a DAG-representation we
introduce new variables for each DAG-vertex. But then we have an equivalent
interpolation problem such that the input implication is in tree form. That means
INTred is not harder if the input implication is in DAG-form. Note that a poly-
nomial time algorithm always produces an output whose size is polynomial in
the input. Therefore, in order to show that Σ(k)-INTred ί P, it suffices to give
an exponential lower bound for the shortest interpolant in DAG-representa-
tion. On the other hand, if there is a polynomial Pk which gives a bound on the
shortest Σ(k)-interpolant then Σ(k)-INTG PSpace. This follows from the fact
that PSpace = NPSpace and that Σ*-SATis in PSpace [23],[11].

Conjecture There is an exponential lower bound for the shortest Σ*-inter-
polant in DAG-representation.

The conjecture, actually, implies that P Φ PSpace. This will be clear from
the remark above and Theorem 8 at the end of Section 2.

1.3 The complexity hierarchies The complexity classes lying between L and
PSpace which are usually considered are ordered by known inclusions:

L C NL C P C NP = ΣιP C Σ^P C Σ*P C PSpace.

Here NL is nondeterministic logarithmic space, P is polynomial time, NP is
nondeterministic polynomial time, and Σ*P = (J Σ^P is the polynomial time

k

hierarchy. The latter is sometimes called the Stockmeyer hierarchy. It is known
that L Φ PSpace and therefore that L Φ P or P Φ PSpace but it is not known
which of the inequalities hold [11]. We denote the class of problems, whose com-
plement is in NL or NP by CoNL or CoNP respectively. By a recent result of
Immerman [13] it was shown that NL = CoNL. The problem of the complement
closure of NP remains open.

1.4 Summary The paper is organized as follows: In Section 2 we present the
general theorems and all our results concerning the complexity of Σ(k)-INTred.
We begin with an easy remark on separation from which we can deduce several
corollaries.

In Section 3 we study the complexity of HORN-INT, the interpolation
problem for quantifier-free propositional Horn formulas, i.e. formulas in con-
junctive normal form whose disjuncts contain at most one nonnegated variable.
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We present also a polynomial time algorithm for the interpolation problem for
(unquantified) propositional Horn formulas. The main result here is Theorem
10, which asserts that HORN-INT is computable in polynomial time.

In Section 4 we study the complexity of KROM-INT, the interpolation
problem for quantifier-free propositional Krom formulas, i.e. formulas in con-
junctive normal form whose disjuncts contain at most two literals. Our main
result here is a nondeterministic logspace algorithm for the interpolation and
quantifier elimination problem for quantified propositional Krom formulas
(Theorem 17). This last result is based on Tarjan's linear time algorithm for
strongly connected components of a graph and its application to the satisfiability
problem for quantified Krom formulas in [4].

Interpolation for Krom formulas was first studied by Krom in [20]. Com-
plexity issues arising from Horn and Krom formulas were first studied by Bόrger
in [6] and Aanderaa in [1]. The reader is also referred to [2],[3].

In the light of the hierarchies between P and PSpace our results in these
sections can be summarized in Table 1. In the table each line gives three equiv-
alent statements and the corresponding number of the statement.

Table 1.

Interpolation Satisfiability

P = PSpace Σ*-INTred G P Σ*-SA Γ e P Theorem 8

P = NP Σ(k)-INTred G P SATG P Theorems 6
Σ(2)-INTredeP and 7
NP = CoNP

and INTred G P

L = P HORN-INT G L HORN-SA T G L Corollary 11

L = NL KROM-INT G L KROM-SA T G L Theorem 14

L = NL Σ*-KROM-INT G L Σ*-SA T G L Corollary 19

2 Interpolation problems and the polynomial time hierarchy

2.1 A general remark on separation Let C be a (not necessarily determinis-
tic) complexity class like L, NL, P, NP, PSpace; let D C C be a deterministic
complexity class like L, P, or PSpace, and let Φ be a class of quantified proposi-
tional formulas such that the following hold:

(i) Φ-SAT is C-complete via D-reductions, i.e. for each A recognizable in
C we can find a function/G D into Φ, such that/(x) G Φ-SAT iff
xEA

(ii) Φ-INTredis in D.

Then each disjoint pair of sets AUA2 G C can be separated by a B G D (i.e.
there is B G D such that A{ C B and A2 Π B = 0 ) .
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Proof: Let AUA2 C {0,1 )* be in C and Aλf\A2 = 0 . By (i) there are functions
/: {0,1}*-*Φ andg: {0,1)* -> Φ such that for every a E {0,1}*

(hϊ)/(tf) is satisfiable iff a G Ax and
(iv) g(a) is satisfiable iff a G A2.

Furthermore, w.l.o.g. we can assume that

(v)/(#) and g(a) have no variables in common.

f(a) and g(a) are inconsistent. Since the only formulas with no free variables
are true, false, the interpolant for the formulas f(a),g(a) is true or false and
can be calculated in D. Next we define Be {0,1 }* by a E B iff the interpolant
for/(α),g(α) is true. It is easy to check that B GO and B separates AUA2.

We get the following immediate consequence using the fact that the satis-
fiability problem for unquantified propositional formulas is NP-complete:

Corollary 1 Assume INT is polynomial time computable. Then
(i) for every two disjoint sets AUA2G NP there is B E P separating AUA2 and

(ii) P = NP Π CoNP.

The next corollary makes use of the fact that HORN-SAT (KROM-SAT)
is P-complete (CoNL-complete) via log space reductions (compare also The-
orems 12 and 15, presented later).

Corollary 2
(i) Assume HORN-INT is computable in logarithmic space. Then L = P.

(ii) Assume KROM-INT is computable in logarithmic space. Then:
(a) for every two disjoint sets AUA2 E CoNL there is B E L separating

AUA2.
(b) L = NL Π CoNL = NL.

Remark: Corollaries 1 and 2 can be strengthened to (disjoint) INTred, HORN-
INTred, and KROM-INTred.

2.2 Consequences ofP = NP In [27] the following result is proved:

Theorem 3 (Mundici) At least one of the following statements is true:
(i) P = NP;

(ii) NP Φ CoNP;
(iii) INT is not polynomial time computable.

Now we present a converse of Corollary 1 and extensions thereof to the
polynomial time hierarchy. It is also an improvement of the above result of [27].
For this purpose we need a special case of a result of Fischer and Pippenger, as
stated in [28].

Proposition 4 (Fischer and Pippenger) For every polynomial time computa-
ble function f there is a uniform sequence of Boolean circuits Cn of size poly-
nomial in n such that Cn computes f restricted to input length n.

Recall that uniform here means that the Cn's can be computed from n in
SPACE (O(logn)).
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Recall that Boolean circuits are just a notational variant of DAG-formulas.
Thus we get the following

Proposition 5 Let Φ be a class of (possibly) quantified propositional for-
mulas such that Φ-SAT is in P. Then Φ-INTred can be computed in polynomial
time.

Proof: Let φ (x,y)9ψ(y,z) be an unsatisfiable pair of formulas. Clearly φx =
lxφ(x,y) is a Boolean function equivalent to an interpolant. Given y and
3xφ(x,y) we can evaluate φγ in NP and, by our assumption, also in P. By
Proposition 4 we can find a uniform sequence of Boolean circuits Cn evaluat-
ing φι with input y and φ. Now let k = l(φ) + l(y), where l(x) denotes the
length of an expression x. Consider now Ck. From Ck, fixing the binary code
of φ, we obtain the Boolean circuit representing the requested interpolant.

Theorem 6 P = NP iff NP = CoNP and INTred is computable in poly-
nomial time.

Proof: Assume P = NP. Trivially NP = CoNP. The second claim follows from
Proposition 5. The other direction follows from Corollary 1.

Under the assumption that NP = CoNP this theorem means that INTred is
not harder (or even simpler) to compute than SAT. If we allow existentially
quantified propositional formulas, i.e. we look at Σ(k)-INTred for k > 2, the
assumption NP = CoNP can be dropped. Note, however, that INTred and
Σ(\)-INTred are the same problems.

Theorem 7 The following are equivalent:
(i) P = NP

(ii) For every k>2 there is a polynomial algorithm for Σ(k)-INTred

(iii) There is k > 2 and a polynomial algorithm for Σ(k)-INTred

(iv) There is a polynomial algorithm for Σ(2)-INTred.

Proof: (i) -• (ii): Proposition 5. (ii) -> (iii) and (iii) -* (iv): Trivial, (iv) -• (i):
Assume (iv). We prove that SAT E P. Let φ(x) be given. Clearly, lxφ(x),
Vχ-ιφ(x) is unsatisfiable and the interpolant is either true or false and can be
computed in polynomial time. Now φ(x) is satisfiable iff the interpolant is true.

For unbounded alternations of quantifiers we actually have a stronger
result:

Theorem 8 Σ*-INT is polynomial time computable iffF = PSpace.

Proof: if P = PSpace we use again Proposition 5. For the other direction we
reduce the evaluation problem to Σ*-INT similarly to the previous proof.

3 Interpolation for Horn formulas
j

3.1 A polynomial time algorithm Recall that a Horn formula φ is a proposi-
tional formula in conjunctive normal form such that every clause contains either
exactly one positive literal or exactly one occurrence of the propositional con-
stant false. A clause is called a singleton if it is a positive literal or it is identi-
cal to false. A proper Horn clause is a Horn clause which is not a singleton.



INTERPOLATION PROBLEMS 503

We write proper Horn clauses as x{ Λ . . . Λ xn_γ -• xn rather than -ιχλ v . . . v
-^xn-\ v xn. By our definition a negative literal is a Horn formula since it can
be written as x -> /α/se.

Recall further that resolution is a proof procedure which allows us to
deduce from two clauses x v Lx v . . . v Lk and —IJC v LJ v . . . v L^ the clause
Lj v . . . v Lk v LJ v . . . v L'n. Unit resolution is a proof procedure which is like
resolution but with the additional requirement that either k = 0 or n = 0. The
following is easy and was first observed in [12]:

Theorem 9 A set of Horn clauses Σ is unsatisfiable iff there is a unit reso-
lution proof of the empty clause.

Remark: HORN-SAT is easily seen to be in P. In [14], [15] a linear time algo-
rithm for HORN-SAT is presented.

For Horn formulas of the form a\ Λ...Λfln->flwe have two rules which
arise from the unit resolution, where we try to derive false instead of the empty
clause:

(1) ax Λ . . . Λ an -> a (a may be false), ai is transformed into ax Λ . . . #,_! Λ
α / + 1 Λ. . .Λ an-+a

(2) ax Λ . . . Λ an -• a, a -> false is transformed into ax Λ . . . Λ an -> false.

It is easily seen that for the test of satisfiability we need only the first rule. We
can replace it by a parallel unit resolution rule: alt. . . ,ania1 Λ . . . Λ an -• a is
transformed into a.

The Horn Interpolation Problem (HORN-INT) consists of finding for every
unsatisfiable pair of Horn formulas Φ(x,y),ψ(y,z) an interpolant θ(y). The Dis-
joint Horn Interpolation Problem (DHORN-INT) is the Horn Interpolation
Problem under the additional assumption that there are no variables shared by
φ and φ.

In the following we use unit resolution to compute an interpolant.

Theorem 10 There is a P-time algorithm which computes for every unsatis-
fiable pair of Horn formulas Φ(x,y),ψ(y,z) an interpolant θ(y) which is again
a Horn formula.

Proof: We first define a P-time algorithm A1 which checks satisfiability of sets
of Horn clauses Σ and, additionally, in case Σ is unsatisfiable, generates an
unsatisfiable subset of clauses R CΣ in which each variable occurs at most once
on the right hand side of the arrow.

Definition of A1: At the beginning we put SO = set of singletons of Σ,R0 =
No = So, and var = set of variables and constants (the only constant is false)
which appear in Σ.

Nι+\ = [y E var: y £ Si9 y arises from singletons and

some formula ψ E Σ by parallel unit resolution}.

Si+ι=SiUNi+ι.

For each y E Ni+{ we choose a formula ψ = hy E Σ, as in the definition of
Nι+ι.

Ri+^RiUihyiyeNi).
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If Ni = 0 then put S = S, and R = Rι and stop. Σ is satisfiable iff false e S.
Correctness of Λ\: Note that each Sn and therefore also S, is a set of sin-

gletons. For each y E 7VZ we take a proper Horn clause hy E Σ such that j> is a
parallel unit resolvent of some formula of 5/ using λj,, therefore, by the com-
pleteness of parallel unit resolution for Horn clauses, Σ is satisfiable, provided
false £ Sh Otherwise, Σ is unsatisfiable and, by our construction, R CΣ con-
tains all the clauses needed to obtain unsatisfiability. It is easy to see from the
construction of R that each variable occurs at most once on the right side of the
arrow.

Complexity of A I: Let Σ have at most k different variables and contain at
most h many proper Horn clauses. Since both the Sz and Rt grow monotoni-
cally, there are at most k iterations. Each iteration needs at most h steps and
the formulas in Σ remain unchanged. Therefore this algorithm can be performed
in P-time.

An algorithm A2, computing the interpolant for an unsatisfiable pair of
Horn formulas φ and ψf can be defined as follows: Now, assume Σφ,Σφ are the
sets of Horn clauses corresponding to φ(x,y) and ψ(y,z) respectively. Put Σ =
Σφ U Σψ. Σ is unsatisfiable. Apply A1 to compute R and S. Clearly R is unsatis-
fiable. To compute the interpolant put Σ o = Σφ Π R.

W.l.o.g. let {x\,X2, >xm} be the set of all the singletons of S which do
not occur as variables in Σ^. Let g(y) be the left side of the implication hy. If
Xj+ι appears as a nonnegated singleton we obtain Σ / + 1 by dropping xi+γ from
each left side of any clause where it appears. Put

Σ / + 1 = [h[xl+ι/g(xi+ι)]ι Λ G Σ , ) .

Here h[u/v] is the expression which is generated by h replacing u by v and delet-
ing redundant literals. We replace the variable y = xi+{ by the left side of hy in
each h G Σ , .

Clearly, each Σ/ and therefore Σm is a consequence of Σφ,Σm U Σ^ is
unsatisfiable and each variable occurring in Σm occurs both in Σφ and Σφ.
Therefore Σm is the required interpolant. The fact that A2 can be performed in
polynomial time is immediate.

Recall that DHORN-INT is the disjoint Horn interpolation problem. Com-
bining Theorem 10 and Corollary 2(i) we get the following result:

Corollary 11 The following are equivalent:
(i) L = P

(ii) DHORN-INT e L
(iii) HORN-INT can be solved in Logspace.

This shows that for unquantified Horn formulas the satisfiability and the inter-
polation problem are both of the same degree of difficulty. It is an open prob-
lem, if the same holds for quantified Boolean Horn formulas. Schaefer [30]
claimed that the quantified Horn satisfiability problem is in P (see also [11],
Problem [LO6]), but he never published a proof of it. (Recently Schaefer [31]
sent us a preprint describing a polynomial time algorithm for the quantified
Horn satisfiability problem.) Karpinski, Kleine-Bύning, and Schmitt indepen-
dently developed a polynomial time algorithm for the quantified Horn satisfi-
ability problem [19].
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4 Interpolation for Krom formulas

4.1 Consequences of L — NL Recall that Krom formulas are propositional
formulas in conjunctive normal form where each disjunct contains at most two
literals. We collect the known results of [18] and [4] in the following theorem:

Theorem 12
(i) KROM-SΛT is CoNL-complete via log space reductions [18]

(ii) Σ*'KROM-SΛT can be solved in linear time [4].

We first analyze the complexity of KROM-INT.

Proposition 13 Given two Krom-formulas φ(x,y) and ψ(y,z), let θ(y) be
the conjunction of all Krom clauses, which are consequences from Φ(x,y). Then
θ(y) is an interpolant ofφ(x,y) and \p(y,z). Moreover, to be a clause ofθ(y)
can be checked in NL and l(θ) = O(l{y)2).

Proof: Clearly, l(θ) = O(l(y)2). By the known variable elimination algorithm
of Davis and Putnam the inconsistency of φ(x,y) Λ ψ(y,z) can be determined.
We can at first eliminate the variables of x. Then we get a formula θ(y) Λ
\j/(y9z). This formula remains a contradiction. But θ(y) is the conjunction of
all Krom clauses which are consequences from φ(x,y) and do not contain vari-
ables from x. Clearly each clause of θ(y) can be recognized in NL.

Theorem 14 L = NL iff KROM-INT E L.

Proof: Assume L = NL. Then by Proposition 13, KROM-INT e L. Suppose
KROM-INT G L. We know by [13] that NL = CoNL. By Corollary 2(ii) L =
NL.

4.2 Eliminating quantifiers from Krom formulas Our next result is a rein-
terpretation of the proof of Theorem 12(ii). In [4] the evaluation problem of
Krom formulas is first reduced to a graph problem: W.l.o.g. all clauses of a
Krom formula have exactly two literals. We can always write L\J L instead of
L for any literal L. Let AT be a set of Krom clauses whose variables are exactly
x. The graph T(K) is then defined as follows: Let V(K), the vertices, be the set
of literals (variables and negated variables) of x. Denote the negation of a literal
L by -.L(-iiL = L).

Let E(K) be the set of directed edges (vuv2) such that the Krom clause
V\ -> v2: = -*Vι v v2 G K. For a Krom formula φ with Kφ as its clause set we set
T(φ) — Γ(KΦ). Two vertices Vι,υ2 of T(K) are in the same strongly connected
component if there are directed paths from υx to v2 and vice versa.

Let Q# = Q\X\ Q2x2 . . . Qnxn be a quantifier prefix and φ be a Krom for-
mula and Kφ the set of Krom clauses from φ. We call a vertex xι (-υr/) in Γ (Kφ)
existential (universal) if Q/ is existential (universal) or xι is a free variable. In [4],
Theorem 2, the following is proved:

Lemma 15 The quantified Krom formula Q**xφ(x,y) is satisfiable iff none
of the following three conditions holds.
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(i) Some existential vertex Xι is in the same strongly connected component as
its complement -IΛT/
(ii) Some universal vertex ι>/ is in the same strongly connected component as an

existential vertex Vj such that j < i where Vi(vj) is either Xj(Xj) or -ιXj(-iXj)
(iii) There is a path from a universal vertex u to another universal vertex v.

Lemma 16 Let φ(xι,x2,...,xn)bea quantified Krom formula with free vari-
ables Xχ9x2,. ,xn and let φ0 be the quantifier free part of φ. Let a E 2{XltX2t

• yXn] be an assignment of truth values for the free variables. Then φ[a] = 1 iff
(i) φ(xx 9x2, . . . ,xn) is satisfiable

(ii) there is no literal L whose variable is free in φ and there is no literal U whose
variable is universally quantified in φ such that L[a] = 0 and Γ(φ 0 ) has a
directed path from U to L and
(iii) there are no literals L,M whose variables are free in φ such that L[a] = 1,
M[a] = 0, and T(φ0) has a directed path from L to M.

Proof: Assume φ[oc] = 1. Then (I)—(iii) are easily checked. Now assume φ[a] =
0, (ii), and (iii). We proceed to show that φ(xχ,x29... ,xn) is not satisfiable. We
define two auxiliary quantifier-free Krom formulas φ\,φ29 which define the val-
ues of a as follows:

Φi = Λ {-»*/-•*/: oί(Xi) = 1)

Φi = Λ ί * / ^ -•*/: <*(*ι) = ° }

Clearly, we have:

Claim 1: φ[a] = 1 iff φ Λ φ\ Λ φ2 is satisfiable.
Therefore, by our assumption, φx = φ Λ ψι Λ ψ2 is not satisfiable. Using

Lemma 15 one can check that φ(x\,x2,. .. ,xn) is not satisfiable: We use
Lemma 15 and assume that φ{ satisfies one of the conditions (i)-(iii) of Lemma
15.

Assume φ\ satisfies condition (i) of Lemma 15. That means that Γ(φ { )
contains a directed cycle C which touches existential vertices y and ~^y. We as-
sume that φ is satisfiable. But then the cycle C contains at least one directed edge
of the form ->L —• L. Let -ιL -> L and πM-> M be two consecuting directed
edges of this form on C. Then there is a directed path from L to - iMin T(φ)
although L[a] = 1 and ~^M[a] — 0. This is a contradiction of condition (iii)
of this lemma.

Assume now φλ satisfies condition (ii) of Lemma 15. Then we again have
a cycle C touching a universal vertex vt and an existential vertex Vj(j < /). This
cycle contains at least one directed edge of the form -ιL -* L (of T(φι) U
Γ ( ^ 2 ) ) . By the same argument as in the case of condition (i) of Lemma 15 we
get a contradiction of condition (iii) of this lemma, if we assume that φ is satis-
fiable.

Now we assume that φx satisfies condition (iii) of Lemma 15. That means
that there is a path from a universal vertex to another universal vertex (in Γ (φ{).
If we assume that φ is satisfiable, then at least one directed edge of this path is
in K(φι) U K(φ2). That means that this edge is of the form L -• -ιL. We may
assume that this is the first directed edge of the path. But then we have a directed
path from a universal vertex to a literal L, such that L[a] = 0. That is a con-
tradiction of condition (ii) of this lemma.
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Theorem 17 There is a log space algorithm which transforms an arbitrarily
quantified Krom formula φ(x) into an equivalent Σ(l)-Krom formula θ(x).

Proof: Let φ(x) be given with quantifier-free part φ0. Lemma 16 gives us a
characterization of all the assignments a which make φ true. For each part of
this characterization (i)-(iii) we shall construct in log space existential Krom for-
mulas σh i — 1,2,3,4 such that

(a) oχ is without free variables and σx is true iff φ(x) is satisfiable;
(b) σ2(x) is equivalent to: there is no literal L whose variable is free in φ and

there is no literal U whose variable is universally quantified in φ such that
L[a] = 0, such that there is a directed path from Uto L in Γ(φ 0).

(c) σ3(x) is equivalent to: there are no literals L,M whose variables are free in
φ such that L[a] = 1, M[a] =0 and there is a directed path from L to M
inΓ(φo).

θ(x) is the conjunction of σ\,... ,σ3. Our main tool is the coding of graph
accessibility problems by Krom formulas, implicitly described in [18], which we
spell out as a separate lemma:

Lemma 18
(i) Let Γ be a directed graph on n vertices vx,..., vn. Then there is a quantifier

free Krom formula φΓ(xu... 9xn) such that for any two vertices Vj, Vj we have:
there is a directed path from ι;, to Vj /XΓ3JC//Φ(X//1,X//0) is false. (Here Xy is the
vector of variables with xhXj missing and the remaining variables are evaluated
as indicated.)
(ii) The formula φΓ is of size at most n2 and can be computed in log space of n.

Proof: For every edge (vi9 Vj) we form the clause xt -> Xj and set φΓ to be the
conjunction of all these clauses. The rest is verified easily.

The construction of σλ: An immediate consequence of Lemma 15 is that
the nonsatisfiability problem of φ(x) is in NL. Therefore by [18] the satisfia-
bility of φ(x) can be reduced to the satisfiability of a nonquantified Krom for-
mula φ' in logspace. Let α, = 3j>φ'.

The construction of σ2: For every literal L of a free variable of φ define
a graph TL2 as follows. We take a copy of the graph Γ(φ) and add two new
vertices vL and vL. We add a new arc (L,vL) and new arcs (vL,u) for each
universal vertex u. Clearly there is no path from any universal literal to L in Γ (φ)
iff there is no path from vL to vL in VL2. Let σ^2(Xι,L> >*«,L) be the for-
mula which arises from TL2 by Lemma 18. Let xI )L be the variable correspond-
ing to vL and x2L be the variable corresponding to vL. Define σLy. = σ | 2

 Λ

*i,L Λ (χ2,L *~* L). By Lemma 18 σL2 is satisfiable iff there is no path in Γ(φ)
from any universal literal to L, or L is set true. Let σ': = /\ {σLi2: L literal of
a free variable of φ\. Let σ2 = 3yσ2 where y ranges over all variables which are
not variables of any literal L appearing free in φ. Clearly σ2 satisfies the state-
ment (b).

The construction ofσ3: Let σ3' be the formula which arises from Γ(φ) by
Lemma 18. Let σ3: = 3yσ3, where y ranges over all variables of σ3' not arising
in x. By the same argument as in Lemma 18 we can make the following claim:
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σ3 (x) is true iff there is no path ofT(φ0) from a literal L, such that L[a] =
1, to another literal M, such that M[a] = 0, where L andMare literals over
variables of x.

The claim can be proved in a similar way as Lemma 18.
Clearly, these constructions can be carried out in log space.

Corollary 19 L = NL iff and Σ*-KROM-INT e L.

Proof: One direction follows from Corollary 2(ii) and the other direction from
Theorem 14 and Theorem 17.
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