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Expressiveness and Completeness

of an Interval Tense Logic

YDE VENEMA

Abstract We present the syntax and semantics of an interval-based tempo-
ral logic which was defined by Halpern and Shoham. It is proved that this
logic has a greater capacity to distinguish frames than any temporal logic
based on points and we show that neither this nor any other finite set of oper-
ators can be functionally complete on the class of dense orders. In the last
part of the paper we give sound and complete sets of axioms for several
classes of structures. The methods employed in the paper show that it is re-
warding to view intervals as points in a plane, in the style of two-dimensional
modal logic.

1 Introduction Recent years of research in temporal logic have shown an
increasing tendency to concentrate on intervals or events rather than on points.
In contrast with the point-based approach, few results are known for modal
logics of intervals (see van Benthem [3], Humberstone [11], and Roper [14]), as
most authors confine themselves to classical logic. In [10] Halpern and Shoham
present a modal logic of intervals which is investigated here. In the first section
we define the syntax and semantics of the system and give some basic facts; in
Section 2 we present our results on the expressive power of this and other mo-
dal logics of intervals, and in the last part of the paper we treat completeness.

1.1 Syntax HS is a tense logic, the formulas of which are built up using the
propositional constants p,q,r9pθ9pλ,..., the classical connectives -> and Λ, and
the following modal operators: <B>, <E>, <A>, <B> <E>, and <A>, which have the
following intended readings:

(B)φ φ holds at a strict beginning interval of the current one
(E)φ φ holds at a strict end interval of the current one
(A)φ φ holds at an interval met by the current one, i.e., it begins where the

current one ends

Received November 28, 1988; revised February 21, 1989



530 YDE VENEMA

<B></? φ holds at an interval which has the current one as a beginning interval
{Έ)φ φ holds at an interval which has the current one as an ending interval
(A)φ φ holds at an interval meeting the current one.

Given a set L of propositional constants, ΦL is the set of HS-formulas using
only constants in L. Furthermore, we shall use the classical connectives v,-•,<-•
and constants T,± in their standard meaning, and also the following abbrevi-
ations:

Oφ for "somewhere φ"
[X]φ for -\(X)-ιφ, where (X) stands for any operator
[BPJ φ for ([B]_L Λ φ) v <B> ([B] ± Λ<P) ("starting point")
lΈP'iφ for ([E] ± Λ φ) v <E> ([E] A. Λ<P) ("ending point").

The mirror-image of a formula φ is obtained by simultaneous substitution in φ
of every occurrence of: B by E, B by E, A by A, and vice versa.

For the semantics of this logic one has a choice between structures in which
intervals themselves form the ontological basis, and structures in which time
points are primary and intervals are defined as (convex) sets of points. In this
paper we follow the second approach.

1.2 Semantics A {temporal) frame is a pair F = (Γ,<), where Γis a set of
time-points and < is a strict partial order on T. The interval set of a frame F is
defined as the set INT(F) of all closed intervals [s9t] = {x G T\s < x < t] in
T. An (L-)modelis a pair (F, V)9 where/7is a frame and Fis a valuation, i.e.,
amapL~2 I N T < F >.

A truth relation 1= is inductively defined as follows:

F,Vϊp[s,t] iff ls9t]GV(p)
F9V£-iφ[s9t] iff F,VVφ[s,t]
F,V\=(φΛψ) [s,t] iff F,Vtφ[s,t] and F, V N φ [s,t]
F , V Y <B><? [s, t] i f f t h e r e i s a u s u c h t h a t s<u<t a n d F, V (= φ [s,u]
F,VV <B)φ [s, t] iff there is a u such that t < u and F, V t= φ [s, u]

F,VY (E)φ [s,t] iff there is a u such that s<u<t and F, V f= φ [u,t]

F,VY (E)φ [s,t] iff there is a u such that u < s and F, V1= φ [ u91 ]
F, V t= <A>̂ > [5,f ] iff there is a w such that t < u and F, V 1= <̂> [̂ , t/]
F, K h <A><? [5, /] iff there is a w such that u < s and F9 V 1= <p [«,s].

In the usual manner we define the concepts of validity and satisfiability of for-
mulas with respect to models, frames, and classes of frames, and of the theory
of a model, frame, or class of frames.

1.3 Intervals and points In the truth definition we implicitly defined the fol-
lowing relations:

[s,u] C B [s,t] iff s < u < t iff [s9u] is a beginning interval of [s,t]
[u,t] CE [s,t] iff s < u < t iff [w,ί] is an ending interval of [s,t]
[s,t] < A [ t , u ] i f f t< u i f f [s9t] m e e t s [t9u].

Note that, with this definition, no interval is a beginning/end interval of itself,
and that intervals [t9t] exist that have no beginning or end intervals at all;
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stretched intervals and point intervals are distinguished by the formula [B] J_,
which holds precisely on the latter ones. The operators [BP] and IEPI are used
to describe the relation between intervals and their beginning (respectively, end)
points: F,VY \YiP\φ [s,t] iff F, Vϊφ [s9s], and likewise for lΈP^φ.

The set of point intervals, together with a suitable ordering relation, may be
looked upon as a point-structure, which is of course isomorphic to F itself. So
implicitly the system HS has a point-based tense logic as a "sublogic".

Given the existence of point intervals, we can and will define the operators
<A> and <A> using the other ones: <A)φ s [EP]] <B><? and <A)φ s |[BP]<E>^.

1.4 The relative position of two intervals If one considers a fixed interval
in a linear temporal structure —let's call it the current interval—then there are
essentially twelve possible positions for a distinct interval (or seventeen if one con-
siders the position of a point interval to differ from a stretched one's). Every po-
sition of such a distinct interval can be described in HS, as is easily verified by
Figure 1.

current interval
<A><A>^ 1
<A)φ 2

<B><E>^ 3

<E>*> 4

<B><E>^ 5

<B>^ 6

<B>^ 7

<B><E>^ 8

<E)φ 9
<E><B>^ 10
<A>*> 11
<A><A>*> 12

Figure 1.

1.5 Representation ofΙNT(F) as a subset ofF2 An interval [s, t] in a lin-
ear structure is only defined if s < /, and because any interval is completely de-
termined by its beginning and end point, we can easily construct an isomorphism
between INT(F) and F 2 N W = {(*,y) E F2\x < y}. This means that we can rep-
resent the interval structure spatially as the "northwestern halfplane" of F x F.
A rewarding consequence is that we can now interpret the operators spatially as
well, e.g., {W)φ as "φ is true at a point right above the current one". As this way
of thinking about intervals will be used frequently in the sequel, we will give a
new notation for the operators, which reflects their spatial nature more clearly:

Definition 1.5.1
<ϊ>φ Ξ= <B>^>: φ holds at a point right below the current one

Oφ Ξ= (B)φ: φ holds at a point right above the current one
Oφ ss <E><p: somewhere left from the current point, φ holds
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O<p s= (E)φ: somewhere right from the current point, φ holds
<Pcp ΞΞ G>φ v Oφ: φ is true at a point with the same latitude and a different lon-

gitude
&φ = <ϊφ v O<p: <ρ is true at a point with the same longitude and a different

latitude.

Note that to obtain a mirror-image of a formula φ written in the new notation
one should simultaneously replace all O by O, O by O, and vice versa, every-
where in φ. The "spatial-semantic counterpart" of this operation is to interchange
the dimensions of a structure (or, to reflect the model in a line "orthogonal" to
the diagonal).

We can now equate the "twelve possible positions of one interval with respect
to another" of Section 1.4 with the equivalence classes of R 2 N W shown in Fig-
ure 2.

5 7 10 1112/

I 12

4 —CP— 9 -V

3 6 8 / CP denotes the current point.
/ The area numbered n con-

8 tains all intervals of type n
/ in Figure 1.

/

Figure 2.

1.6 Some correspondences As is usual in modal or tense logic (cf. van Ben-
them [4]), there exists a straightforward translation r mapping any HS-formula
φ onto a formula φτ of first-order predicate logic. This formula φτ has two free
variables x and y and is written in a language with equality (=) and dyadic predi-
cate symbols <fPθ9Pχ, The formulas φ and φτ are locally equivalent on the
model level; i.e., F, V t= φ [s,t] iff F9 V N φτ(x,y) [s,t]. In order to obtain
equivalence on the frame level, we have to quantify φτ over all valuations,
whence we get a second-order formula. The following examples show that some
HS-formulas describe first-order properties of frames, so that in these cases we
can do without second-order logic.

Example 1.6.1 - Linearity Call a frame linear if it is both left-linear and right-
linear, where F = (Γ, <) is right-linear if Vs,ί,u E T[(s < t Λ S < u) -> (t <
u\j t = MV u < ί)] left-linearity is defined likewise. (Note that this definition
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does not exclude frames consisting of "parallel" time lines.) Halpern and Sho-
ham remark that a frame is right-linear iff for any two distinct intervals start-
ing at the same point, one is a prefix of the other. This condition is easily shown
to be expressed by the following formula: RLIN Ξ= (A)p -> [A]&(p v <B>/? v
<B>/7). Using a similar definition for left-linearity, and setting LIN = RLIN Λ
LLIN, one gets F t= LIN «=> F is linear.

Example 1.6.2—Linear intervals One can impose less severe constraints upon
frames than linearity, e.g., one could permit tree-like structures while rejecting
nonlinear intervals in frames. A frame has linear intervals if

V55t, U, V [(S < t < V Λ S < U < V) -• (t < U V t - U V U < t)] .

Now define the following HS-formula:

LINITV: «B>/7 Λ <B><?) -* {<B>(^ Λ <B>#) v <B>(p Λ q) v <B>«B>/? Λ q)}.

Then using a standard correspondence-theoretic argument, we can prove that F
has linear intervals iff F )r LINITV.

Example 1.6.3—Denseness and discreteness Two important classes of orders
are the dense and the discrete orders. Recall that a frame is dense if s < t implies
that there is a point u between s and t; an ordering is discrete if every point hav-
ing a successor (predecessor) has an immediate successor (predecessor). In [10]
it is shown that there are formulas DISC and DENSE that are valid exactly over
the class of discrete, respectively dense, orders. First, define the formulas:

lengthOs [B]±

lengthl = <B>T Λ [B] [B]±,

the last one being true for an interval iff it has exactly one beginning interval:
the beginning-point interval. So [s9t] (= lengthl iff s Φ t and there are no points
between s and t. Defining DISC Ξ= lengthO v lengthl v «B>lengthl Λ <E>lengthl)
and DENSE = ->lengthl, one can easily prove the following:

Claim 1.6.3.1 F is dense *=*F\= DENSE.

Claim 1.6.3.2 F is discrete <=> F 1= DISC.

Note that one could also define these properties in a similar way as in point-logic,
e.g., density by <B>/7 -• <B><B>/?. The formulas DENSE and DISC, however, do
not require any propositional constants other than T and ±, which turns out to
be an advantage later on.

2 Expressiveness In this section we state and prove some results concern-
ing the expressive power of HS and other interval tense logics. First we show that
HS can distinguish more frames than any point-based logic, and in the second
part we show that no interval tense logic with finitely many operators is as strong
as first-order logic with dyadic predicates. For a logical system L, call two frames
L-equivalent if they have the same Z-theory. Let UMT be the universal monadic
second-order logic; i.e., second-order quantification is only allowed over monadic
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predicates. The following two lemmas express that on the class of linear frames
HS-equivalence is a strictly finer sieve than UMT-equivalence:

Lemma 2.1 Any two linear frames with the same HS-theory are UMT-
equiυalent.

Proof: By a result of J. Stavi we know that the set of temporal connectives
SUSS = {S(p,q), U(p,q), Sf(p9q), U'(p,q)} is functionally complete for the
class of linear orders, where these operators are defined as follows (read F, V (=
p [s] for Ps):

F,VtV(p,q) [t] if 3y>t (PyΛVu (t < u < y-+ Qu))9

F,VW(p,q) [t]if
(a) (lυ> t)Vu(t<u<υ-+Qu)

Λ (b) w>t (Vu(t< u < v -> Qu) -• Qυ Λ 3W > Wu(υ< u < w^Qu))
Λ (c) 3y> t (-^QyΛPyΛ

\fυ ((t < v < y A lu(t< U<VΛ ~^Qu)) -> Pv)).

S ( A ^ ) and S'(p,q) are defined likewise with respect to the past. These opera-
tors can easily be defined in HS, e.g., U'(/?,#) by:

[B]±
Λ (a) <B>OT

Λ (b) [B] (qq^(lEPlqΛ<A)qq))
Λ (c) <B>(ϊEPK-»flfΛp)Λ[B](-πOT-*|[EP]|p))

where qq is a formula meaning *q holds at every point inside the interval'; take,

e.g.,qq=[B][E]([B] L-*q).
Now suppose F and F' are two linear frames which are not UMT-equivalent;

then clearly F and F' do not satisfy the same first-order formulas in the language
with only monadic predicates, except for a dyadic <. By the functional complete-
ness of SUSS this implies that F and F' are not SUSS-equivalent. But then they
cannot be HS-equivalent either.

Lemma 2.2 There ore two UMT-equivalent linear frames not having the same
US-theory,

Proof: We use the following results of Buchi and Siefkes [5], p. 91: Every or-
dinal a has a unique representation a = ωω-v 4- ωq~ι -kq_ι + . . . + ω° k0, where
ωω p is the ω-head and ωq~ι kq-\ + . . . + ω°-k0 is the ω-tail of a. Buchi and
Siefkes prove that two countable ordinals a and β are UMT-equivalent iff either
a = β < ωω or ωω < a9β and a,β have the same ω-tail. So the ordinals ωω and
ωω + ωω are UMT-equivalent. It remains to be proved that there is an HS-
formula valid in one of the frames and not in the other. Call a frame iso-
choppable if it can be decomposed into a head and a tail that are isomorphic.
Then clearly ωω + ωω is isochoppable and ωω is not.

Now a frame G is iso-choppable iff the following holds: There is a bijection
/ from a head P of G to the corresponding tail Q that is order-preserving, i.e.,
s > t implies f(s) >/(/) .

Consider the following HS-formula φ:
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D ( / ? - ^ [ B ] 1 ) Λ D ( ^ [B]J_) (Gis the disjunct union of the
Λ D( [B]± -> (p ++ -τq)) "pointsets" V(p) and V(q))
Λ O/?ΛO<7 (V(p,V(q)Φ0)

Λ D(p-> [E][ΛPI".β) <P(«) "<" P(P»
Λ D(/->(|[jBP]|/>Λ|[EP]|tf)) (V(q)^PxQ)
v D(/?-+<B>(/Λ [B]I/A [B]-i/» (/is a function)

Λ D (q -* <E>/) (/ is surjective)
Λ D ( / - [E] -i/) (/ is injective)
Λ D (/-* [B] [E] -i/). (/ is order-preserving)

Then clearly F is iso-choppable iff φ is satisfiable in E So ωω f= -up, ωω + ωω ¥
φ, whence these frames have a different HS-theory.

As every point-logical formula φ has a UMT-equivalent φ° on the frame level
(i.e., for every frame F, F (= φ iff F N (po), we obtain the following theorem,
which expresses that HS has a greater capacity of distinguishing linear frames
than any point-based logic.

Theorem 2.3
(1) For any point-logic P, two HS-equivalent linear frames have the same P-

theorγ.
(2) The ordinals defined in the previous proof have the same P-theory for any

point-logic P, but they are not US-equivalent.

2.4 Functional completeness for interval tense logic In 1.6 we saw that ev-
ery HS-formula φ can be translated into a first-order equivalent φτ. One might
ask whether the converse holds as well, i.e., given a first-order formula ψ in the
appropriate language and with two free variables, is there an HS-equivalent ψ'
of φl The answer to this question is negative, since the following operator
CHOP(^,iA) is undefinable in HS:

F, V\= CHO?(φ,ψ)[s,t] iff
there is u such that for s < u < t,
F,V¥φ [s,u] a n d ^ F h ψ [u9t].

Now of course one may add the CHOP-operator to HS and pose the same ques-
tion for the new system (possibly restricting the class of structures in which the
equivalence should hold). In general, it is an interesting question whether there
exists any finite set FC of tense logical operators that is functionally complete
over a certain class of structures K.

For point logic, Kamp was the first one to answer the analogous question in
the affirmative for the class of (Dedekind-)compelte linear orders (see Kuhn [13]).
Gabbay [9] proved that a class of orders K with arbitrary (monadic) predicates
admits such a finite basis for the temporal connectives if and only if, for some
natural number k, it satisfies the k-variable property, which says that every first-
order formula is equivalent over K to a first-order formula with at most k bound
variables (possibly reused). This "rather syntactic property" can be interpreted
in a more model-theoretic sense, as Immerman and Kozen [12] showed, by using
a variant of Ehrenfeucht/Fraϊsse games.
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Here I will prove that the same method can be used to obtain the following
result for interval tense logic:

There is no finite functionally complete set of operators
over the class of dense linear orders.

Definition 2.5 L is the set of first-order formulas in the language with = and
dyadic predicates <9Pi9P2,

Lk is the set of formulas with at most k (possibly reused) variables X\9x2,
• > Xk-

Lkfn is the set of Z^-formulas of quantifier-depth at most n.
L(x\9x2) (respectively Lk(xi9x2)9 respectively Lkfn(xΪ9x2))9 is the set of for-

mulas in L (respectively Lk9 respectively Lk>n) having two free variables x{ and
x2-

Definition 2.6 A table for an interval-tense logical connective V(pγ,... 9pp)9

is an L(#i, ̂ -formula 0 ( * i , * 2 , < , = , P i , . . . ,PP) such that for any frame F,
valuation V, and interval [s9t] in INT(F):

F9VΪV(pl9... 9pp)[s9t] iff F9V\=φ(xl9x2,<9=9Pl9... 9Pp)[s9t].

(Example: The table for C H O P ( A < 7 ) is the following formula:

3*3 (AΓi < X3 < X2 Λ PXiX3 A Qx3X2).)

Lemma 2.7 IfFC is a set of tense logical formulas, using a finite number of
operators {Vl5..., Vc), then there is a k such that each FC-formula has an
Lk(x\9x2)-equivalent φ°.

Proof: Suppose V, is a/?(/)-place operator, with a table ψ/ using υ(i) variables.
Define k = max {^(/)| 1 < / < c}.

By (FC-)formula induction we prove that any φ in IL has an L^-variant
φ°(xι,x2,... ,xk) with Xι and x2 free in <p°.

• For atomic formulas the proof is easy: p° = Pxxx2.
• If φ = -i0 one simply takes φ° = -ι0° and (ψ Λ χ)° = ψ° Λ χ°.
• So, suppose φ = V(φu.. .9<pp). Let ψ(xι9x2, <9 =,Pi, . -,PP) be the ta-

ble of V(/?!,... 9pp). By the induction hypothesis we have an Lk(xux2)-
equivalent φf for every φh

We know that we get a classical equivalent for φ by substituting the
formulas φf for P, in ψ. To obtain an /^-equivalent, we have to attune
the free variables in the formulas φf (Xχ9... 9xk) to the variables of P,
in 0.

To this end, consider an occurrence / of P, in ψ. Suppose P, occurs at
/ with the variables Xj and xm (j9m E {1,... ,k] by definition of k). Per-
mute the variables xx,... 9xk of φf (Xι,... 9xk) in such a way that Xj and
xm appear where formerly xλ and x2 stood. So we get a formula φfj(Xj,
xm9...) using only the variables Xi,... 9xk.

The required formula φ° is then obtained by simultaneously substitut-
ing in 0, for every occurrence / of every predicate Pz in ψ9 the formula φitl

for Ph
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By this Lemma we know that, if there were a finite functional complete set
of operators over a class K, every L(xx ,Jt2)-formula would have a ΛΓ-equivalent
in Lk(xux2). The remaining part of this section is devoted to showing that this
cannot be the case for the class of dense linear orders. As was said before, in [12]
a game-theoretic treatment of this subject is given. We need the following defi-
nitions:

Definition 2.8 A partial valuation over a temporal order F = (T, <) is a par-
t i a l f u n c t i o n u: [xι,x2, . . . } * - + T.

A k-configuration over F{ ,F2 is a pair (u, υ) where u and v are partial valu-
ations over FX,F2, respectively, such that the domains σu of u and σv of v sat-
isfy σu - σv C {*!,... ,X/c\.

For L C L, u and v are said to be L-equivalent if for all φ E L' with free
variables in σu, F\,u 1= φ iff F2, v t= φ.

In the following we assume familiarity with Ehrenfeucht games and now give
only an informal definition of the special version used in [12]:

Definition 2.9 Let F\,F2 be two orders and (u, v) a ^-configuration over
Fx,F2,k,n > 0. G(u,v,k9n) is an Ehrenfeucht game of n moves with only 2k
pebbles, pair wise colored xϊf...,xk. (This means that during the game pebbles
have to be lifted from the board in order to be replaced on another element —
one 'loses information'.) After each move a new ̂ -configuration is generated,
s o a f t e r n m o v e s o n e h a s a s e q u e n c e ( u , v ) = ( u o , v o ) , ( u ι , V \ ) , . . , , ( u n i v n ) .
Now player II has a forced win for, or simply wins, the game if he can play
so that every ^-configuration (Uj,Vi) is a local isomorphism, i.e., if the map
Ui(Xj) *-> Vi(xj) is an isomorphism of the substructures [Ui(x)\xE σu} of Fx and
{Vj(x)\ x E σv} of F2. Player I has a forced win if player II hasn't.

The restriction to k pebbles is just the game-theoretical counterpart of the
syntactic restriction of formulas to k variables:

Lemma 2.10 Let FandF' be temporal orders and (u,v) a k-configuration
over F,F'. Then player II wins G(u,v,k,n) iffu and v are Lkyn-equivalent.

Proof: See Lemma 3.4 of Immerman and Kozen [12].

Again using [12], we can now easily prove the following:

Lemma 2.11 For K a class of orders, and k > 0: (1) => (2) => (3).
(1) For every φ in L{xγ,x2) there is a K-equivalent ψ in Lk(xι,x2);
(2) For all orders F,F' in Kand 2-configurations (u, v) over F,Ff: ifu and v are

Lk-equivalent they are L-equivalent;
(3) For all temporal orders F,Ff and2-configurations (u,v) overF,F'\ if player

II wins every game G(u,v,k,n), he can win every G(u,v,m,n) (m > k).

Proof: (1) =* (2): See Lemma 2.1 of [12].
(2) => (3): Lk = U«Gω̂ A:,/2> so if player II wins every G(u,v,k,n), u and v

are Lk-equivalent. By assumption, then, they are L-equivalent, so they are
Lm,n-equivalent for all m,n>0.

Lemma 2.12 There is no k such that every L(X\,x2)-formula is equivalent
to an Lk(x\,x2)-formula over the dense linear orders.
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Proof: By Lemma 2.11 it is sufficient to find dense linear models F\ and F2 and
a 2-configuration (w, v) over Fi9F2 such that player II has a forced win in ev-
ery game G(u9v9k9n)9 while player I can win a game G(u9v9k + l9n).

For the definition of Fx, consider a k-shuffle of Q, i.e., a partition of Q into
/: subsets (henceforth called the shuffle sets) Cγ,..., Ck9 each of which is dense
in Q. Define

V ( P ) = {[s9t]\s G C h ί E Cj9s Φ t a n d / = j ) .

Likewise, for F2 one divides Q into k + 1 shuffle sets DΪ9 . . . ,Dk+x and defines:

F ( P ) = {[s,t]\s e Di9t G Dj9s Φ t and i = j}.

Claim Player II wins G(u,v,k9n) iff (u9v) is a local isomorphism.

Proof: Use the following terminology: F,Ff for Fi9F2 or F2,F{ (in this proof Fi
and F2 are interchangeable), /?, (/?/) for the position of the pebble with color JC,
on the board F {F')9 and S(/) (S'(ι')) for the shuffle set /?, is in. It is not hard
to see that

(#) (u, v) is a local isomorphism

iff (MPi<Pj<*p}<p})*MS(i)=S(j)~S'(i)=S'U))).

We prove the claim by induction on n.

*n = 0: The claim follows by the definition of a win.
*n>0:
=>: Again by definition.
<=: Suppose σu and σi; have k elements (the other case is simpler) and let

{u, v) be a local isomorphism.
With every possible move player I must pick up a pebble Xifrom the

board Fi9 so only k - 1 pebbles are left behind. If she places this pebble
on an already existing position p y , the strategy for player II will be clear.
So suppose the pebble xt is moved between pj and /?/ and is in the shuf-
fle set S(i) (the case in which xt is placed above all other pebbles can be
treated likewise).

Player II now picks up pebble x[ and has to put it somewhere be-
tween position/?,-' and/7/; this is quite possible, though he has to be care-
ful in which shuffle set 5' to put x/:

If S(i) = S(j) for somey Φ /, x is of course to be put in S'(./').

If S(i) Φ S ( l ) , . . . 9S(i - l),S(i + 1), . . . 9S(k)9 JC, must be placed in
a shuffle set S' not appearing in the sequence S ' ( l ) , . . . 9S'(i - 1),
S'(i+ l)9...9S'(k). Such a set S' exists: F' is partitioned into k or
k + 1 shuffle sets.

In both cases there is always an S'-element between pj and/?/, as each
shuffle set is dense in Q.

By the assumption that (u, υ) is a local isomorphism, and the equiva-
lence (#), it will be clear that the new ^-configuration (w°, v°) is a local
isomorphism as well. By the induction hypothesis, then, player II has a
winning strategy in G(u, υ,k9n — 1).
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So, the above sketched strategy for player II yields a forced win for him in
G(u,v9k9n).

Now, let u = υ = 0 . By the Claim, player II can win every game G(u,v,k9n).
It remains to be shown that the following strategy in the game G(u,υ9k+l,

k + 1) gives player I a forced win: She should in k + 1 successive steps pick out
positions /?i,... ,p*+i belonging to k + 1 different shuffle sets in F2. This will
mean that for all intervals [p»Pj] one has F2 1= ^PPiPj- At this moment, how-
ever, the set of k + 1 timepoints chosen by player II in Fγ must contain two dif-
ferent elements qt and qj belonging to the same shuffle set. So F\ 1= PQiQj.

In this way, no (#, v) reached in k + 1 steps can be a local isomorphism, i.e.,
player I has a winning strategy.

Theorem 2.13 There is no finite functionally complete set of interval tense
operators over the class DL of dense linear orders.

Proof: Suppose there were such a set FC; then every Z(Ari,x2)-formula φ would
be DL-equivalent to an FC-formula φ\ and so, by Lemma 2.7, to an Lk(xl9x2)-
formula φ°. By Lemma 2.12 this is impossible.

Question 2.14 Theorem 2.13 can be easily generalized to the case of any class
containing an order with a dense substructure. For scattered orderings such as
N or Z, however, it seems to be harder to answer the question whether there
exists a finite functional complete set of interval tense operators.

3 Completeness Concerning the complexity of the validity problem for cer-
tain classes of structures, Halpern and Shoham [10] prove, by constructing for-
mulas encoding the computation of a Turing machine, the first two of the
following facts; the third one then follows easily, and the fourth is a consequence
of the fact that the whole second-order theory of Q is recursively axiomatizable:

Fact 3.1
(1) The validity problem for any class of temporal structures containing a frame

having an infinitely ascending sequence of time points is r.e.-hard;
(2) If every frame in such a class is complete, the validity problem isTί\-hard\
(3) The theories o/N, Z, and R are not recursively axiomatizable;
(4) The theory of Q is recursively axiomatizable.

Here we will give finite sets of axioms for the following (classes of) struc-
tures: Kιiw (all frames with linear intervals), Knn (linear structures), Kάis (discrete
structures), and Q, and prove their completeness. Only for the class of linear
structures will the proof be given in detail. The general line of the proof is as in
Burgess [7], while the use of a special derivation rule originates with Gabbay [8].
In a countable number of stages we will construct for a consistent formula φ a
frame Fin which this φ is satisfiable. Important in this enterprise is the concept
of a "lattice", which is to be considered a finite approximation of F. Because the
geometrical view of the matter is dominant in this chapter, I will represent the
operators as defined in 1.5.1.
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Definition 3.2. The linear interval tense logic L\[n consists of:
(1) (All substitution instances of) the following axioms and their mirror-images:

(10) all propositional tautologies
(11) a • (p -> q) -• (•/? -• •#) (distribution)

b • (/?-><?)-• (Dp -• •<?) (distribution)
(12) a O<>p-+Op (transitivity)

b <$><!>p-+ Op (transitivity)
(13) a OΠ/7 ->/j ( I a n d ΐ a re . . .

b <> •/? -> p converses)
(14) a OΠJ-vΠ-L (endpoints)
(15) m_L->G_L (id.)
(16) a <!>O/?->O<J>/? (SW-directedness)

b OOp -> OO/7 (NW-directnedness)
c O O/7 -> O O/7 (NE-directedness)

(17) a (Op Λ Oq) -> (linearity)
[<!>(/? Λ Φtf) v O(p/\q) v <>(<>/? Λ (gr)]

Note that by looking at the syntax alone, one can easily see that each axiom
corresponds to a first-order condition on the /-frame.

(2) The rules of inference:

(Rl) (Modus ponens): infer ψ from φ and φ->φ.
(R2) (Temporal Generalization): infer Bφ, Ώφ, \Πφ and U\φ from <̂ .
(R3) (Redundancy of Distinguishing Propositionals)

a infer φ from hor(Λ) -> φ, provided h does not occur in φ\
b infer φ from ver(ι ) -> <̂ , provided v does not occur in φ, where hor(<^>)

and ver(ψ) are defined in 3.11.

The theorems of the system are the formulas obtainable from its axioms by
its rules. A formula is consistent if its negation cannot be derived as a theorem;
a set of formulas is consistent if the conjunction of every finite subset is.

Remark 3.3 (1) Reading " F " (future) for " Φ " and " P " (past) for "O", one
easily proves (cf. [7]) that the (point-based!) logic axiomatized by Axioms (10)-
(14) and (17) is complete for the class of linear point structures with a beginning
point. This fact will implicitly be used in the sequel.

(2) The odd-looking rule (R3) is the one mentioned above. The formulas
hor(Λ) and ver(ι ) state that the "environment" of the current interval is "(point)-
frame-like". So (R3) more or less expresses the following: If φ is a "theorem in
a frame-like environment" it is a theorem.

We want to prove the following:

(A) Liin is sound for Kχm\ Every theorem of L l i n is valid over Kχm.
(B) Liin is complete for Kχm\ Every formula valid over A ^ is a theorem of Li i n,

or equivalently, every consistent formula is satisfiable in Kχm.

As usual, the first of these problems is easier to solve:

Theorem 3.4. (Soundness) Every theorem of LXm is valid over K\in.
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Proof: To show the soundness of the axioms and the first two derivation rules
is routine and is left to the reader. (In checking Axiom (16) its name will become
clear.) For (R3), suppose # φ, then there are F, V,s < t in F such that F> V N -ιφ
[s,t]. Now consider a valuation V which only differs from Fon h; set V (h) =
\[x,t]\ x<t}. Then F, V 1= hor(λ) and, as h does not occur in φ, F9 V \= -ιφ.
So \t hor(Λ) -> φ. This means that f= hor(Λ) -• φ implies t= φ, so (R3) is sound.

Definition 3.5
(1) If L is a set of propositional constants, then an JL-MGS (maximal consistent

set) is a consistent set Δ C Φ L satisfying: For all φ E Φ/,, φ E Δ iff -\φ £ Δ.
(2) If Δ' is an L'-MCS and Γ 2 L then Δ' \L is defined as Δ' Π ΦL.

Definition 3.6 If Γ and Δ are MCS's, we say Γ is (potentially) below Δ, or
Δ lies below Σ, and write Γ <τ Δ, if one of the following equivalent conditions
is met:

(i) For all φ, if U\φ E Δ then φET;
(ii) For all φ, if Bφ E Γ then φ E Δ;
(iii) For all <p, if <̂  E Δ then Φ ^ e Γ ;
(iv) For all φyif φGT then O<p E Δ.

In a similar way we define: Σ >^ Π, Π lies (potentially) to the right ofΣ, or Σ
is situated to the left o/Π.

Without proof I mention the following facts (of course, their mirror images
hold as well):

Lemma 3.7
(0) Every consistent set Σ <Ξ Φ/, is contained in an L-MCS Σ';
(1) IfOφET then there is an MCS Δ above Γ such that φ E Δ;
(2) IfOφET then there is an MCS Δ below Γ such that φ E Δ;
(3) IfY < t Δ and Δ < τ Σ then Γ < t Σ;
(4) If A and Σ are both above Γ then Σ < t Δ or Σ = Δ or Δ <τ Σ;
(5) IfT is above both Δ and Σ then Σ<rAorΣ = AorA<tΣ;
(6) IfT is below Γ' and to the right of A then there is a A' above A and to the

left of Γ;
(7) IfT is below Γ' and to the left of A then there is a Δ' above A and to the right

ofT';
(8) If Γ is above T' and to the right of A then there is a A' below A and to the

left of T\
viz., (6) Δ' Γ' (7) Γ' Δ' (8) Δ Γ

Δ Γ Γ Δ Δ' Γ'.

Definition 3.8 Let Wbe a countably infinite set. An L-lαttice G (in W) of
size n is a pair (F,U), where Fis a finite (linear) frame (Γ,<), TQ Wh&s n el-
ements, and U is a chronicle on INT(F), i.e., a map assigning L-MCS's to F-
intervals. This chronicle U must be respecting point-intervals, i.e., G3JL is in
U(t, t) for all / E Γ, and coherent, which means that for all s,t,uG T, U(s9t)
is below U(s, u) if s < / < u, U(s,u) lies to the left of U(t, u) if s < t < u, etc.

Remark 3.9 In the completeness proof the spatial representation of INT(F)
will ordinarily be used. In that case I will give names C, D, P, S,... to the points
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representing intervals and use the corresponding Greek capitals Γ, Δ, Π, Σ , . . .
for their (/-images.

Definition 3.10 For frames and lattices, inclusion (notation: c) is defined in
an obvious way, as is, for two languages LQL', the restriction of an //-lattice
G' to L (notation: G' \L). If G is an L-lattice, L c L', and G' is an U-lattice,
then G' is said to extend G ( G g G') if G'\L does, i.e., if G c G'\L. For the
union of a chain of frames, i.e., a sequence (Fn)nGω of frames with Fn <Ξ FΛ +i
for all n G ω, the obvious definition holds as well.

Definition 3.11 A lattice G= (F,U) is maximally distinguishing (md), if for
every t G T there are formulas φt and ^ such that

ver(^) = (φtAΪΏφt) Λ Π B - I ^ Λ E H - I ^ Λ G ] - ! ^ )

and

hor(^) = ( ^ Λ B<ρ,) Λ QCD-i^ Λ \Ώ(-ιφt Λ Q ~ I ^ )

are in U(t,t), viz.

I X /

Lemma 3.12 If G is a maximally distinguishing lattice then for every t in F
there are formulas μ and v such that

(μΛBμ)Λm(μΛBμ) is in U(x,t) for all x G F

and

(p ΛtBv) ΛB(V ΛΠIV) is in U(t,y)for ally G F

Proof: Take μ = E E P J ^ and v = EBP]]^. The proof is easy, though
laborious.

As was said before, a lattice is meant to be only an approximation of a
model: it doesn't have to be perfect. One way of describing shortcomings of this
approximation is given by:

Definition 3.13 A possible (L0)-defect of a lattice is a quadruple (k,s, t9 φ)9

where 1 < k < 4, s, t G JF (recall that lattices were defined "within" a set JV)9 and
φ is a formula. Such a quadruple (k9s, t, φ) is called an (actual) defect of a lat-
tice G = (Γ, <, U) if s, t G Γ, s < t, and one of the following is the case: k =
1, Oφ G U(s,t)9 and there is no u G Γsuch that s<u<t and <p G t/(s, u);
2, <J><p G U(s,t), and there is no w G Γsuch that t < u and <p G U(s9u);
3, O^ G U(s,t), and there is no w G Γsuch that s <u< t and ^ G U(u,t);
4, O<p G U(s9t), and there is no « G Γsuch that w < 5* and <p G U(u9t).
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A defect {k,s,t,φ) is said to be of type k. As Wis countable, we may and will
assume the existence of an enumeration tfi, fife,... °f a ^ possible defects.

Lemma 3.14 Suppose G = ((Γ, <) , U) is an md-lattice of size n, and s is an
actual defect ofG; then there is a lattice G' = ((Γ, <'), U') of size n + 1, ex-
tending G, in which the defect s is removed.

Proof: (Only defects of type 1 and 2 are treated; the proof for their mirror im-
ages 3 and 4 is the mirror image of this proof.) The adding of points/intervals
runs in two stages:

(A) First one point-with-an-MCS is added.
(B) In the second stage this "pseudo-lattice" is made into a proper lattice again.

(A) Suppose T = (w l 5 . . . ,un], where tj < tj if / < j . As we have a defect of
type 1 or 2, there must be s91G Twith s < t, Oφ (respectively Oφ) G U(s,t),
while there is no u G T such that t < u (respectively s < u < t)9 and φ G
U(s,u). Consider the "vertical line of intervals" {[S,Λ:]| XG T). Somewhere
on this line, above (respectively below) [s, t] we have to add, in a coherent
way, an MCS Γ with φ G Γ.

By Remark 3.3(1) one can use a simple argument, which has a com-
pletely standard counterpart in point-logic (cf. [7]), to show that this is pos-
sible, somewhere between a [s,xk] and a [s,xk+i] or above [s,xn].

So we add a new point u G W\Tto T, set ut < u if / < k, u < ut if / >
k + 1 in the first case and ut < u for all / in the second, viz., the examples
in the figures below. Then we define U'(s,u) to be the Γ we found.

(B) In the second stage of the construction we are dealing with an md-lattice to
which one interval-with-an-MCS is added. To make this "pseudo-lattice" into
a real lattice again, we have to show that it is possible to extend coherently
the definition of U' to the other newly arisen intervals.

What exactly must be done now is best illustrated in Figures 3 and 4 of
the spatial representation of the "pseudo-lattice". In these figures + stands
for an old interval (i.e., an interval [s,t] with s, t G T), * for the one new
interval already accompanied by an MCS, and ° for the new intervals for
which we still need to define {/'-images.

o o *[S,UJ o o o + +L S >t] + o + +

+ + + + + + + + O +
+ + +[s,t] + o *[S,ll] o o

+ + + + + +

+ + + +

+ +

Figure 3. Figure 4.

We treat only the second (and more difficult) case, in which the new interval lies
somewhere between two older ones:

+ + + 0 ^ 6 + +

+D, + D 2 + D 3 0 P 5 + D 4

oPl 0P2 0P3 0P4

+Ci +Cι +C3
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This means that in the first part of the construction we added the interval
(represented by) P2 to the lattice G, together with an MCS Π2 of which we know
that it lies above Γ2 and below Δ2.

Now we have to prove the existence of MCS's Πi, Π3, Π4, Π5, and Π6,
which are coherent with each other and with the old lattice.

By Lemma 3.7.8 there must be a Hi situated to the left of Π2 and below Δ!.
Now the problem is to prove that Uλ is above Tx. In any case, because both ΓΊ
and Πi are below Δ 1 ? by Lemma 3.7.5 we know that either Πi is below ΓΊ or
Πj = ΓΊ or Πi is above Γ .̂ To rule out the first two possibilities, we need the fact
that G is maximally distinguishing; by Lemma 3.1 there is a formula y such that
(7 Λ Bγ) Λ m (-17 Λ B17) belongs to each MCS "on the C-line", whence 7 E Γj
and •• -17 is in Γ2 => ••• -17 E Γ2 => ••• -17 G Γ2. So both • -17 and •• -17
are in Π2, as Π2 is above Γ2. We get

(1) 17 is in Uϊ9 so Γ^ cannot be on the C-line: Πj Φ Γt

(2) IH-17 is in Πi, so Γ^ cannot be below Γ^

So we have found a Hi with the desired properties.
The existence of the MCS's Π3, Π4, Π5, and Π6 can be proved similarly. So,

adding the pairs CP, ,Π, ) to the chronicle £/', we get a lattice G' Ώ. G of size
n + 1, in which the old defect is removed.

Now as the construction of new lattices out of old ones has to be repeated
a possibly infinite number of times, the previous lemma is not enough: we have
to obtain a new lattice which itself is maximally distinguishing:

Lemma 3.15 Let G be an md Lrlattice of size n and s a defect of G. Then
there are a set ofpropositional constants L" =2 L and an md L"-lattice G" of size
n + 1, extending G but not having the defect s.

Proof: Using the same terminology as in Lemma 3.14, we will show that there
is a language L" and an md L"-lattice G" such that G' = G"\L\ where G' is the
lattice obtained in Lemma 3.14.

The only way for G' not to be maximally distinguishing is for there to be no
formulas φ and ψ such that hor(<ρ) and ver(i^) are in U(t,t), where t is the one
point newly added to T.

So our first step in order to turn G' into G" is to add two new constants h
and v to L and put hor(Λ) and ver(y) in £/'(*,/), and then extend this set to an
MCS U" (t,t). That this is possible is given by the following claim:

Claim 3.15.1 IfΠ] ± E Π, Π is consistent, and the propositional constants h
and v do not appear in Π, then Π U {hor(A),ver(ι;)} is consistent.

Proof: Suppose Π U (hor(Λ)} is inconsistent; then there is a formula TΓ E Π such
that hhor(Λ) -> -ιτr. As h does not occur in Π, (R3) gives I—«τr, contradicting
the consistency of Π. In the same way one can prove the consistency of Π U
{hor(Λ),ver(t;)} = (Π U (hor(Λ)} U {ver(ι )}.
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After this, one by one every Z/-MCS U'(s,u) of G' will be coherently ex-
tended to an Z/'-MCS U" (s, u). As this construction is very similar to the one
in the previous lemma, the proof is omitted here.

Theorem 3.16 L l in is complete for AΓlin.

Proof: Suppose φ is consistent. We now construct a linear frame in which φ is
satisfiable.

Define Lo as the set of propositional constants in φ and fix an L0-MCS Σ
with φ E Σ. Suppose m± E Σ (otherwise start with {^|[[BP]]^ E Σ}). Suppose,
for all n E ω, that hn+\ and υn+i are constants not in Ln and define, for all
nGω, Ln+ι =LnU [hn+u υn+ι}. Then by Claim 3.15.1, Σ U ( h o r ^ O ^ e r ^ ) }
is consistent, so it can be extended to an Z r MCS Σx.

Recall that we have an enumeration du d2,... of all possible Z0-defects of
lattices with elements in a countable set W. Defining G\ = ({w], 0 , {([ w, w],
Σι)}) for some w E W, an iterative application of Lemma 3.15 yields the exis-
tence of a chain of maximally distinguishing lattices G 1 c G 2 c , l i such that
Gn+χ = Gn if Gn has no defects; otherwise Gn+i is obtained by removing that
defect of Gn having the lowest index. (If Gn+Ϊ Φ Gn then Gn+ι is an Ln+i -lattice
of size « + 1.) One easily proves that for every defect of every Gn there is an
m > n such that Gm does not have this defect. Note that it is sufficient to re-
move only Lo-defects.

Now define the following valuation on the union F of the frames Fn:
V(p) = [[s,t]\ p E U(s9t)), where C/= U*e« Un.

Truth Lemma For every L0-formula <p:

F,V)rφ[s,t} iff φel/(s9t).

Proof: Using formula-induction:
(1) For atomic formulas the assertion is clear by definition of V.
(2) For φ s -y\j/ or φ = (ψ Λχ), the proof is a routine check.
(3) Of the other possibilities we treat only the case φ s Oψ.

=*: Suppose F, VV Oψ [s,t]. Then there isawG Γwith s < u < t and
F,V\=φ [s9u]. According to the induction hypothesis, 0 E U(s,u).
As Γ = UΛGωΓΛ and < = UΛ(Ξω <Λ, this means that there must be an
nG ω such that s9t,u E ΓΛ and s <nu <nt. Because t/Λ is coherent
on Gn, this means that Un(s,u) < t Un(sJ). Then by definition
of <t, <J>ψ E Un(s,t), so we can conclude that Oψ E U(s,t).

<=: Suppose O\t E U(s,t), and take a Gn for which s, f e 7^. If there is
no t/ in GΛ with s <nu <nt then this is an actual defect of Gn. In
that case there must be an m > n such that Gm does not have this
defect, i.e., Gm Ώ Gn and there is a u in Tm satisfying s <mu <mt
and ψE Um(s,u).

Now s<u<t and ψ E (/(s, w). By the induction hypothesis, this
yields F, V\=φ [s,u], so F, VtOψ [s,t].

As it is not hard to prove that F (being the union of a chain of linear frames)
is itself linear, we can conclude that for any consistent formula φ there is a lin-
ear model (F9 V) and an interval [s,t] in the frame such that F, V \= φ [s,t].

This means that indeed φ is satisfiable in Kϊin.
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Definition 3.17 The interval tense logics Liίv, LdiSy and LQ consist of the
same axioms and derivation rules as Z i t v, with the following adaptations:

(1) L i t v, the (general) interval tense logic: Replace Axiom (17) by Axiom (17'):

(17') (Op A Oq) -+

{<>(/? Λ Oq) v O(p /\g) v O(Op Λq)}.

(2) Ld i s, the discrete interval tense logic: Add the following axiom to L i t v:

(D) DISC. (defined in Claim 1.6.3.2)

(3) LQ: add the following axioms to L\in:
(Ul) OΓ
(Ur) ΦΓ
(D) DENSE. (defined in Claim 1.6.3.1)

Theorem 3.18
(1) L i t v is sound and complete for KitV9 the class of all point-frames with linear

intervals',
(2) Ld i s is sound and complete for K&s, the class of discrete frames;
(3) LQ is sound and complete for Q.

Proof: Soundness is an easy matter in all cases.
The completeness proof for L i tv, which is conceptually analogous, yet tech-

nically more complex than the one for L l in, is omitted here.
For Ldis one copies the proof for L i tv; arriving at the Truth Lemma, one ob-

serves that the formula DISC is true at every interval in the obtained model
(F, V); as this formula has no propositional constants, this means that it is true
at every model on F, whence F= DISC. So by Claim 1.6.3.2 Fis discrete.

The completeness proof for LQ begins exactly as the one for L l in; in a sim-
ilar way as with Ldis, one obtains a frame validating the formulas OΓ, OT, and
DENSE. So this (linear!) Fmust be unbounded to the left and to the right, and
dense: F = Q.

Question 3.19 The proof of Claim 3.15.1 is the only place in the complete-
ness proof where the odd derivation rule (R) is used. It is an open question
whether this rule is really needed to prove completeness; perhaps it can be omit-
ted altogether or replaced by a (finite?) set of axioms.

Question 3.20 The facts presented in 3.1 seem to disqualify the use of the sys-
tem HS for practical purposes; it may well be possible, however, that some frag-
ments of the full language behave better. Are there natural and useful fragments
of the language for which we can obtain completeness or decidability results with
respect to their validity on the standard frames?
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