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The Axiom of Choice for Countable Collections

of Countable Sets Does Not Imply

the Countable Union Theorem

PAUL E. HOWARD

Abstract A model for the theory ZFU (Zermelo-Fraenkel set theory weak-
ened to permit the existence of atoms) is constructed in which the axiom of
choice for countable collections of countable sets is true and the countable
union theorem is false. By a transfer theorem of Pincus there is a model of
Zermelo-Fraenkel set theory satisfying the same conditions.

Introduction and notation In what follows we will use CU to denote the
countable union theorem: the union of a countable set of countable sets is count-
able. C(K0, Ko) will denote this statement: every countable set of nonempty
countable sets has a choice function.

Sierpinski [7] noted in 1918 that CU implies C(K0, Ko) The argument given
by Sierpinski is valid in ZFU, or Zermelo-Fraenkel set theory weakened to
permit the existence of atoms (and without the axiom of choice). Sierpinski
also showed that C(K0,2

K°) (the axiom of choice for countable collections of
sets each of cardinality 2K°) implies CU, but he never solved the problem of
whether or not C(K0, Ko) implies CU. This problem is mentioned again by
Moore ([4], pp. 203, 324) and Shannon ([6], p. 570). In this paper we show that
C(X0, Ko) does not imply CU in ZFU by constructing a Fraenkel-Mostowski
model in which C(X0, ^o)is t r u e a n d CU is false. Brunner and Howard [1] show
that the implication CU -> C(K0,2*0) is not provable in ZF.

We now argue that -iCU and C(K0, Ko) are injectively boundable, and there-
fore by the results of Pincus ([5], Theorem 2A6) the existence of a Fraenkel-
Mostowski model for (~>CU) Λ C ( K O , KO) implies the existence of a model of
ZF + (- CU) + C(K0, Ko). (We refer the reader to [5] for definitions of the terms
used in the remainder of this section, in particular "injectively boundable" and
"the injective cardinality of a set x" denoted \x\ _.) -iCU is clearly boundable

Received February 20, 1990; revised July 30, 1990



AXIOM OF CHOICE 237

and therefore injectively boundable. We will use the following lemma to show
that C(K0, Ko) is injectively boundable.

Lemma 0 If\ X\ _ > K2 then X is not the union of a countable set of count-
able sets.

Lemma 0 follows from Theorem 1 of Jech [3]. It follows that the statement:

(*) (VX){\X\_ < K2-> (V7E (?{(?(X))) [(Yis a countable set of countable
sets AUY = X) ^ Yhas a choice function])

is equivalent to C(K0, Ko), and (*) is injectively boundable.

The model Given a model M' of ZFU + AC with A as its set of atoms, a
Fraenkel-Mostowski model M of ZFU is constructed by constructing a group
G of permutations of A and a filter Γ of subgroups of G which satisfies

(Vύr E A)(lHGΓ)(Vφ E H)(φ(a) = a)

and

(Vφ E G)(vHeT)(φHφ-{ E Γ).

Then the model Mis obtained as follows: each permutation of A extends uniquely
to a permutation of M' by E-induction, and for any ψGGwe identify φ with
its extension. If//is a subgroup of G and x EM' and (Vφ EH)(φ(x) =x) we
say H fixes x. If it is also the case that (vy E x)(yφ E H)(φ(y) = y) then we
say H fixes x pointwise. The Fraenkel-Mostowski model M determined by G and
Γ consists of all those x E M' such that for every y in the transitive closure of
x, there is some H E Γ such that H fixes y. We refer the reader to Jech [2] for
a proof that M is a model of ZFU.

For our construction, we begin with a model M' of ZFU + AC with a count-
able set A of atoms. We first write A as a disjoint union ̂ 4 = U / G ω At where each
4̂/ is countably infinite. For each / E ω let Fj be a nonprincipal ultrafilter in

<P(At), and let // be the corresponding nonprincipal, maximal ideal (= [At• — x \
x E Fι}). The group G of permutations of A is defined as follows:

G = [φ\ φ is a permutation of 4̂ and (V/ E ω) [φ(Aj) = ̂ 4/ and
(3u GFi) (φ fixes w pointwise)]}

Γ is the filter of subgroups of G generated by the groups G(g9 e), where e is a
finite subset of ω and g is a sequence of subsets of A such that (V/ E ω) (#(/') E
//) and G(g, e) is defined by:

G(g, e) = [φ E GI (vι E e) (φ fixes >4, pointwise) and
(Vz E ω) (φ fixes g(z) pointwise)).

Mis the permutation model determined by G and Γ.
It is easy to verify that [Aιr | / E ω} is a countable collection of countable sets

(in M) whose union is not countable in M (G(g, e) fixes a bijection of At and
ω whenever / E e but no group in Γ fixes a well ordering of U{Ai\i G ω] = A).
Hence the countable union theorem fails in M.

We now proceed to the proof that C(K0, Ko) holds in M.
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Theorem Suppose Y G m and M V "Y is a countable collection of
nonempty countable sets." Then Y has a choice function in M.

Proof: Assume the hypotheses. It follows that for some sequence g: ω -> (9(A)
where (v/ G ω)(g(i) G /,-) and some finite e Q ω G(g,e) fixes Γ pointwise.

For each / G ω, let g'(i) be an element of /,- such that g(i) c g'(/) and
g'U) - g(i) is infinite. We claim that G(g'9 e) fixes a choice function for Y. Since
G(g\ e) fixes Y pointwise, it suffices to show that for every y G Y there is a
zG y such that G(g',e) fixes z. Choose y E Y.

Lemma 1 If there isazEy and a sequence g" : ω -* (P (A) such that (v/ G ω)
(g"(i) G // andg (/) £ g"(i)) and G(g", e) fixes z, then there isaz' Gy such that
G(g\e) fixes z'.

Proof: Assume the hypothesis and choose such a z and g". Then we can find a
φ G G(g, e) such that (v/ G ω - e)(φ(gf/(i)) c g'(/)). (This depends on the facts
that (1) gf(i) — g(i) is infinite and (2) there is an element h of// containing g"(/)
such that h - g"(i) is infinite.) Since y is fixed by G(g, e) and z E j w e have
Φ(z) G j \ Further, G(g\e) fixes φ(z), for if ψ G G(g',e) then φ - 1 ^ G
G(g",e), and so φ~ιφφ(z) = z, that is ̂ φ(z) = Φ(z). Therefore zr = Φ(z) sat-
isfies the conclusion of Lemma 1.

In this proof and in what follows, if η and σ are two permutations of A, we
use ησ to denote the composition defined by (ησ)(a) = η(σ(a)) and η(σ) to de-
note the extension of η to M' applied to σ, η(σ) = ηση~ι.

Choose a z G j>. The remainder of the proof is carried out under the as-
sumption:

(*) (Vg":ω-+(P(,4)) [//(V/Gω-e) (g"(/) G/,and£"(/) ̂ g(i)) then (3φG
G(g",e))(φ(z)^z)].

If (*) is false then Lemma 1 applies.

We now prove Lemma 2, which says roughly that if (*) is true then there is
somey G ω — e such that (*) is still true when we restrict ourselves to φ that are
the identity outside of Aj.

Lemma 2 Assume (*) then there is some j G ω - e such that for every x G
Ij there is a φG G(g, e) such that (vι G ω) (/ Φj implies φ fixes At pointwise)
and φ fixes xpointwise and φ(z) Φ z.

Proof: Since zEM, 3g" : ω -> (?(A) with g"(i) G // and a finite ef Q ω such that
G(g", e') fixes z. We may assume (v/ G ω)(g(/) c g^/)) and that β c e7. Fur-
ther by (*) e' - e Φ 0 . Suppose e' - e = [iΪ9 i2,..., /Λ) where /j < z2 <
. . . < /π. Lety be the least ik such that for some h:ω-+ (P(A) with h(i) G // and
g(i) ^ A(/) for all / G ω, G(h,eU {/'i,/̂ ,.. ,4)) fiχes £• Fix such an A. Then
for any x G Ij if we define A' by

\h(j)Ux if / =y

then G ( A ' , e U {/Ί,/2» - . ' A Γ - I ) ) (where j = ik) does not fix z by the minimality

of ik=j.
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Therefore there is a φ' E G(h\ e U {i\, / 2 , . . . , /V-i)) such that φ'(z) Φ z. DQ-
fine φ* E G(h,e U {iui2,... ,ik}) by

( a if a E At for some iE el) {iu... ,ik]

φ (a) otherwise
then φ*(z) = z. Let φ = φ*φ\ then (i) φ(z) Φ z, (ii) (Vi *,/ = /*) (Φ fixes Λ,
point wise), and (iii) φ fixes x pointwise (since φ\Aj = φ' \Aj and φ' fixes x point-
wise). This completes the proof of Lemma 2.

Fix a 7 that satisfies Lemma 2 and let

Gy = {φ G G (g, e) I (Vι G ω) (i' Φ j implies φ fixes Aj pointwise)}.

We will identify Gj with [φ\Aj\φ E Gj}. For each x c ^ . such that x e /y and
g(y) ^x define

G,-̂  = (φG Gj I φ fixes x pointwise}

and

Px(z) = [φeGj9X\φ(z)=z).

We note that using this notation, Gj = Gjigφ, P0 (z) = Pg(j) (z) and in general
Px(z) = Pχug{j) (z). We also note that by Lemma 2, for every such x there is a
φ in GjX — Px(z) and further that Px(z) is a subgroup of GjtX.

Our plan is now to show that under the assumption (*) the orbit of z under
Gj is uncountable in M' and therefore that y is uncountable in M, contradict-
ing our hypothesis. (Although it is not needed for the proof of the theorem, we
note here that the orbit of z under Gj is well-orderable in M'. This fact, together
with the observation made later that the orbit of z under Gj has cardinality >
2Xo in M', yields a slightly stronger theorem mentioned in the final section.) We
break the argument into two cases handled by Lemmas 3 and 5 respectively.

Lemma 3 Assume (*) and assume that for some xE Ij, Px(z) is a normal
subgroup ofGjtX, then the orbit of z under Gj is uncountable.

Proof: The proof of Lemma 3 requires the following lemma, the proof of which
we postpone until after we complete the proof of Lemma 3.

Lemma 4 Suppose B is a countable set and F is a nonprincipal ultrafilter in
(P(B) and I is the corresponding ideal. Let Q = {φ | φ is a permutation ofB and
(3uEF) (φ fixes upointwise} and assume that Kisaproper normal subgroup
of g. Then every φ E JC is the identity on a cofinite subset of B.

Assume the hypotheses of Lemma 3 and choose a n x E Ij such that Px(z) is
a normal subgroup of GJx. Since F = {u Π (Aj — x) \ u E Fj} is a nonprincipal
ultrafilter in the power set of B = A3• — x and GjyX is 8 from Lemma 4, Lemma
4 applies with JC = Px(z) and we conclude that every φ E Px(z) is the identity
on a cofinite subset of (Aj - x).

Let C be an uncountable set of elements of GJX such that

(VI/Ί, φ2 e C)(φΓιΦ2 e Px(z) implies φ1 = ψ2).
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(For example C could be obtained as follows: Take an infinite w c (Aj — gj)—x
such that w G Ij. Write w = U/eω W/ as the disjoint union of infinite sets. Let ηt

be an infinite cycle moving exactly the elements of w, . For each s <Ξ ω, let φs be
UiesVi- Then C = {ηs\s <Ξ ω j satisfies the required conditions, and in fact
\C\ = 2*°.)

The set (^(z) | ̂  G C] is uncountable since I/Ί (Z) = ̂ 2(z) implies φΓιΦi(z) =
z implies Φϊ~lΦ2 E P*(z) implies φ\ = ψ2- This completes the proof of Lemma 3.

Lemma 5 Assume (*) and VΛ: GljPx(z) is not a normal subgroup of Gjyx,
then the orbit of z under Gj is uncountable.

Proof: Clearly, if φ G Gj moves PgJ(z) = P0 (z) then φ(z) Φ z. We note here
that

Φ(P0(z)) = [Φ(Φ)\φe P0{z)} = {ΦΦΦ~ι\φe P0(z)} = ΦP0(z)Φ'1.

So it suffices to show that the orbit of Pgj(z) = P® (z) under Gj is uncountable.
In order to do this we define a sequence of triples <φ, , iyz , A:,-), / G ω by induction
such that for every / G ω:

(1) */ G Ij and JC, Π gy = 0

(2)x / Π(U</X^) = 0
(3) ΦieGj9Uk<lXk9φiSPUk<iXk

(4) (Vα G i4)((φ, (α) ^ α or ^ ( α ) ^ α) implies a G JC, )
(5) Φi(Φi)£P0(z).

Suppose that for all n < /, n G ω, the triples (Φn,Φn>Xn} have been chosen and
satisfy (1) through (5) with / replaced by n. By the hypotheses of Lemma 5 with
x = Uk<i*k there is a 05 G Gy ιJC such that Φ/(Λ:(^)) ^ Λτ(^) and therefore there
is a φ/ G G y > and a ft G P*(z) such that φg(φi) £ Px(z). (If Φ\(Px(z))% Px(z)
let φ, = φ'Γx.) Let x, = {α GA\Φi(a) Φ a or ψ/(α) * α j . (1) through (4) are
clear, as is 0, (^, ) ί /^(z) . To argue for (5) assume that ψ, (^, ) G P 0 (z), then
by (3) Φi(φi) fixes U*<ι** = -̂  pointwise; and so Φi(Φi) G Px(z), a contradic-
tion. Now we make two claims about the sequence <φ,, ̂ /,X/>, / G ω:

Claim 1 IfηGGj agrees with φ, OΛ A:,- then η(Φΐ) = Φi(Φi)>

Proof: Assume η G Gy agrees with φ/ on JC,-. Then we can show η(φi) = ηφiη~ι

agrees with Φi(φi) = φiφiφi'1 by considering two cases: If a G A — x, then
ij-^α) ί JC/ (η"ι(a) G ̂  implies φ/and ^ agree on 17"^α), hence Φi(η~x(a)) =
a; but JC/ is closed under φh a contradiction). So ηφi(η~~ι(a)) = i|(i|"~1(α)) =
α = ΦiΦiΦTι(a). On the other hand if a G #,- then say a = φ, (6) where b G x, .
This means η(b) = a so

ηφiη'Ha) = # , ( £ ) = ηΦiΦΓι(a) = ΦiΦiΦTι{a)

since r; and φ f agree on JC/.

Claim 2 IfηGGjis the identity on xt then Φi(Φϊ) £ η(P<z> (z)).

Proof: Assume r; G Gj is the identity on xt and that φ/(^/) G η(P& (z)). Then
for some σ G P o ί z ) , Φ, (^, ) = η(σ) so η~ιΦi(Φi) = σ. Since η is the identity
on Xj so is i;"1, hence η~ιφj agrees with φ/ on xh It follows by Claim 1 that
V~ιΦi(Φi) = Φi(Φi), which is not in P 0 ( z ) by (5), a contradiction.
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Now we claim that the sequence <</>/, Φi,Xi), / G ω can be chosen so that

(6) U, e « * i Ξ / , .

(If the sequence (φi9φi9 #,->, / G ω, does not satisfy (6) then one of the sequences
<</>2/> Ψii,X2i), / G ω or (Φ2i+uΨ2i+i>X2i+ι>, i £ ω will.) Assuming (6), for each
subset K of ω define an element Aκ of Gj by

Aκ(a) = \a a^ (JiGJζXi } = M φ.
K LΦi(a) a SXiwhere isK) i(Eκ

We complete the proof of Lemma 5 by showing that for all K and Kr Q ω,
if K Φ K' then AK(P0 (z)) Φ AK(P0 (z)). Assume the hypothesis and without
loss of generality assume that / G K - K'. It suffices to show that Φi(Φi) G
Δ * ( P 0 ( z ) ) - Δ ^ ( P 0 ( z ) ) .

By Claim 1, since Aκ agrees with φ7- on xt

φi(φi)=Aκ(φi)GAκ(P0(z)).

By Claim 2, since Δ^ is the identity on xh

Φi(Φi)eAκ^P0(z)).

This completes the proof of Lemma 5.

Now we finish the proof of the theorem by proving Lemma 4. Assume the
hypotheses of Lemma 4. For φ G 8 let type(φ) be the sequence a : ω -> ω U {ω)
where, when φ is written as a product of disjoint cycles, α(0) is the number of
infinite cycles, α(l) is the number of elements of B fixed by φ and for n > 1,
a(n) is the number of n cycles. (For every φ G S> type(φ)(l) = ω.)

Claim 1 If φ G 3C and ψ G 8 ^«^ type(φ) = type(ψ) then ψ G JC.

Proof: Assuming the hypotheses, let 77* be a one-to-one function with domain
[a G i?|φ(#) ^ a] and image {# G B\φ(a) Φ a] such that for every cycle
(...,a0,aι,a29...)ofφ (finite or infinite) ( . . . , η*(a0), η*(a{), η*(a2),...) is
a cycle of ψ. Extend η* to ̂  where η G 8 (This may require using an infinite sub-
set of B in /disjoint from dom(τ/*) U imaged*).)

We complete the proof of Claim 1 by showing that ηφη~ι = ψ. Choose bGB.

Case 1. φ(b) = b. In this case, Φ(η~ι(b)) = η~ι(b) so ηφη~ι(b) = b = φ(b).

Case 2. φ(b) Φ b. Assume b = η*(a) and occurs in the cycle ( . . . ,η*(a),
η*(a'),...) ofφ. Thenφ(a) = a' so ηφη~\b) = ηφη-ι(η*(a)) = ηΦ(a) =
η(a') = η*(a') = φ(η*(a)) = φ(b).

Claim 2 Iffor some φ G JC {a\φ(a) Φa) is infinite then there is a φ G JC of
type a where a (2) = ω and (W2 ^ {\,2})(a(n) = 0). (That is, φ is the product
of infinitely many 2 cycles.)

Proof: Assume that φ satisfies the hypotheses of the claim and for each infinite
cycle c = ( . . . , #_2, #_i, a0, ax, a2,...) of φ (when φ is written as a product of
disjoint cycles) let T(c) = ( . . . , a6, a4, a2,a0, a_2, α _ 4 , . . . ) and note that
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T(c)°c = . . . (a-2,a-ι)(a0,aι)(a2,a3)(a4,a5) For each finite cycle c =
(aua2,...,an)of φwhere«>3, let T(c) = (an,an-U... ,a4,aua2,a3), and
for each three cycle c = (ax, α2, a3) of φ let Γ(c) = (α!, 6C, α3) where the bc

9s are
chosen from a set υ G I disjoint from [ a G B \ φ{a) Φ a} and are chosen so that
if c and c' are two different 3-cycles of c, then bc Φ bc>. In each case T(c) is a
cycle of the same length as c, and T(c) ° c is a product of two cycles.

If we let I/' be the permutation with cycles {T(c) \ c is a cycle of φ} then by
Claim 1 ψ G 3C and therefore ^φ is an infinite product of disjoint two cycles
in5C.

Claim 3 Every φGQ is the product of two elements of type a where a is the
type defined in Claim 2 (infinite product of disjoint two cycles).

Proof: It suffices to show that every cycle is a product of two such permutations.
Let φ be the infinite cycle ( . . . , tf_2, tf_i, a0, ax, a2,...) then φ = ψη where

ψ = (a-{,aι)(a-2ia2)(a-3,a3)... and η = (tfO,tf-i)(tfi,#-2X02,0-3).
Suppose φ = (#_„, α _ Λ + 1 , . . . , a^{, tfo> ax,..., an) is a cycle of odd length,

then φ = φη where 0 = (aua^ι)(a2,a.2).. ,(an,a.n) and 7? = (tfo>tf-i)(tfi>
# _ 2 ) . . . (tf«-i, ci-n). (Add infinitely many two cycles to i/' and their inverses to
η to get two permutations of type a.)

Finally, suppose that φ = (tf_Λ, tf_Λ+1,.. .,a-Uaua2, . . . , * „ ) is a cycle
with even length. Then φ = φη where ψ = ( α ^ α ^ M ^ , α_ 2 ) . . . (an,a^n) and
?7 = (tfi,α_2)(tf2,tf_3)... (tfw_1?tf_w). This completes the proof of Claim 3.
Lemma 4 follows easily from the three claims.

Conjecture An examination of the above argument will show that we have
proved a slightly stronger theorem, namely that the axiom of choice for well-
ordered collections of sets, each of cardinality not greater than or equal to 2*°
("If Y is a well-ordered set of sets such that (Vy G Y) [ 1 (\y\ > 2*°)] then Y
has a choice function")* does not imply the countable union theorem.

We conjecture that for any ordinal α, the statement, "If Y is a well-ordered
set of sets such that (Vy G 30(-ι(|j>| > 2Xθί)) then Y has a choice function",
does not imply that a countable union of sets of cardinality Kα can be well-
ordered.
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