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Notes on the Mathematical Aspects

of Kripke's Theory of Truth

MELVIN FITTING

1 Introduction Kripke’s Theory of Truth [3] is one of the most interesting
developments to come along in this area for some time. But the mathematical
difficulties may have prevented a wider appreciation of its philosophical virtues.
Certainly more is required of the reader than in Tarski’s approach; indeed the
mathematical machinery involved strictly includes that required by Tarski’s
theory. But, in fact, the necessary mathematics is simple, elegant, and part of
the standard tool-kit of workers in certain areas of mathematical logic and
computer science.

What we do in this primarily expository paper is present, in a compact
connected fashion, a development of the background mathematics pertinent to
Kripke’s theory. We largely skip over philosophical motivation; one cannot do
better than to read Kripke himself on this. We do not present the body of the
theory, only the mathematical skeleton. The paper is self-contained in the
mathematical sense, however, with all terms defined and all main results proved.

There are a few items in the treatment here which, although not new, seem
to have been ignored by most writers in the area.

It is most common to establish the existence of smallest fixed points by
using ordinally indexed sequences of approximations. This is not necessary, and
has two distinct drawbacks: First, it is more mathematical paraphernalia than
one needs, tending to obscure the inherent simplicity of the subject. Second, it
is a construction that only works for special kinds of fixed points, while in
Kripke’s theory all fixed points have some role to play. Consequently we post-
pone this technique to the final section; an afterthought rather than a central
feature. We do show, however, that there is an analogous “dual” construction
of the largest intrinsic fixed point, something that seems to have gone
unremarked on in the literature.

Another peculiar feature of this work is its treatment of models. There are
none. One is interested in statements, their truth and falsity. So rather than
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models, we use sets of statements directly, Hintikka fashion. Again this gets
some unnecessary machinery out of the way, making, we believe, the key fea-
tures of the construction stand out. And it has one satisfying side effect that in
the treatment of Kleene’s three-valued logic, there is no third “truth value” of
undefined. We have only the usual two truth values, but not every statement
acquires a truth value. A minor point, but a satisfying one.

We must point out that none of the results here are new. A few items can
definitely be ascribed to particular authors, most seem to be part of the math-
ematical folklore. Primarily we are attempting to provide a service: collecting
this material in one place, and organizing it with Kripke’s work in mind.

2 Monotone operators Suppose we create an operator that takes as input
a collection of assertions and produces as output the collection of “simple”
consequences of these assertions. Such an operator is monotone in the sense that
if we supply additional input, the output does not diminish. A special role is
played by those collections of assertions that, when used as input, are returned
unchanged as output. Such fixed points amount to collections of assertions that
are complete, in that they already contain their consequences. The existence and
variety of such fixed points play a fundamental role in Kripke’s theory. And the
mathematical machinery to deal with them can be presented most simply in an
abstract, lattice theoretic setting.

Definitions (D, <) is a partial ordering if < is a relation on D that is reflex-
ive, antisymmetric, and transitive. Throughout this section, we assume < is some
fixed partial ordering on D. If 4 < B we say A is below B and B is above A.
We also use the term befween in the obvious way.

Let C < D. The largest member of C is an A € C such that B < A4 for all
B € C. If C has a largest member, it is easily seen to be unique. Smallest has
a dual definition.

Let & # C < D. An upper bound for C is a member A of D such that
B < A for all B € C. An upper bound for C need not be a member of C, nor
need one exist at all. Lower bounds have a dual definition. Note that if C has
an upper bound belonging to C, it is the largest member of C.

Again let @ # C € D. If C has upper bounds, and among them there is a
smallest, it is the least upper bound of C. If it exists it is unique, and is denoted
by V C. Note that if C has a least upper bound then

l.AeC=4=<\C
2. A<BforalAe€C=\/C=<B.

Greatest lower bounds have a dual characterization. The notation used is /\ C.
If C has a greatest lower bound then

l.AeC=> \C=<4
2.B<AforalAeC=B=< /\C.

Let &: D —» D. & is monotone or order preserving if A < B = ®(A) <
®(B). If #(A) = A then A is a fixed point of ®.

The fundamental theorem in the subject is the following, due to Knaster
[2] in a set theoretic context, generalized to the present extent by Tarski [5].
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Fixed Point Theorem 2.1 Let (D, <) be a partial ordering and let ® be
monotone. Suppose there are A, B € D such that A < ®(A), A < B and
$(B) = B.

(1) If every nonempty subset of D has a greatest lower bound in D then ® has
a smallest fixed point between A and B.

(2) If every nonempty subset of D has a least upper bound in D then ® has a
largest fixed point between A and B.

Proof: The proof of (2) is the dual of that of (1). We only show (1).

Let C={X€D|A =< X and $(X) < X}. By hypothesis, B € C so C is not
empty.

Suppose X € C. Then 4 < X and ®(X) < X. By monotonicity, $(A4) <
$(X) and $(¥(X)) = $(X). By hypothesis, A < &(A4), hence A < &(X). It
follows that ®(X) € C. Thus C is closed under &.

By hypothesis, /\ C € D. We claim it is the desired fixed point. Note that
forallXeC, A< X, hence A=< /\C. Also BEC,so /\C=<B. Thus A\ Cis
between A and B.

Suppose X € C. Then /\ C < X. By monotonicity, <I>(/\ C) < ®(X). But

since X € C, ®(X) < X, so <I></\ C) =< X. Since X was an arbitrary member of

C, <1>(/\c) < A\C.

It follows that /\ C € C. Since C is closed under ®, <I></\ C) € C. Hence

ANC<¢d ( N\ c) .
Thus, by antisymmetry, /\C is a fixed point of ®. Finally, if F is any fixed
point extending 4, F € C so /\C < F. Hence /\C is smallest.

Remark: This theorem is also the basis for a method of proof by “generalized
induction” as follows:

Suppose the hypotheses of (1) are met. Let C € D and suppose we wish to
show the smallest fixed point of ® above 4 must be below C. This will be the
case provided

A=C
whenever X < C then #(X) < C.

Reason: let C play the role of B in the Fixed Point Theorem. Since C < C the
second condition implies ®(C) < C. Then the smallest fixed point of & above
A is guaranteed to be below B, that is, below C in this case.

More Definitions As before (D, <) is some fixed partial ordering.
Cc Dis achain if, forany A, BEC,A<BorB=< A.
MeDis maximal if M<A=>M=A. Mis minimalif A=sM= A =M.
A, B € D are compatible if they have a common upper bound, that is, for
some Ce€D, A<Cand B=<C.
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For a monotone ® on D, I is an intrinsic fixed point of ® if I is a fixed
point that is compatible with every fixed point of .

Main Theorem 2.2 Let (D, <) be a partial ordering in which D has a
smallest member, every chain has an upper bound, and every nonempty set
having an upper bound has a least upper bound. Also let ® be monotone on D.
Then the following consequences hold:

(C1) Every nonempty subset of D has a greatest lower bound in D.

(C2) If A < ®(A) then there is a maximal fixed point of ® above A.

(C3) ® has maximal fixed points.

(C4) If A < ®(A) then there is a smallest fixed point of ® above A.

(CS) ® has a smallest fixed point.

(C6) If ®(B) < B then there is a largest fixed point of ® below B

(C7) Let I be a fixed point of ®. I is intrinsic if and only if < [\ M where M
is the set of maximal fixed points of ®.

(C8) ® has a largest intrinsic fixed point.

(C9) If A < ®(A) and A <= /\ M where M is the set of maximal fixed points of
b, then the smallest fixed point of ® above A is intrinsic.

Remark: A is sometimes called sound if A < ®(A). Then C2, C4, and C9 are
conclusions about sound members of D.

Proof:

(C1) Let G be a nonempty subset of D. We show /\ G exists in D.

Define E to be the set of lower bounds of G. Since D is assumed to have
a smallest member, E is not empty. (E, <) is also a partially ordered set,
where < is the original ordering restricted to E.

We show that E contains, with each chain, the least upper bound of that
chain. Well, let C be a chain in E. By the hypotheses of Theorem 2.2, C has an
upper bound, and hence a least upper bound in D. That is, \/C€D. Let Y €
G. For each X€ C, X< Y, hence \/ C < Y. Since Y was arbitrary, \/ C €E.

Since E is a partially ordered set in which each chain has an upper bound,
E has maximal members, by Zorn’s Lemma. Let M be a maximal member of
E. We claim M is actually the greatest member of E.

Let A be some member of E. Let Y, be some member of G (which must
exist since G is nonempty). Then A < Y, and M < Y, by definition of E. Since
{A, M} has Y, as an upper bound, it has a smallest upper bound, \/ {4, M}.
It is straightforward to show that \/ {4, M} €E. But M < \/ {4, M}, and M
is maximal, so M = \/ {4, M}. Since A < \/ {4, M}, A < M. Thus M is the
greatest member of E.

E is the set of lower bounds of G, and E has a greatest member, so G has
a greatest lower bound.

(C2) Suppose 4 < ®(A). This time let E = {X € D| X < $(X)}. Since
A <®(A), Aisin E. As before, (E, <) is also a partially ordered set, where
< is the original ordering restricted to E.

We claim every chain in E has an upper bound in E. Let C be a chain in
E. Then of course C is a chain in D too, so \/ C € D. Now suppose X € C.

Then X < \/ C so by monotonicity, ®(X) < ‘I><V C). Since X € C < E,



MATHEMATICAL ASPECTS 79

X < &(X). Hence X < <I><V c>, for every X € C. Thus \/ C =< q;(\/ c), s0
V CisinE.

Since E is a partially ordered set in which each chain has an upper bound,
each member of E, in particular 4, can be extended to a maximal member of
E, by Zorn’s Lemma.

Let M be a maximal member of E. We claim M is a maximal fixed point
of & in D. Since M € E, M < &(M). By monotonicity, ®(M) < ¢(®(M)),
hence ®(M) € E. Since M is maximal in E, it follows that M = &(M), hence
M is a fixed point. Further, if Fis any fixed point of ®, trivially F € E. But M
is maximal in E, so F cannot properly extend M. Thus M is a maximal fixed
point. We have shown C2.

(C3) By assumption, D has a smallest member; we denote it by 0. Since 0
is below every member of D, of course 0 = ®(0). Then by C2, 0 can be
extended to a maximal fixed point. This establishes C3.

(C4) Suppose A = ®(A). By C2, ® has maximal fixed points above A4; let
B be one of them. Then also A < B and ®(B) < B. By part (1) of the Fixed
Point Theorem, ® has a smallest fixed point above A. This establishes C4.

(CS) Take A to be the smallest member of D in C4.

(C6) Suppose ®(B) = B.Let G={X€ED| X < B}. As usual, (G, <) isa
partially ordered set, where < is the restriction of the D ordering to G. Every
nonempty subset of G has an upper bound, namely B, and so by the theorem
hypothesis, has a least upper bound in D which, trivially, must also be in G.

Suppose A € G. Then A < B so by monotonicity, ®(A) < &(B) < B. Thus
®(A) € G; G is closed under .

Let O be the smallest member of D. Of course 0 € G, 0 = $(0), B € G,
0 < B, and $(B) < B. Then by the Fixed Point Theorem part 2, applied in G,
® has a largest fixed point in G between 0 and B. This, trivially, is the largest
fixed point of ® in D below B.

(C7) Let M be the set of maximal fixed points.

Suppose I is an intrinsic fixed point of ®. Let M be any member of M. By
the theorem hypotheses, \/ {I, M} € D. Now I < \/ {I, M} hence I = &(I) <

<1><V {1, M}). Similarly M < <1><V {1, M}). It follows that \/ {I, M} <

<I><V {1, M}). Then \/ {I, M} is in the collection E defined in the proof of

C2. Also M € E, and it must be maximal in E for, if not, it could be extended
to a maximal member of E which, by the argument earlier, would be a maximal
fixed point for ®, and would properly extend M. Since M is maximal in E, and
M < \/ {1, M}, it follows that M = \/ {I, M}. Since I < \/ {I, M} then I < M.
And since M was an arbitrary member of M, I < /A M.

Conversely, suppose I is a fixed point of ® and 7 < /A M. We show I is
intrinsic. Let F be any fixed point. Then F € E, so F can be extended to a
maximal member M of E. M is a maximal fixed point of & by the argument
earlier, so M € M. Then F< M and I < A\ M < M, so I and F have a common
upper bound, M. Since F was arbitrary, I is intrinsic.

(C8) Let M be the set of maximal fixed points of ®. Let M € M. Then

/AM =< M, so by monotonicity, <i></\ M> < ®(M) = M. Since M was an
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arbitrary member of M, fI)(/\ M) < /A M. Now by C6, & has a largest fixed

point below /\ M, which is the largest intrinsic fixed point by C7.
(C9) Finally, suppose A < ®(A4) and 4 < /A M. As we showed in the

proof of C8, <I></\ M) < /\ M. Then by the Fixed Point Theorem 2.1(1), the

smallest fixed point of ® extending 4 will be below /\ M, hence will be in-
trinsic by C7.

3 Saturated sets Kripke’s aim is the creation of a theory that contains its
own truth predicate. Tarski’s construction, under the assumption of the exis-
tence of such a truth predicate, of a paradoxical statement asserting its own
falsehood, makes the simple attainment of this goal impossible. Kripke’s “out”
is to allow some statements (the paradoxical one just referred to, for instance)
to lack truth values. That is, there can be truth-value gaps. The question is, what
rules must the assignment of truth-values to statements follow. Kripke con-
sidered several alternatives. We take up two in this section: Kleene’s (strong)
three-valued logic [1], and van Frassen’s supervaluations [6].

Rather than work with a valuation, a function from statements to truth
values, we find it more convenient and more elegant to follow Hintikka’s
tradition and work with a set of statements instead. Intuitively the set consists
of those statements a valuation would make true, if we had valuations. And we
adopt Smullyan’s device [4] of signed statements: prefixing a statement with T
or F, which in fact is suggested by Kripke himself in footnote 24 of [3]. So, if
S is a set of signed statements, it determines a mapping to truth values as
follows: For a statement X, if 7X € S, X maps to true; if FX € S, X maps to
false; if neither 7.X nor FX is in S, X lacks a truth value. Notice that, in this
approach, there is no special “undefined” truth value; lacking a truth value
simply means that no truth value has been assigned. Now the issue is: what
closure conditions do we want to impose on a set S of signed statements to
reflect our understanding of language and truth? Technical details follow.

For the rest of this section, L is a fixed first-order language with an infinite
set of constant symbols. For simplicity we assume formulas are built up using
A, ~, and V. We use statement to mean a formula of L with no free variables.
A signed statement is an expression of one of the forms 7.X or FX, where X is
a statement, and 7 and F are two fixed additional symbols.

Definitions Let S be a set of signed statements.
(1) S is downward saturated if
TXAYEeS=>TXeSand TYE S
FXAYeESs>FXeSorFYES
T~XeS=>FXeES
F~XeS=TXeS
T(vx)A(x) € S= TA(c) € S for every constant ¢
F(vx)A(x) € S= FA(c) € S for some constant c.
(2) S is upward saturated if

a. TXeSand TYeS=>TXAYES

b. FXeSorFYeS=FXAYES

—o Qo o
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c. FXeS=>T~XeS
d. TXeS=>F~XeES
e. TA(c) € S for every constant ¢ = T(Vx)A(x) €S
f. FA(c) € S for some constant ¢ = F(vx)A(x) € S.
(3) S is saturated if S is both downward and upward saturated.
(4) S is consistent if not both TX, FX are in S, for any statement X.
(5) S is atomically consistent if not both TA, FA are in S for any atomic
statement A4.
(6) S is complete if either TX or FX is in S for every statement X.
(7) S is atomically complete if either TA or FA is in S for every atomic
statement A.
(8) S is a model set if S is saturated, consistent and complete.

Note: These definitions are somewhat different than those generally in the
literature. In our use, the set of all signed statements is saturated, though not
consistent.

Let D be the collection of all sets of signed statements. < is the usual subset
relation. (D, S) is a partial ordering closed under greatest lower bounds (M)
and least upper bounds (U).

Let A be a set of signed statements. We define a map ¢,4: D - D as
follows:

®,4(8)=A4AU
{(TXAY|TX€ Sand TY € S} U
{(FXAY|FXE€ Sor FY € S} U
{T~X|FXeS}uU
(F~X|TXe S} U
{T(vx)X(x) | TX(c) € S for every ¢} U
{F(vx)X(x)|FX(c) € S for some c}.

® 4 is monotone on D. The fixed points of &4 are exactly the upward saturated
sets extending A. If M is the set of all signed statements, trivially A € M and
b,(M)<= M. Also A <€ d,4(A). Then by the Fixed Point Theorem 2.1(1), ¢4
has a smallest fixed point extending A.

Definition We have shown that, for a set A of signed statements, there is
a smallest upward saturated set extending A. We call it the upward saturated
closure of A, and denote it by AY.

Proposition 3.1 Let A and B be sets of signed statements. A € B =
AYc BY.

Proof: Obviously 4 € B = $4(S) € ®5(S) for all S. Now, suppose A S B.
Trivially @ € B. And SS BY = &,(S) € ,(BY) < ®5(BY) = BV. Then by the
Remark following the Fixed Point Theorem 2.1, the smallest fixed point of &4
is below BY, i.e., 4V < BY.

Proposition 3.2 If A is downward saturated, so is AY.

Proof: Suppose otherwise. Say A4 is downward saturated, 7X A Y € AY, but
TX & AY (the other possibilities are similar). Let B be AY with TX A Y
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removed. TX A Y could not have been in A since A was downward saturated
and A € AY. Hence A € B. Also, B is still upward saturated. But B is a proper
subset of AY, which is the smallest upward saturated set extending A. This is
impossible, so 4Y must have been downward saturated.

Corollary 3.3 If A is downward saturated, AY is saturated.

Proposition 3.4 If A is downward saturated and atomically consistent then
A is consistent.

Proof: 1t is straightforward to show that if 4 is downward saturated and
TX, FX € A, where A is not atomic, then TY, FY € A for some subformula
Y of X.

Corollary 3.5 If A is downward saturated and atomically consistent then
AY is consistent.

Proof: If A is downward saturated, so is AY. Say 4 is also atomically consis-
tent. A and AY contain the same signed atomic statements, hence 4Y is atom-
ically consistent, and thus consistent.

Proposition 3.6 If A is atomically complete then AY is complete.

Proof: If TX ¢ AY and FX ¢ AY where X is not atomic, then it is easy to show
that, for some subformula Y of X, TY ¢ AY and FY ¢ AY.

Corollary 3.7 If A is downward saturated, atomically consistent and
atomically complete then AU is a model set extending A.

Corollary 3.8 If A is downward saturated and atomically consistent. then
A can be extended to a model set.

Proof: Enlarge A to an atomically complete set B by adding exactly one of TX
or FX for each atomic X not already present. B is still downward saturated,
atomically consistent, and is also atomically complete. Then BY is a model set.
But also 4 < B, hence, by Proposition 3.1, 4 € AY < BY.

Remarks: This corollary, essentially due to Hintikka, is the basis of most tableau
completeness proofs. One attempts to find a tableau proof by systematically
doing everything possible. If no proof is found, the process generates a down-
ward saturated, atomically consistent set, from which a suitable model can be
produced using Corollary 3.8. Smullyan [4] presents this style of proof in an
elegant fashion.

Nonetheless, model sets, since they assign truth values to all statements, will
not suit our purposes. We want the weaker notion of consistent, saturated
set. Let P(x) and Q(x) be two predicate symbols of L. Consider the set
A= {TP(a), TP(b),...}, where a, b, ...are all the constants of the language
L. This set is atomically consistent and trivially downward saturated. Then 4Y
is a saturated, consistent extension. It is easy to check that the following are
in AY:

T(vx)P(x)

F ~ (vx)P(x)

F ~ (Vx)P(x) A (VX)QO(x).
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On the other hand, it is also easy to check that neither T(¥x)Q(x) nor
F(vx)Q(x) is in AY; it is definitely not a model set.

One possible objection to using saturated, consistent sets is the following.
Consider the set A defined above. Since (Vx)Q(x) receives no truth value in
AY, (vx)O(x) v ~(¥x) Q(x) also receives no truth value. But while (vx) Q(x)
may plausibly be something lacking a truth value, there are more than senti-
mental reasons for taking (vx)Q(x) v ~(vx)Q(x) to be true. The following
presents an alternative closure notion that accomplishes precisely this. An
equivalent to the characterization of AY we gave is: it is the intersection of the
family of upward saturated sets that extend A. This version parallels the next
construction quite closely.

Definition Let A be downward saturated and atomically consistent. By 4"
we mean the intersection of the family of all model sets that extend A. (Note
that by Corollary 3.8 this family is nonempty.)

Proposition 3.9 Suppose A is downward saturated and atomically con-
sistent. Then:

(1) AY is upward saturated and consistent

(2 AYc AY

(32/ if B ‘fs also downward saturated and atomically consistent then A € B =
A" S B".

Proof:

(1) Every model set is upward saturated, and it is easy to check that the
intersection of upward saturated sets is upward saturated. Similarly for con-
sistency.

(2) AY is the smallest upward saturated set extending A, and hence is a
subset of the upward saturated set 4".

(3) Let F4 be the family of model sets extending A4, and similarly for Fp.
Suppose A S B. Then any model set extending B also extends 4, so Fz S F 4.
It follows that NF4 € NFp, that is, 4V < B”.

Once again, consider the set A = {TP(a), TP(b),...}. Since model sets
are complete, (Vx)Q(x) has a truth value in each model set, and it follows that
TI(vx)Q(x) v ~(¥VXx)Q(x)] must be in every model set. Thus (vx)Q(x) v
~(Vx)Q(x) acquires the value true in 4. On the other hand, one can consis-
tently add either T(vx)Q(x) or F(vx)Q(x) to A, and extend the result to a
model set using Corollary 3.8. Since (Vx)Q(x) gets different truth values in
different model sets extending A, it has no truth value in 4", Incidentally, since
TI(vx)Q(x) v ~(¥x)Q(x)] is in A" but neither T(vx)Q(x) nor F(Vx)Q(x) is
present, A" cannot be downward saturated.

Suppose we define a partial truth valuation v as follows:

Tif TX € AY
v(X) =4 Fif FXxe AY
undefined otherwise .

v meets the conditions of Kleene’s three-valued logic [1].
Just as we did with AY, we may use 4" to define a partial truth valuation.
This time we get one meeting the conditions of van Frassen’s supervaluations
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[6]. We continue to work with sets of signed statements, though, rather than
with partial valuations.

4 The Kripke construction We need a first-order language capable of
supporting the machinery to code its own syntax. The details are not critical.
For definiteness we use a language of arithmetic.

For this section let L be the first-order language with 0, 1, 2, .. .as constant
symbols, +, * as function symbols, and = and T as relation symbols (T is
1-place). T is intended to play the role of a truth predicate.

If X is a statement of L that does not contain T, we say X is true or false
if X is true or false in the standard model for arithmetic, under the obvious
interpretation. The problem is to assign truth values to statements containing T.

If X is a statement of L, " X' is the Godel number of X, under some
standard Godel numbering.

Kripke essentially works with extension-antiextension pairs {S;, S,) where
formulas in S; are “true”, formulas in S, are “false”, and formulas left out
have no truth value. As Section 3 suggests, we prefer working with the set of
signed formulas {TX|X € S;}U {FX|X € S,}. This is, of course, a simple
variant, but it does allow connections with other parts of formal logic.

Let A be the set of “atomic arithmetic truths”. That is, if X is an atomic
statement of L not containing T, then if X is true, 7X € A, and if X is false,
FXeA.

Note that both AY and A" are completely determined by the signed
atomic statements they contain. Thus we can confine members of D in the fol-
lowing to the atomic level, which allows us to use the same D for both U and
V completions.

Let D consist of all sets S of signed atomic statements of L (including those
involving T) such that:

1. AcS
2. S is (atomically) consistent.

(D, <) is a partial ordering, where < is the usual subset relation. D is closed
under N but not under U, since the union of consistent sets need not be consis-
tent. However, it is straightforward to check that (D, <) satisfies the conditions
of the Main Theorem 2.2. A itself is the smallest member.
Next we define two operators ¢, and ®, on D, corresponding to the two
notions of closure defined in the previous section. We take them one at a time.
For S&€D

du(S) =AU
{TT("X")|TX e SV} U
{FT("X")|FXx e SY}.

Let S € D. S consists of signed atomic statements, hence is trivially down-
ward saturated, and atomically consistent by definition. Then SY is saturated
and consistent. Since A € S it follows easily that all true signed statements
of arithmetic are in SY. Since SV is consistent, {TT("X ') |TX € SV} U
{FT("X") | FX € SY} is atomically consistent. Certainly A is atomically con-
sistent. Since the members of A do not contain T, these sets do not involve
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common statements, so the union, ®;(S), is atomically consistent. ®(S)
extends A by definition. Then ®,(S) is a member of D.

We showed in Proposition 3.1 that A € B= AY < BY. It follows that &,
is monotone. Thus we have a monotone operator $,: D - D.

Remark: Recall, a set S € D is sound if S € ®;(S). Soundness essentially says
S does not call anything true that it shouldn’t. For example, if TT(" X ') is in
S but TX is not in SY, S will not be sound since TT("X") will not be in
®,(9).

Now the definition of ®, should be obvious. For S € D,

®(S) =AU
{(TT("X")|TXeS"} U
{FT("X")|FxX e S"}.

The same argument as above shows that &,: D — D. And Proposition 3.9(3)
implies that ®, is monotone.

By the Main Theorem 2.2, both ®;, and ®, have fixed points. If S is a
fixed point of ®, then SV essentially contains its own truth predicate. That is,
SY makes X true (TX € SY) if and only if SY makes T("X") true. Similarly
for S¥ where S is a fixed point of ®;.. Of course, some statements will be left
without truth values. Reasonable people can (and do) differ on whether the
U-version, or the V-version, or some other version altogether, gives truth values
to the most statements in a way that is compatible with our understanding of
the logical connectives and quantifiers.

Of course, both & and &, have many fixed points. Not all are of equal
importance, however. We state the following for &, but of course analogous
things apply to ®.

The smallest fixed point of &, (guaranteed to exist by Theorem 2.2(C5) is
most fundamental. Kripke calls a statement grounded if it has a truth value in
SY, where S is the smallest fixed point of ®,. Neither a statement asserting its
own truth nor a statement asserting its own falsehood is grounded.

Kripke calls a statement paradoxical if it has no truth value in SY for any
fixed point S of ®;,. A statement asserting its own falsehood is paradoxical; a
statement asserting its own truth is not. Since every fixed point can be extended
to a maximal fixed point (by Theorem 2.2(C2)), one can equally well say a
paradoxical statement is one that has no truth value in MY for any maximal
fixed point M of ;. Thus the maximal fixed points play a significant role, but
there is no reason to single one out as being more fundamental than the rest.

There is no largest fixed point. There is, however, a largest intrinsic fixed
point (by Theorem 2.2(C8)). Kripke calls a statement intrinsic if it has a truth
value in 7Y for some intrinsic fixed point I of ®,. This is equivalent to saying
it has a truth value in BY where B is the largest intrinsic fixed point of ®.

One might wonder about the relationships that entail between the fixed
points of ®;; and ®,.. There are a few easy results to be had here.

First we note that, for each S, ®,(S) € ®,(S). This follows immediately
from Proposition 3.9 and the definitions of & and &,.
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Proposition 4.1 The smallest fixed point of ®y is below the smallest fixed
point of ®y.

Proof: We use the generalized induction method outlined in the Remark
following the Proof of Theorem 2.1.

Let S be the smallest fixed point of ®y.

Trivially A € S.

Suppose A < S. By monotonicity, ®,(A) S ®,(S). By the observation
above, ®,(S) € ®,(S) = S. Then &,(A) S S.

It follows that the smallest fixed point of &, (extending A) is below S.

Proposition 4.2 Every fixed point of & has a smallest fixed point of &
above it.

Proof: Let S be a fixed point of ®;. Then S = &,(S) € $,(S). Now use
Theorem 2.2(C2).

Proposition 4.3 Every fixed point of ®, has a largest fixed point of ®y
below it.

Proof: Let S be a fixed point of ®,.. Let (D, &) be the partial ordering defined
earlier in this section. Let E = {4 € D| A4 < S}. Then (E, <) is also a partial
ordering. But E has a largest member, S. Trivially, then, every nonempty subset
of E has an upper bound, namely S, and it follows that it has a /east upper
bound.

Suppose A € E. Then A € S, so &y(A) € ¢4(S) € $(S) =S. Thus E is
closed under ;.

S € E, hence &4(S) € E, and so ®,(S) < S. Now by the Fixed Point
Theorem 2.1(2), $y has a largest fixed point below S.

Remark: By this proposition, any maximal fixed point of & has a largest fixed
point of &, below it. Suppose it could be shown that any maximal fixed point
of &, has a maximal fixed point of &, below it. Then it could also be shown
that the largest intrinsic fixed point of &, is a subset of the largest intrinsic
fixed point of ®,.

5 Approximating fixed points In Kripke’s paper, and in many papers based
on it, the existence of a smallest fixed point of a monotone operator is estab-
lished by using a transfinite sequence of approximations from below. We have
chosen not to base our development on this method. Nevertheless, it does
provide one with a good feeling for the character of the smallest fixed point. It
is a limited technique in that there may be fixed points not obtainable by this
method. It does, however, apply to the largest intrinsic fixed point, in a “dual-
ized” form. In this section we sketch the method, partly to make contact with
other papers, partly because many people seem unfamiliar with the dual version.

For this section we suppose (D, <) is a partial ordering satisfying the
hypotheses of the Main Theorem 2.2, and we assume & is monotone.

Let A be a sound member of D, that is, 4 < ®(A). We define a transfinite
sequence of members of D, indexed by ordinals, as follows.



MATHEMATICAL ASPECTS 87

AO =A
A1 = 2(A,)
Ay =\ {A,| @ < \} for limit ordinals A.

This is an increasing sequence in the sense that A, < A, for all «. The
proof is by (transfinite) induction on «.

Case 0: Ag < A, says A < &(A) which is true since A is sound.

Successor case: Suppose A, < A,1. Then by monotonicity, ®(A,) < ®(A,+1)
which says that A, < Ag42.

Limit case: Suppose N\ is a limit ordinal and, for each o < N\, A, < Aq4;-
Choose an o < A. By definition of A,, A, < A,. Hence ®(4,) = ®(A4,) or
Aq41 < Ayxy1. Using the induction hypothesis, it follows that A, < A,,,. Since
o was arbitrary, \/ {4, |a <A} < Ay, or Ay < Axiy.

Remark: Another way of stating this is that every member of the sequence is
sound.

Thus the A, sequence is weakly increasing. Suppose we write < to mean
< but not =. We certainly cannot have that the sequence is strongly increasing
(A, < A,41), because it would follow that all members of the sequence are
distinct. But then there would be as many as there are ordinals, while all are
members of the set D, a clear impossibility. Then, for some «, we must have
A, = ®(A4,); some member of the sequence is a fixed point.

Incidentally, once a fixed point turns up in the sequence, the sequence
remains constant from that point on.

Suppose F is a fixed point of ® extending 4. Then A, < F of course.

Say A, < F. Then A, =®(A,) =®(F)=F,s0 A,y =< F.

Say A, < F for every o < A. It follows immediately that A, < F.

Then by induction again, every member of the sequence is <F. Since F was
arbitrary, it follows that the fixed point the sequence eventually hits on is the
smallest fixed point extending A.

If we start with the smallest member of D, we will have a sequence of
approximations, from below, to the smallest fixed point of ®.

Next we sketch a dualized version of this. Choose a member B € D such
that ®(B) < B. This time define a sequence as follows.

BO = B
By+1 = ®(B,)
B\ = \ {B.|a <A} \ a limit ordinal.

This time it can be shown that the sequence is decreasing, B, < B,, and
that it eventually settles on the /argest fixed point of ® below B. We leave the
argument to the reader.

If we start with /\ M, where M is the set of maximal fixed points of ®, the
sequence converges to the largest intrinsic fixed point.

One sometimes thinks of the terms in the A, sequence earlier as stages in
a “learning” process that goes on transfinitely long, though not forever.
Then the terms in the B, sequence are probably best thought of as stages in
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a “forgetting” process. The smallest fixed point, being below the largest intrinsic
fixed point, it follows that in these processes one cannot forget more than one
learns. This seems like a comforting point at which to conclude.

REFERENCES

[1] Kleene, S. C., Introduction to Matamathematics, Van Nostrand, New York, 1952.

[2] Knaster, B., “Un théoréme sur les fonctions d’ensembles,” Annals de la Societé
Polonaise de Mathematiques, vol. 6 (1928), pp. 133-134.

[3] Kripke, S., “Outline of a theory of truth,” The Journal of Philosophy, vol. 72
(1975), pp. 690-716.

[4] Smullyan, R., First-Order Logic, Springer-Verlag, Berlin, 1968.

[S] Tarski, A., “A lattice-theoretical fixpoint theorem and its applications,” Pacific
Journal of Mathematics, vol. 5 (1955), pp. 285-309.

[6] van Frassen, B., “Singular terms, truth-value gaps, and free logic,” The Journal of
Philosophy, vol. 63 (1966), pp. 481-485.

Department of Mathematics and Computer Science
Herbert H. Lehman College

Bedford Park Boulevard West

Bronx, New York 10468





