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The Logic of Free Acts and the Powers of God

PETER FORREST*

In this paper I provide a formalization of the logic of free acts for which
I obtain a decision procedure by means of a reduction to S5. Although this
formalization has independent interest, I provide it chiefly for the sake of an
application to philosophical theology, namely an argument to show that a certain
characterization of the powers of God is coherent, and, moreover, compatible
with God's giving to some other agent a power to act freely. (Here, note, I am
not relying on any purported reconciliation of free will and predestination: I
believe that free acts are not predestined.)

/ Preliminaries A formal language is designed to represent the interesting
features of some class of propositions. In this paper I shall consider proposi-
tions about the free acts and the powers of agents. Let us represent

X acts freely at time t9 and a consequence of X's action is that a

as:

XAta .

And let us represent:

X has the power at time t to act freely in such a way that a consequence
of X's act is that a

as:

XUta .

Notice that I am not only concerned with the intended consequences of acts. By
a consequence I mean anything brought about by the act. For that reason, my
formalization might be too crude for an application to deontic logic.

*I am indebted to Dr. John B. Bacon of Sydney University and Father Barry Miller of
the University of New England, Armidale, for their helpful comments on earlier drafts
of this paper.
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In addition I shall use the concept of time-dependent necessity (necessity
per accidens). So let us represent:

It is necessary at time t that θ

as

Lfi .

I shall use 'M/ as an abbreviation for '~Lt~\ So Mtθ represents:

It is possible at time t that θ.

And I shall abbreviate 'Z,,.' to ' V , 'Λf,/ to 'AT,-'.
The conceptual role played by time-dependent necessity is that no agent,

not even God, can bring it about that θ at time /, if θ is either necessarily true
or necessarily false at time t.

It is widely assumed that if some process, event, or act occurs before / then
it is necessary at t. Nowhere in this paper do I assume this, which, in fact, I am
inclined to reject. But if the reader believes it and it helps him or her give content
to the notion of necessity at time t, it will do no harm for the purposes of this
paper.

If a proposition is necessary at all times I say it is eternally necessary.
Presumably, all logical truths are eternally necessary.ι I, like most theists,
would claim that the existence and attributes of God are eternally necessary, even
if, as I am inclined to believe,2 they are logically contingent. The atheist might
claim that the existence of laws of nature and the nonexistence of God are
eternally necessary.

Nothing I have said so far would prevent the combination of the logic of
free acts with tensed logic. But in this paper I shall restrict my attention to
propositions considered to be true or false independently of time.

How suitable is this formalization to the problems raised by God's acts?
At one stage I thought it was not suitable. For is not God thought of as eter-
nal, in some sense? However, if by His3 eternity you merely mean—as I do—
that He undergoes no real change,4 then His eternity is compatible with His
acting at a time, provided he knew before He acted everything He knew after-
wards. Alternatively, suppose you mean by God's eternity that even His acts
have no temporal location. In that case, you should, I suggest, rely on the
following method. First examine any problems raised by God's powers on the
assumption that He does act in time. Then see in what ways, if any, God's
eternity is considered relevant to the discussion about God's powers. The justifi-
cation for this method is that it is extremely hard to think at all about acts out
of time. So we should, as a first approximation, consider God as acting in time,
even if He does not.

We may now write down some axiom-schemata for a logic of free acts. (I
shall use Γ as a variable ranging over Δ and Π.)

AS1 If θ is a wff obtained by uniform substitution from a thesis ofS59 then:

Yd .
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AS2 If t2> tu then:
\-LιθDL2θ .

AS3 hCL,(£ ^ ) & XTtξ) D XTt ηvLtη.
AS4 \-XAtθ D θ.
AS5 \-XAtθDXIltθ.
AS6 1-̂ 11,0 D MfXAtθ.
AS7 \-XUtθDMt(~θ).
AS8 IfXΦY,then:

AS9 IfX*Y,then:

h -ΛΓΔ^rΔ.Φ) .

AS10 |-ArΔ1(~yΔ2l9) DXAι(~Yπ2θ).

ASlli 7//2> Ί, **έ?Λ:

\-XAxθ D L2(XAχθ) .

A S l l i i Lfa/ess t2> t u

Y~L2(XAxβ) .

AS12 1-^ίDl^ί.

All these axiom-schemata are intuitively plausible except AS8, which I shall
discuss below. However, the plausibility of AS7, AS10, and ASllii depends on
a libertarian (anti-reconciliationist) understanding of the concept of a free act.

Many instances of AS8 represent falsehoods, for X and Y could act simul-
taneously and over determine the truth of θ. Nonetheless I include AS8 because
I am primarily concerned with what is consistent with our intuitions about free
acts, not with what follows from them. As a consequence, if I have to choose
between a system that is too strong and one that is too weak, I should err on
the side of excessive strength. It is intuitively plausible that no two agents can
perform acts whose immediate consequences are identical. And any wff consis-
tent in the system I develop will, a fortiori, represent a proposition consistent
with that intuition.

The formal system I would obtain using those axiom-schemata I call TLA
(time-dependent logic of free acts). However, TLA is hard to work with, for it
involves a proliferation of modal operators. Even assuming, as I would rather
not assume, that time necessarily has the structure of the real line, the prolif-
eration of operators leads to difficulties. (The reader who is skeptical of this
should try to prove analogues of the results of this paper for TLA.)

As a consequence I shall consider two formal systems (LA and LA*)
which although they involve messier axiom-schemata are easier to handle at the
meta-level. I shall replace XTtζ by XT(Θ, ξ) where θ is a suitable description
of what is necessary at time t. I shall keep, however, one modal operator L,
representing eternal necessity. Now one might think that θ would be a suitable
description of what is necessary at time t just in case

(0 Lfi



FREE ACTS AND THE POWERS OF GOD 23

and

(ii) If Ltφ thenL(0Dφ).

However that would involve X's power to act at time t as part of the descrip-
tion of what is necessary at time /, namely 0, where the power in question is now
represented as XU(Θ, ξ). Such circularity should be avoided. Consequently
when describing what is necessary at time /, for the purposes of describing X's
power or X's act at time t9 we should leave out A^s power to act. We then
describe what else is necessary at that time (up to eternal necessity).

Similarly, if we are to avoid circularity we should not include X9s act as
part of the description of the consequences of X's act. So in the description
XA(Θ, ξ), the formula XA(Θ, £) should neither be ξ nor a conjunct of £. (The
failure to exclude such formulas would result in infinitely long wff, so they are
automatically excluded in the formal system I develop.)

In the next section I shall develop the formal systems LA and LA*, based
on my use of XT(Θ, ξ) instead of XΓtζ. The axiom-schemata are motivated by
the corresponding ones for TLA. Indeed the sole purpose of introducing TLA
in the first place was to motivate the systems LA and LA*.

2 The formal systems LA and LA * In this section I present the formal
systems LA and LA*. LA* might seem capable of representing a richer variety
of propositions than LA. However, in Section 4 I prove a result which enables
us to restrict our attention to the simpler system LA, by showing that every wff
in LA * is equivalent to one in LA.

The atomic wffs are the letters/?, q, and r, with subscripts as required. In
addition to the basis and definitions of S5, using the modal operator L, there
are extra primitive symbols, formation rules and axioms.

The extra primitive symbols are:

(i) A, B, C, with subscripts as required, and G. (These are to be thought of
as the names of agents, there being only one name for each agent. G is
reserved for use as a name for God.)

The following met alogical variables are used:

(i) Lower case Greek letters, ranging over all wffs.
(ii) X and Y, ranging over A, B, C (with or without subscripts) and G.

(iii) Γ ranging over Δ and Π.
(iv) K ranging over L and M.

Subscripts are used, as required, to provide extra metalogical variables.

The extra formation rule for LA* is:

FR* XT(Θ, ξ) is a wff.

The extra formation rule for LA is:

FR If θ and φ contain no modal operator, L or M, then XT(Θ, ξ) is a wff.
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The degree of a wff is defined as follows:

(1) Atomic wffs have degree zero.
(2) Any wff formed out of wffs of degree at most m, one of which is of degree

m, without using FR or FR* is also of degree m.
(3) If 0 and φ are of degree m and n respectively, the degree of XT(Θ, φ) is one

plus the greater of m and n.

The extra axioms are given by the following schemata:

AS1 If 0 is a wff obtained by uniform substitution in a thesis of S5, then:

\-θ .

AS2 HW M ) 4 AT(0, ξ)) D XΓ(φ, ξ).

AS3 KL({ D V) & AT(0, £)) D (ΛT(fl, r?) v l ( ( ί & ΛΉ(0, £)) D )?)).
AS4 \-XA(θ, ξ) Dθ&ξ.
AS5 h^Δ(6>, J) DJrΠ(6>, {).
AS6 K*ΊI(0, ξ) D MVΔ((9, ξ).
AS7 hΛΊI(0, ί ) D M(^Π((9, ξ) & Θ & ~ξ).
AS8 IfXΦY,then:

\-~(XA(θ,ξ)&YA(φ,iί)) .

AS9 IfXΦY,then\

\-(XA(θ, ϋ & L(XA(Θ, ξ) D r Δ ( 0 , i,))) D L(fl & ^ Π ( 0 , {) D 7Δ(φ, r/)) .

AS10 IfXΦY.then:

\-(XA(θ, {) & L(*Δ(0, ξ) D ^ r Δ ( φ , ry)) D (L(β & ^ Π ( 0 , ί ) D

The transformation rules are the same as for S5, namely:

MP (Modus Ponens) If \-φ D φ and \-φ then \-φ.
RN (Rule of Necessitation) If \-φ then \-Ltφ.

3 Some additional remarks on the axioms

(1) I have not included \-XΊH(θ, ξ) D θ. Likewise I have not included an ana-
logue of schema (12) for TLA. This enables me to interpret XU(Θ, ξ) as 'X
would have the power. . . \

(2) In AS3 the second disjunct of the consequent is L((θ & ΛΊI(0, ξ) D η)), not
L(θ D η). That is because I have said that 0, the description of what is
necessary at the time of the act, must not include Xϊl(θ, ξ) itself.

(3) The intuition behind the schema (Hi) of TLA is not expressible in LA*. But
that intuition may instead be used to motivate the following definition of
a temporal ordering of acts:

*Δ(0, ξ) < YA(φ, η)

j u s t in case L(φ D XA(Θ, £ ) ) •
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(4) The analogues of schema (9) and schema (10) of TLA are, respectively:

IfXΦ Y, then:

h~XA(θ9 YA(φ,η)) .

IfXΦY, then:

V YA(Θ, ~ YA(φ9 η) D XA(Θ, ~ YΠ(</>, η) .

Using AS1 to AS7, these are interderivable with AS9 and AS10. I prefer AS9
and AS 10 because they are only of degree one.

4 Tautologies, substitution of equivalents, and normal forms

Tautologies: If θ is obtained by uniform substitution in a tautology of the
Sentential Calculus, then θ is said to be a tautology. We can test whether a wff
is a tautology in the usual way.

Substitution of Equivalents: The usual rule for substitution of equivalents holds.
One has to check that if \-θ = φ, then:

(1) γ~Q = ~φy yβ\j σ = 0v σ, hσv#Ξ=σvφ

(2) \-LΘ = Lφ
(3) \-XT(θ9 ξ) = XΓ(φ, ξ), \-XΓ(σ, Θ) =XΓ(σ, φ).

Normal Forms: Any wff of 55 can be reduced to a modal conjunctive normal
form (see [4]), that is, a conjunction of disjunctions of wffs of the form β, Lσ
and Λfδ, where β, σ, and δ contain no modal operators. Hence by AS1, every
wff in LA can be reduced to Modal Conjunctive Normal Form. The following
theorem shows that any wff in LA* can be reduced to Modal Conjunctive
Normal form and justifies considering LA rather than LA*.

Theorem 1 If a is any wff in LA* then there is a wff β in LA such that
a ΞΞ β is a thesis of LA*.

Proof: Four lemmas are required.

Lemma 1 If K is L or M, \-KφDL((θ & (φvKψ)) = θ).

Proof-sketch: a D ((θ & (φ v a)) = θ) is a tautology and, hence, by AS1,

(1) [-KψD {(θ &(φ\/Kψ)) = θ).

By (1) and the standard result that if hex D β then \-La D Lβ,

(2) \-LKφDL((θ&(φwKφ))=θ).

By (2), AS1 and MP,

(3) \-KφDL((θ&(φvKψ))=θ).

Lemma 2 If K is L or M, [-~KψDL((θ& (φvKψ)) = (0&Φ)).

Proof-sketch: -a D ((θ & (φ v a)) = (θ & φ)) is a tautology: the proof con-
tinues as for Lemma 1.
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Lemma 3 If T is A or II and if K is L or M,

YXT(Θ& (φvKψ), ξ) =
«XΓ(Θ9 ξ) & Kφ) v (XT(Θ & φ, £) & ~Kφ)) .

Proof-sketch: By AS2,

(1) YL{a ^β)D (XT(a, ξ ) = Λ T ( / J , £ ) ) .

By (1), Lemma 1, AS1, and MP,

(2) YKφ D (XT(Θ & (φ vKφ), ξ) = AT(0, {)).

By (1), Lemma 2, AS1, and MP,

(3) Y~Kφ D (XT(Θ & (φvKφ), ξ) ̂  JTΓ(0 & φ, {)).

By (2), (3), ASl,andMP,

(4) YXΓ(Θ & (φ v Λψ), ξ) = ((^Γ(6>, ξ) & ^ ) v (JTΓ((9 & φ, ξ) &

Lemma 4 / / Γ / 5 Δ o r Π α/tί/ //AT is L or M,

hXΓ(ξ, ΘSc(φyKφ))^ ((AT(£, fl) & ̂ ) v
( j r r ( ί , β & φ ) & ^ ^ ) ) .

Proof-sketch: By AS1, AS5, AS7, and MP,

(1) YXT(Θ, Ϊ)D~L(ΘDH).

By (1), AS1, AS2, and MP,

(2) YL(^η)D(XT(θ,ξ)^XT(θ,η)).

The proof now continues as for Lemma 3.

Proof of Theorem: The proof is by induction on the degree of the wff a. The
wffs in LA* of degree zero are all wffs in LA. Assume that the theorem holds
for all wffs of degree at most k and that a in LA* is of degree k 4- 1. By the
Principle of Substitution of Equivalents it suffices to prove the required result
for wff XT(Θ, £) of degree k + 1. Since θ and ξ are of degree at most k, one
can assume that there are wffs λ, f in LA such that Yθ s λ and Yξ = f. Hence
by the Principle of Substitution of Equivalents, YXΓ(Θ, ξ) = XT(λ, f), so it
suffices to prove the required result for wff XT(\9 f), where λ and ζ are in LA
and hence can be reduced to Modal Conjunctive Normal Form. Hence by the
Principle of Substitution of Equivalents, it suffices to prove the required result
for wff XT(μ, η) where μ and η are the conjunctions of disjunctions of wffs of
the form β, Z/y, and Mb, where β, y, and δ contain no modal operators. The
required result now follows from repeated applications of Lemmas 3 and 4.

5 Closed sets and skeletons Having presented the systems LA and LA* and
having shown that we need not consider LA*, in the next four sections I discuss
methods for establishing the consistency of wffs. These methods involve the
semantics for LA in the sense of a theory of models for LA. I do not consider
this semantics to provide even an approximation to a theory of meaning for
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propositions about acts and powers. Consequently, the completeness of LA is
of no intrinsic interest, I merely prove it in order to convert the decision
procedure for validity ("truth" at all worlds in all models) into a decision
procedure for consistency.

When discussing the semantics of LA it is convenient to have models not
just for the whole of LA but also for suitable sets of wffs in LA. These sets I
call closed sets.

Definition A set 5 of wffs in LA is said to be a closed set if it has the
following six properties:

CS1 a is in 5 iff ~α is in 5.
CS2 a v β is in 5 iff both a and β are in 5.
CS3 La is in 5 iff a. is in 5.
CS4 XΔ(a, β) is in 5 iff XU(a9 β) is in 5.
CS5 If XT (a, β) is in 5, a and β are in 5.
CS6 If XT (a, β) and_rΓ(γ, δ) are in 5, then XT (a & 7, 0 vδ) and YT(a &

7, β v δ) are in S.

CS1 and CS5 ensure that if a wff is in 5 enough relevant wffs are in 5 for one
to have sufficiently many axioms in 5. CS6 is required for technical reasons
which will be apparent in the proof of Theorem 3.

Definition If 5 is any set of wffs in LA, the closure 5 of 5 is the intersec-
tion of all closed sets containing 5.

Notice that the empty set, the set of all wffs, and the set of all wffs of
degree less than m, are all closed sets. Notice also that any intersection of closed
sets is closed. Hence every set has a closure and the closure is closed.

Closed sets are handled by means of their skeletons, and the associated
proper axioms.

Definition A subset R of a closed set 5 is said to be a skeleton of 5 if it has
the following two properties.

SKI R contains every atomic wff in 5.
SK2 For every XT(a, γ) in 5 there is one and only one pair of wffs (β, δ)

such that XT(β, δ) is in R and such that a = β and y = δ are tautologies.

Definition If R is a skeleton of 5, the set of instances of AS2 to AS 12
formed out of R using ~, v, and L but without using FR form the set of proper
axioms associated with R.

6 Models for closed sets If 5 is a closed set, a wff a in S is said to be an
5-thesis if there is a derivation of a the lines of which are wffs in S, that is a
derivation from axioms in S using MP and RN. In this way one obtains a formal
system LA(S). Similarly, if one restricts oneself to the axiom-schema AS1, one
obtains a formal system 55(5). The Semantics of LA(S) is obtained by con-
sidering some of the models for 55(5).

A model for 55(5) consists of a set W called the set of possible worlds and
a valuation V which assigns at each world in W a truth-value T or F to each wff
in 5. The usual rules must hold:
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V— V assigns T to a at w iff V assigns F to ~ a. at w.
Vv V assigns T to α v β at w iff either V assigns T to a. at w or V assigns T

to β at w.
VL V assigns T to La at w iff V assigns T to a at all worlds in W.

These rules ensure that all instances of AS1 in S are T at all worlds, and
that if φ D φ and φ are T at some world w then ψ is T at w.

A model for S5(S) is also a model for LA (S) if, in addition, V assigns the
value Γat all worlds to every instance of AS2 to AS 12 in 5. It follows that every
thesis in LA(S) is L^4(S)-valid, that is, Γat all worlds in all models for LA(S).

The semantics of LA can be handled by using the strategy of first construct-
ing models for LA(S), where S is some suitably small closed set, and then
extending these models to models for the whole of LA. The following theorem
is a collection of a number of results useful in the construction of models for
closed sets.

Theorem 2
(1) Let R be a skeleton of the closed set S. If W is a set of worlds and if U is
an assignment of truth-values at members of W to members of R, then there is
a unique model for S5(S) with set of worlds W and valuation V such that V
agrees with U on R and such that ifa = β and y = δ are tautologies V assigns
the same truth-values to the wffXT(a, y) and ΛT(j8, δ), assuming that they
are both in S.
(2) Suppose U is the assignment of truth-values mentioned above and V its
extension to S. If V assigns the value T to every proper axiom associated with
R at every world in W, the pair { W, V) is also a model for LA(S).
(3) If S is a finite set of wffs, its closure S has a finite skeleton and there is a
finite set of associated proper axioms. Moreover there are rules for writing
down, in a finite number of steps, a skeleton of R and the set of associated
proper axioms.

Proof:

(1) Let Q be the union of the set of all atomic wffs in S with the set of all
wffs in S of the form XT (a, y). By SK2, U extends to a unique valuation U*
of Q which assigns the same truth-values to XT(a9 y) and XT(β9 δ) if a = y
and β = δ are tautologies. Every wff in S is formed out of members of Q in
precisely one way using —, v, and L. Therefore there is a unique extension Fof
U* to the whole of S satisfying the rules V~, Vv and VL.

(2) If φ is an instance of axiom-schema AS2 to AS 12 in S, one can obtain
a wff φ1" in the set of proper axioms associated with R by replacing every occur-
rence of AT(α, 7) in φ by the unique XT(β9 δ) in R such that a = β and
γ Ξ δ are tautologies. Vassigns the same truth-values to φ and </>*, so φ is Γat
all worlds.

(3) The following procedure can be used to obtain a skeleton R of 5, for
any given finite set S:

Step 1: Write down all the atomic wffs and all the wffs of the form XT'(α,
j8) which occur in wffs in S.

Step 2: If XT(a, y) and XT{β, δ) both appear in the list and a s β and
7 Ξ δ are tautologies, delete the second of XT(a, y) and XT(β, δ).
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Step 3: If XA(a9 β) is in the list but XU{a, β) is not in the list write down
XU(a9 β) and conversely.

Step 4: If, for some integer n > 2, XxTl(au βx)9 X2U(a29 j82), . , and
XnIl(an9 βn) are already in the list before Step 4, but not necessarily in that
order, write down X{U(aι & a2 &.. .& an, β{ v j82 v . . . v βn), if it is not
already in the list.

Step 5: Repeat Step 3.
Step 6: Repeat Step 2.
In this way one obtains a finite set of wffs. It is easy to check that this set

is a skeleton for S. The set of associated proper axioms is obtained in the
obvious way.

Example: If S consists of the single wff AA(q v ~q, p & BU{p9 q))9 a skeleton
of S consists of the following ten wffs:

p; q\ BU{p9 q)
AA(qv~q9p&BU(p9q))
BA(p9 q)
AU(qv~q9p&BIl(p9q))
BU(p& (qv~q), qy(p&BU(p9 q)))
BA(p &(qv ~q)9 qv(p& BU{p, q)))
AIl({qv~q) &p, (p & BTί(p, q)) v q)
AA((qv~q) & p, (p & BU{p, q)) v q).

Let Wconsist of four worlds, wu w2, w3, and w4. The following describes
a model for LA{S).

V assigns T to p at w{ and w2

V assigns T to q at M̂  and w3

F assigns Γto ^Π(/7, g) at w{ and w2

F assigns Γto AA(q v -g, /? & ^Π(/7, ^)) at wx and vv2

Fassigns Γto BA(p, q) at W!
F assigns T to >1Π(^ v ~q9 p & 5Π(p, <7)) at all worlds.
Otherwise V assigns F t o each wff in the skeleton.

I leave it to the reader to check that all the associated proper axioms are
T at all worlds. Notice also that A is maxipotent at all worlds; that is,
M(AA(Θ, £)) D AH(Θ, £) is true at every world for every θ and ξ.

7 The extension theorem The following theorem shows that if one has a
model for S using & finite set of possible worlds, one can extend the valuation
from S to the set of all wffs in LA.

Theorem 3 (The Extension Theorem) Suppose that S is a closed set, suppose
that W is a finite set of possible worlds and V is a valuation such that the pair
< W, V) is a model for LA(S). Then there is a valuation F1" which agrees with
V on 5, such that the pair {W9 F1") is a model for LA itself

Proof: The proof is in five parts. In part 1 a sequence So, Si, S2, etc., of closed



30 PETER FORREST

sets is defined whose union is the set of all wffs in LA. In part 2, the valuation
V is extended from S to So. In part 3, I describe the rule for extending the
valuation from Sk to Sk+Ϊ. Part 4 is a lemma for Part 5. In Part 5, I show that
by using the rule stated in Part 3 one obtains models for LA(SX)9 LA(S2), etc.
Since the valuation Vk+ι for LA(Sk+{) agrees with the valuation Vk for LA(Sk)
on 5*, one can then define F f by: F1" assigns the same truth-values as Vk to
members of Sk. Since for any integer k the pair (W, Vk) is a model for
LA(Sk)9 the pair {W9 F1") is a model for LA itself, as required.

_ Part I. The Closed Sets Sk: So is the closure of So, where So is the union
of S and the set of all atomic wffs in LA. Sk+Ϊ is the closure of Sk+U where
Sk+{ is the set of all wffs XT(a9 β) ^uch that a and β are members of Sk. Since
all wffs of degree at most k are in Sk9 the union of the Sk is the set of all wffs
in LA.

Part 2. The Extension to So: Vo, the valuation for So, is defined thus:

(1) Vo agrees with V on S
(2) Vo assigns F at every world to every atomic wff not in S
(3) Vo satisfies the rules V~, Vv and VL.

It is easy to check that Vo is unambiguous and the pair < W9 Vo) is a model for
S5(S0). The only axioms in 5 0 which are not in S itself are instances of AS1.
Hence all instances of AS2 to AS12 in So are T at all worlds, so the pair
(W9 Vo) is a model for LA(S0).

Part 3. The Extension from Sk to Sk+\: Assume that the pair < W, Vk) is
a model for Sk. In order to construct the valuation Vk+Ϊ9 it is convenient to
have the following definition.

Definition If ΛT(γ, δ) is in Sk and ΛT(α, β) is in Sk+ι, XT(y, δ) is said
to dominate ΛT(α, β) if the following two conditions hold:

DOM 1 Vk assigns the value F at some world in W to (γ & XU(y9 δ)) D β.
DOM 2 Vk assigns the value T to all worlds in W to a = y and δ D β.

Note: Since Vk assigns Γ a t all worlds to instances of AS7 in 5*, if XU(y, δ)
is in Sk it dominates itself unless Vk assigns to it F at all worlds.

The extended valuation, Vk+ι, is obtained by assigning T at a world vv
to XT(a9 β) in Sk+Ϊ if and only if there are 7, δ such that XT(y, δ) is in
Sk, XT(y, δ) dominates XU(a9 β) and XT(y9 δ) is assigned T at w by Vk.
Truth-values are then assigned to all wffs in Sk+{ in accordance with the rules
V~, Vv and VL. It is easy to check that Vk+Ϊ is unambiguous and that the pair
(W, Vk+\> is a model for S5(Sk+ι).

Part 4. A Lemma:

Lemma If XT (a, β) is in Sk+l9 either XΔ{a9 β) and XU(a9 β) are
assigned F at all worlds in W by Vk+ι or there are 7, δ such that XT(y9 δ) is
in Sk and Vk+Ϊ assigns the value T at all worlds in W to:
(1) a = 7 and δ D β; and
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(2) XΔ(y, δ) = XA(a, β) and XU(y, δ) = XU(a9 β).
Also AT (7, δ) dominates XT (a, β).

Proof: By the construction of Vk+U unless both XΔ(oc, β) and AΊI(α, β) are
F a t all worlds, there will be at least one XT(y, δ) in Sk dominating XT (a, β).
Since W is finite, one can find finitely many wffs XU(yh δ,), / = 1 . . . m, in Sk

such that: if w is in W, AT(α, β) is Γat w iff one of the XT{yh δ/) is Γat w.
Let 7 be 7! & y2 &... & ym, let δ be δj v δ2 v. . . v δ m . Then by CS6

AT (7, δ) is in Sk. One now obtains the following six sublemmas.

Sublemma 1 For / = 1. . . /w, K* assigns F to (7, & AΊI(γ/, δ,)) D δ tfrttf /o
(7/ & XA(yh δ/)) D δ at some world in w.

Proof: Since Vk assigns Γat all worlds to instances of AS5 in Sk, it suffices to
prove that (γ, & XU(yh δ, )) D δ is F at some world. By DOM 1, since
ΛT(7,, δy) dominates JTΓ(α, j8), (7, & X Π ( 7 / , δ,)) D j8 is F a t some world w,
hence 7, & ̂ Π ( 7 / ? δ/) is T at w and β is F at w. By DOM 2, δ, D β is Γ at all
worlds, so, since β is F at u>, δ, is F at w for / = 1 . . . m. Hence δ is F at w and
so (7, & XU{yn δ, )) D δ is F at w.

Sublemma 2 For / = 1. . . m, K*+i assigns T at all worlds in W to XT(yn

δi)D XΓ(y, δ).

Proof: By DOM 2, α = 7/ is Γ at all worlds. Therefore 7/ = 7 is Γ at all worlds.
Also δ, D δ is Γ at all worlds. Hence

(1) L(γ, = 7) and L(δ, D δ) are T at all worlds.

By Sublemma 1,

(2) L((7, & ΛΎ(γ, , δ/)) D δ) is F at all worlds.

Since all instances of AS2 and AS3 in Sk are T at all worlds the required result
follows from (1) and (2).

Sublemma 3 Vk+ί assigns Tat all worlds to XT (a, β) D XT{y, δ).

Proof: If XT (a, β) is Γat a world w, there is some / such that XT(yn δ7) is T
at w. By Sublemma 2, XT(yh δ, ) D XT(y, δ) is Γat w, so ̂ Γ ( 7 , δ) is Γat w.
Hence at any world w, ^Γ(o:, j8) D AT(7, δ) is Γ.

Sublemma 4 F^ assigns F at some world to (7 & AΠ(y, δ)) D |3.

P/ΌO/: AT(7/, δf ) dominates A^Γ(o:, /3), so by DOM 1

(1) (7/ & ArΠ(7/, δ,)) D β is F at some world.

By Sublemma 2,

(2) XU(yi9 δ, ) D AΓΠ(7, δ) is Γ at all worlds.

By DOM 2, α Ξ γ ( is Γ at all worlds so

(3) 7/ Ξ= 7 is T at all worlds.
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By (1), (2), and (3),

(4) (7 & XU(y, δ)) D β is Fat some world.

Sublemma 5 XT(y, δ) dominates XT (a, β).

Proof: By DOM 2, a = 7/ and δ, D β are Γ at all worlds, hence α = 7 and
δ D β are Γ at all worlds. The result now follows from Sublemma 4 and the
definition of dominance.

Sublemma 6 Vk+X assigns T at all worlds to a = 7, δ D β, and XT(7, δ) D
AT(α, 0).

Proof: Since by Sublemma 5, AT(7, δ) dominates XT(a, β), this result follows
from the construction of Vk+i.

The lemma now follows from Sublemmas 3,5, and 6.

Part 5. The pair (W, Vk+Ϊ) is a model for LA (Sk+X).

Proof: One has to prove that Vk+Ϊ assigns Γto all instances of AS2 to AS 12 at
every world in w. I shall provide the proofs for AS3, AS7, and AS8, and leave
the other proofs, which are either similar or straightforward consequences of
the lemma, to the reader.

Proof for A S3: Suppose that:

(1) £ D η is T at all worlds in W; and
(2) ΛT(0, ξ) in Sk+l is Γat some world w in W\ and
(3) (θ & XI1(Θ, ξ))DηisFzt some world in W.

I shall show that ΛT(0, η) is T at w.
By (2) and the lemma, there is some XT(y, δ) in Sk such that

(4) θ Ξ= 7 and δ D ξ are Γ at all worlds, and
(5) ΛT(7, δ) Ξ XΓ(0, ξ) is Γat all worlds.

By (1) and (2),

(6) δ Dη is Γat all worlds.

By (3), (4), (5), and (6),

(7) (7 & AT(7, δ)) D η is F at some world in W.

By (4), (6), and (7),

(8) ΛT(7, δ) dominates XT(Θ, η).

By (2) and (5),

(9) XT(y, δ) is Γat w.

By (8), (9) and the construction of Vk+ι

(10) XT(Θ9 η) is Γat w.
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Proof for ΛS7: Suppose that:

(1) XU(Θ, ξ) in Sk+ι is Γ a t a world w in W; and
(2) XU(Θ9 ξ) & θ & ~ξ is F at all worlds.

I obtain a contradiction as follows: By (1) and the lemma there is some
XU(y, δ) in Sk, dominating XU(Θ, ξ), such that:

(3) θ Ξ γ and δ D ξ are Γ at all worlds; and

(4) XU(Θ, ξ) ss XU(y, δ) is Γat all worlds.

By (2), (3) and (4),

(5) (7 & ΛΊI(7, δ)) D ξ is Γat all worlds.

But (5) contradicts the dominance of XU(y9 δ) over XU(Θ9 £).

Proof for ΛS8: Suppose that:

(1) JTΔ(0, ξ) and YA(φ9 ξ) are both in Sk+i and Γat w.

I obtain a contradiction as follows: By (1) and the lemma there are
.YΔ(γ, δ) and YΔ(ζ, η) dominating
XA(Θ, ξ) and YA(φ, ξ) respectively, such that:

(2) θ = γ, δ D ξ, φ ΞΞ ξ and 77 D ξ are all T at all worlds; and

(3) XA(Θ, ξ) s Λ Δ ί γ , δ) and
yΔ(φ, ξ) s yΔ(f, 77) are Γ a t all worlds.

By CS6, J^Δ(7 & 7, δ v ??) and FΔ(f & f, δ v η) are in S^, and since every
instance of AS8 is Sk in Γ at all worlds,

(4) ^ Δ ( 7 & 7, δ v 77) & FΔ(f & f, δ v η) is F at all worlds.

Assume that:

(5) ^Δ(7 & 7, δ v η) is F at w.

By the semantics of S5

(6) I ( Ύ Ξ ( 7 & 7 ) ) is Γat w.

By the semantics of 55,

(7) L(δD δvr;) is Γat w.

By (6), (7) and the truth of all instances of AS2 and AS3 in Sk+ι at w,

(8) ^Δ(7, δ) D ( ^ Δ ( 7 & 7 , δ v η) v L ( ( 7 & XU(y9 δ)) D δvr/)) is Γ
at w.

By (1) and (3),

(9) ArΔ(7, δ) is Γat w.

By (5), (8) and (9), and the semantics of 55,

(10) (7 & XU(yf δ)) D δ v η is Γ at all worlds
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By (2),

(11) (δ v η) D ξ is T at all worlds.

By (10) and (11),

(12) (γ & ΛΊI(γ, δ)) D ξ is Γ at all worlds.

(12) contradicts the dominance of XU(y9 δ) over ^11(0, £)• Similarly if one
assumes that:

(13) YΔ(f & f, δ v η) is i 7 at w, one obtains a contradiction.

The required result follows from (4) and the two contradictions.

8 Decision procedures The Extension Theorem enables one to show that
some wffs, for example, AA(q v ~q9 p & BU(p, q))f are consistent. For ex-
ample, in Section 7 I showed that if S was the closure of the set consisting of
AA(q v ~q, p & BU(p, q)), there was a model for LΛ(S) such that at some
world AA(q v ~ q, p & BU(p, q)) was T. By the Extension Theorem this model
can be extended to a model for LA and so AA(q v ~<gr, p & 2?Π(/?, #)) is
consistent.

I shall now describe a general method for deciding whether a wff θ is
LA -valid. I shall also prove that LA is complete, so this is a decision procedure
for consistency also.

By Theorem 2, if S = {0}, S has a finite skeleton {β{,..., / y and a finite
set of associated proper axioms, {a\9..., am}. One can define S5-transforms
of wffs in S as follows, denoting the transform of φ by φ f :

Rule 1. The transform of 0/ in R is /?/. In particular if φ is an atomic wff in
S, by SKI, φ belong to R and so φ^ has been defined.
Rule 2 If ΛT(7, δ) is in 5, by SK2, there is a unique XΓ(ξ, η) in # such that
7 = ξ and δ = η are tautologies; then (ΛT(γ, δ ) ) f = (ΛT(£, ij))1".
Rule 3. (~Φ) f = -(</))f.
Rule 4. ( φ v ψ ) f = </)tviAt.
Rule 5. ( L φ ) t = L ( φ t ) .

These rules define unambiguously the 55-transform of any wff in S. The decision
procedure is now a consequence of the following theorem.

Theorem 4 If θ is any wff let S be the closure of {θ} and define
S5-transforms as above. Then, if aλi..., am are the associated proper axioms,
θ is LA(S)-υalid iff

{L{CL\) &L(al) &...&L(al)) D 0 f is S5-valid .

Proof: If θ is not L>4(S)-valid, there is a model (W, V) for S such that V
assigns the value Fto θ at some world. One can construct a model (W, K f) for
55 where:

(1) If φ is in S, F1" assigns the same values to φ^ as V assigns to φ; and
(2) F1* assigns F to any atomic wff other t h a n p { , . . . ,pk. Now aj,..., a^

are Γ a t all worlds, but 0 1 is F a t some world, hence (L(aJ) & L(α 2

f) &.. .&
L(alj)) D 01" is Fat some world and so is not 55-valid.
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Conversely if (L(aJ) & L(ot}) &.. .& L(α^)) D 0 f is not 55-valid, there
is a model < W, Vf) for 55 such that

(L(α 1

t )&L(α 2

t )&. . .&L(α l J I )D9 t

is F at some world. One can construct a model < W, V) for 55(S) where V
assigns the same values to φ as F"1* assigns to φ1". It follows that: (La{ &
Lα2 &... & Lαm) D 0 is F at some world, hence LOL\ , LOL\ , . . . , Lαm are Γ at
some world and θ is F at some world. But since La\,..., Lα m are T at some
world, all the associated proper axioms α 1 } . . . , αm are Γat all worlds; hence,
by Theorem 2, < W, V) is a model for LA(S). Therefore θ is not L^(S)-valid.

I say that a wff is finitely valid if it is T at all worlds in all finite models
(that is, models in which there occur only finitely many worlds). I now obtain:

Corollary to Theorem 4 The result stated in Theorem 4 remains correct if
we replace validity by finite validity.

(The proof is similar to the proof of Theorem 4.)
Using Theorem 3 (The Extension Theorem), Theorem 4, and its corollary,

we obtain the following sequence of results:

Theorem 5 Suppose that S is the closure of {θ}. Then θ is LA (S)-valid iff
θ is LA (S)-finitely valid.

Proof: 55 has the finite model property (see [1] or [4]). So a wff is 55-finitely
valid iff it is 55-valid. Theorem 5 now follows from Theorem 4 and its corollary.

Theorem 6 Let S be any closed set containing θ. Then θ is LA-valid iff it
is LA(S)-valid.

Proof: It suffices to show that θ is F at some world in some LA -model iff θ is
F at some world in some LA(S)-model. We may restrict any LA -model to S,
providing an L.4(S)-model. So it is obvious that if θ is Fat some world in some
LA -model then θ is F at some world in some L^4(5)-model. Conversely,
suppose θ is Fat some world in some Ly4(5)-model. Then let S* be the closure
of {θ}. We_may restrict any LA(S)-mode\ to S*. So θ is F at some world in
some L^4(5*)-model. Therefore, by Theorem 5 θ is F at some world in some
finite LA(S*)-mode\. By the Extension Theorem we may extend the valuation
of that model from 5* to LA itself, which shows that θ is F at some world in
some LA -model.

Theorem 7 LA is complete.

Proof: By Theorem 6, θ is L^(5)-valid iff θ is L^4-valid. Hence, by Theorem 4,
θ is LA -valid iff (L(aJ) & /,(«*) &. ..&L(a^)) D flt i s 55-valid. But 55 is
complete. Therefore (L(α1

t) & L(α2

f) &...& L(c^)) D 01" is 55-valid iff
(L(aJ) & L(al) &...& L(al)) D θ* is a thesis of 55. But if (L(aJ) &
L(α 2

t)&...&L(o;^)D0 t isathesis of 55, then (Lc^ & La2 &.. .& Lam) D θ
is, by AS1, a thesis of LA(S). Also aγ .. .am are theses of LA and so, by
repeated uses of AS1, RN, and MP, Lax & La2 &.. .& Lam is a thesis of
LA(S). Hence by MP, θ is a thesis of LA (S) and a fortiori a thesis of LA. Thus
if θ is LA -valid θ is a thesis of LA; so LA is complete.
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Corollary to Theorem 7 If S is a closed set containing 0, then θ is a thesis
ofLA(S) iff 0 is a thesis of LA.

Proof: By a proof similar to that for Theorem 7 we can show that LA(S) is
complete. So, 0 is a thesis of _LA(S) iff 0 is L,4(S)-valid. Therefore, by
Theorem 6, 0 is a thesis of LA{S) iff 0 is LA -valid. But Lv4 is complete, so 0
is a thesis of LA(S) iff 0 is a thesis of L^4.

9 The powers of God I now turn to the problem of characterizing the
powers of God. (What I say owes much to recent discussions of the Stone
Paradox (see, among others, [5], p. 210; [6], pp. 221-223; [9], pp. 74-79; and
[7], pp. 163-173).)

First note the failure of attempts to characterize God's powers which are
not relative to what is necessary at the time or to what other acts have been
performed5: For example, suppose we said:

GUtθ unless it is logically impossible that GAtθ .

Then we would have the following absurdity: Suppose God freely acts at time
tx and the immediate effect of this act is that a Big Bang occurs at a later time
t2. (Such a time gap is not, I take it, logically impossible.) Then it is not the
case that God has the power to produce the Big Bang at time t2, He has already
produced it. But it is logically possible that He produce the Big Bang at time t2

because it is logically possible that He had not earlier done so. This contradicts
the proposed characterization of God's powers.

For a nonabsurd characterization, then, we require something like:

GΠ,£ unless L,~ GAtξ .

This is not stated in terms of logical necessity at all, and so is not, I suppose,
an explication of omnipotence. However, using the formalization LA we can
produce (in the metalanguage) a nonabsurd explication of omnipotence:

GΠ(0, £) unless it is logically impossible that GΔ(0, ξ) .

We also have a characterization using eternal necessity, analogous to ' G Π ^
unless Lt ~ GΔ,£': I say G is maxipotent just in case we have the truth-schema:

MGA(Θ, ζ) DGΠ(0, ξ) .

The omnipotence characterization might seem to ascribe more power to
God than maxipotence. But the converse of maxipotence, namely

Gϋ(0, ξ) DMGA(θ, ξ)

is a subschema of AS6. So omnipotence and maxipotence coincide as descrip-
tions of God's powers, provided we already know which truths are eternally
necessary. The difference between the two characterizations is that, because of
AS6, the omnipotence characterization puts a constraint on which truths are
eternally necessary. For instance, but for the omnipotence characterization, I
think we would say that God's existence is eternally necessary, so He cannot
destroy himself. But if, as is believed by many, God's existence is logically
contingent, it seems plausible that His continued existence is logically contin-
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gent, so, relying on the omnipotence characterization, He would have to be able
to destroy Himself. Thus His continued existence would not be eternally
necessary. The omnipotence constraint strikes me as a back-to-front way of
discovering what is eternally necessary. It seems more straightforward first to
consider what is eternally necessary and then characterize God's powers using
maxipotence. I suggest that the theist construct a hypothesis about what is
eternally necessary, based on the principle that God and His attributes are
eternally necessary. There is then a presumption against introducing eternal
necessities not entailed by God's existence and attributes.

I have reasons, then, for preferring a characterization of God's powers in
terms of maxipotence. But if you reject my reasons, we could interpret eternal
necessity as logical necessity. In that case, maxipotence and omnipotence are
identified. So in either case it is of interest whether or not maxipotence is
coherent. Furthermore, for those of us who reject predestination, it is impor-
tant to determine whether or not God's maxipotence is compatible with the
freedom of other agents. The results of this paper provide an argument to show
they are compatible. For, using the example in Section 7, we can show that
the maxipotence of G is consistent with our axioms and with GA(q v ~q,
p & BU(p9 q)). So unless there are relevant intuitions about free acts not
captured by the axioms, we have shown that the maxipotence of God is com-
patible with His granting some other agent (B) the power to act freely. Now,
of course, I cannot be sure there is not some further relevant intuition. So I
conclude my paper by challenging anyone who doubts the coherence of my
characterization of God's powers to provide a relevant intuition.

NOTES

1. I do not here distinguish metaphysical necessity (truth at all worlds) from logical
necessity.

2. For an elegant argument which seems to show this see [3].

3. My use of the pronoun 'He' for God is, I claim, correct English. But it might seem
to suggest what I do not want to suggest, namely that God is masculine rather than
feminine in some analogous sense. The alternatives such as Ήe or She', 'She', and
'It' would also have unwanted apparent implications.

4. By a real change I mean coming to have or to lose a nonrelational property.

5. That God's powers should be characterized in a time-relative fashion has also been
argued recently by several authors. See [2], [8], and [10]. One notable difference
between my approach and that of these authors is that I characterize God's powers
as relative to what is necessary at a given time, rather than as relative to the history
up to that time.
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