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Propositional Logic of Imperfect Information:
Foundations and Applications

Ahti-Veikko Pietarinen

Abstract I will show that the semantic structure of a new imperfect-information
propositional logic can be described in terms of extensive forms of semantic
games. I will discuss some ensuing properties of these games such as imperfect
recall, informational consistency, and team playing. Finally, I will suggest a
couple of applications that arise in physics, and most notably in quantum theory
and quantum logics.

1 Introduction

The research Sandu and I have done ([30], [32]) describes a new propositional logic
of imperfect information, or IF (independence-friendly) propositional logic. This
logic can be viewed as a fragment of IF first-order logic (Hintikka [10], Hintikka
and Sandu [11], Pietarinen and Sandu [26], Sandu [31]). That research addressed the
relation between partial logic and the semantics for IF propositional logic in terms of
imperfect information semantic games, and one of the outcomes was an alternative
compositional semantics for it. Here I propose to look at these imperfect informa-
tion semantic games in more detail and show that they may conveniently be viewed
as extensive-form games with a partitional information structure. Such partitional
structures have been studied in game theory in relation to imperfect information but
they have not been applied to logic before. I will discuss a couple of issues that
these games give rise to, namely, imperfect recall, information consistency, and team
playing. After presenting the game-theoretic foundations for propositional IF logic I
will turn to a couple of applications of this logic which are here shown to be rife in
the realm of quantum theory and quantum logics.
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2 Extensive Games of Perfect Information

Let us fix a family of actions A in which a finite sequence 〈a i 〉n
i=1 represents the

consecutive choices of players N (no chance moves), a i ∈ A, i = {1, . . . , n}. An
extensive game G of perfect information is a five-tuple GA = 〈H, Z , P, N, (ui )i∈N 〉
such that

1. H is a set of finite sequences of actions h = 〈a i 〉n
i=1 from A called histories

of the game:
(a) the empty sequence 〈〉 is in H ,
(b) if h ∈ H, then any initial segment of h is in H too: if h = 〈a i 〉n

i=1 ∈ H
then pr(h) = 〈ai 〉n−1

i=1 ∈ H for all n = 1, 2, . . . , where pr(h) is the
immediate predecessor of h (= ∅ for h = ∅);

2. Z is a set of maximal histories (complete plays) of the game: if a history
h = 〈ai 〉n

i=1 ∈ H can continue as h′ = 〈ai 〉n+1
i=1 ∈ H , h is a nonterminal

history and (an+1) ∈ A is a nonterminal element—otherwise histories are
terminal; any h ∈ Z is terminal;

3. P : H \ Z → N is the player function which assigns to every nonterminal
history a player N whose turn is to move;

4. each ui , i ∈ N is the payoff function, that is, a function which specifies for
each maximal history the payoff for player i .

For any nonterminal history h ∈ H define A(h) = {x ∈ A | h _ x ∈ H }. A (pure)
strategy for a player i is any function fi : P−1({i}) → A such that fi (h) ∈ A(h),
in which P−1({i}) is the set of all histories where player i is to move. A strategy
specifies an action also for histories that may never be reached.

A strictly competitive game is a particular case of a game defined as above, in
which N = {∃, ∀} and, in addition,

1. u∃(h) = −u∀(h),
2. either u∃(h) = 1 or u∃(h) = −1 (i.e., ∃ either wins or loses),

for all terminal histories h.

3 Extensive Semantic Games of Perfect Information

An extensive form of a semantic game G(ϕ,M) associated with a formula ϕ and a
model M is exactly like an extensive game GA defined above, except that it has one
extra element: a labeling function L : H → Sub(ϕ) such that

1. L(〈〉) = ϕ (the root);
2. for every terminal history h ∈ Z , L(h) is an atomic subformula p ∈ Sub(ϕ)

of ϕ or its negation.
In addition, the components H, L, P, u∃ and u∀ satisfy the following requirements:

1. if L(h) = ψ ∨ θ or L(h) = ψ ∧ θ, then h _ Left ∈ H, h _ Right ∈ H, and
L(h _ Left) = ψ, and L(h _ Right) = θ ;

2. if L(h) = ψ ∨ θ , then P(h) = ∃;
3. if L(h) = ψ ∧ θ , then P(h) = ∀;
4. for every terminal history h ∈ Z :

(a) if L(h) = p and M |H+ p, then u∃(h) = 1 and u∀(h) = −1;
(b) if L(h) = p and M |H− p, then u∃(h) = −1 and u∀(h) = 1.
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The relation ‘|H+’ means positive logical consequence (being true in a model) and
‘|H−’ means negative logical consequence (being false in a model).

The notion of strategy is defined in the same way as before. A winning strategy
for i is a set of strategies fi that leads i to ui(h) = 1 no matter how the player −i
(the player other than i ) decides to act.

Let L be a classical propositional language and let ϕ ∈ L. Then

1. M |H+
GTS ϕ if and only if there exists a winning strategy for player ∃ in the

game G(ϕ,M).
2. M |H−

GTS ϕ if and only if there exists a winning strategy for player ∀ in the
game G(ϕ,M).

The subscript GTS comes from ‘game-theoretic semantics’.

4 Propositional Logic of Imperfect Information

So far the languages have been classical perfect information ones. However, there
is a variant of an IF (independence-friendly) first-order language of ([10], [11])
which consists of propositional symbols 9, each having its own arity, and a finite
set i1, . . . , in of indices ranging over a set of two elements.1

The well-formed formulas of LIF are defined by the following clauses:

1. if p ∈ 9, the arity of p is n, and i1, . . . , in are indices, then pi1,...,in and
¬pi1,...,in are LIF-formulas; let us write pi1,...,in also as p(i1, . . . , in);

2. if ϕ and ψ are LIF-formulas then ϕ ∨ ψ and ϕ ∧ ψ are LIF-formulas;
3. if ϕ is an LIF-formula then ∀inϕ and ∃inϕ are LIF-formulas;
4. if ϕ is an LIF-formula then (∃in/U)ϕ is an LIF-formula (U is a finite set of

indices, in /∈ U ).

The notions of free and bound variables are the same as in first-order logic. In
(∃in/U)ϕ the indices on the right-hand side of the slash are free. For simplicity,
the clauses for dual prefixes such as (∀in/U) are omitted.

The models for the language will be of the form M = 〈I M , (pM )p∈9〉 where I M

is any set with two elements, and each pM is a set of finite sequences of indices from
I M .

With every LIF-sentence ϕ and a model M = 〈I M , (pM)p∈9 〉 a semantic game
G(ϕ,M) of imperfect information is associated, played by ∀ and ∃. The rules of the
game are as follows.

1. ϕ ∨ ψ prompts a move by ∃ who chooses ϕ or ψ ; the game goes on with the
chosen formula.

2. ϕ ∧ ψ prompts a move by ∀ who chooses ϕ or ψ ; the game goes on with the
chosen formula.

3. ∃inϕ prompts a move by ∃ who chooses mv ∈ I M to be the interpretation of
in.

4. ∀inϕ prompts a move by ∀ who chooses mv ∈ I M to be the interpretation of
in.

5. (∃in/U)ϕ prompts a move by ∃ who chooses mn ∈ I M to be the interpre-
tation of in independently of the choices corresponding to the elements in
U .
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The notion of “choosing independently” is explicated in the strategy functions (see
below). The game ends with an atomic formula or its negation and a sequence of
elements 〈m1, . . . ,mn〉 in which each mn ∈ I M . Then

1. if 〈m1, . . . ,mn〉 ∈ pM , then ∃ wins;
2. if 〈m1, . . . ,mn〉 /∈ pM , then ∀ wins.

Let ϕ be an LIF-sentence and let M be a model 〈I M , (pM )p∈9〉. Then

1. M |H+
GTS ϕ if and only if there exists a winning strategy for player ∃ in the

game G(ϕ,M).
2. M |H−

GTS ϕ if and only if there exists a winning strategy for player ∀ in the
game G(ϕ,M).

For example, let M = 〈I M , (pM)p∈9 〉, where I M = {Left,Right}. Then

M |H+
GTS (∀i1(∃i2/{i1}) pi1i2) iff M |H ∃i2∀i1 pi1i2 iff

〈Left,Left〉 ∈ pM and 〈Right, Left〉 ∈ pM , or

〈Left, Right〉 ∈ pM and 〈Right, Right〉 ∈ pM .

M |H−
GTS (∀i1(∃i2/{i1}) pi1i2) iff M |H ∃i1∀i2 ¬pi1i2 iff

〈Left,Left〉 ∈ pM and 〈Left, Right〉 /∈ pM , or

〈Right, Left〉 ∈ pM and 〈Right, Right〉 /∈ pM .

Formulas of LIF can be rewritten by using infix notation when confusion about the
location of imperfect information does not arise. For example,

∀i1(∃i2/ i1) pi1i2 ≡ (pa1 (∨/∧) pa2) ∧ (pb1 (∨/∧) pb2). (1)

The connective (∨/∧) (respectively, (∧/∨)) means that the verifier ∃ (the falsifier
∀) makes a choice of the disjunct (conjunct) without being informed of what choices
have been made with respect to the conjunction (disjunction) denoted on the right-
hand side of the slash.

5 Information Partition: Imperfect Information and Imperfect Recall

The semantics for slashes gives rise to expressions such as “not being informed of,”
“not knowing that,” or “being independent of” that need to be captured. To do
this, imperfect information is represented by means of extensive forms of seman-
tic games with a partitional information structure. Let us extend GA to a six-tuple
G∗

A = 〈H, Z , P, N, (ui )i∈N , (Ii )i∈N 〉 with an additional component Ii , an infor-
mation partition of P−1({i}) (the set of histories in which i moves) such that for all
h, h′ ∈ Si

j ,

h _ x ∈ H iff h′ _ x ∈ H, x ∈ A, j = 1, . . . ,m, i = 1, . . . , k,m ≤ k.

Si
j is an information set Si

j ∈ Ii .
In imperfect information games, the strategy function is required to be defined on

indistinguishable histories:

if h, h′ ∈ Si
j ∈ Ii then fi (h) = fi (h′), for i ∈ N .
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Left

Left

pa1 pa2 pb1 pb2

∀ : (pa1 (∨/∧) pa2) ∧ (pb1 (∨/∧) pb2)

Right Right

Right

∃ :

(−1, 1)(1,−1)

Left

(−1, 1)

pb1 (∨/∧) pb2pa1 (∨/∧) pa2

(1,−1)

S∃
1

Figure 1 An extensive-form semantic game G∗(φ,M) for
φ = (pa1 (∨/∧) pa2) ∧ (pb1 (∨/∧) pb2), with one nontrivial in-
formation set S∃

1 for ∃.

Figure 1 illustrates an extensive form of a semantic game for the right-hand side
formula in the equivalence (1). Let 4 be a partial order on the tree structure of
extensive form games. An extensive-form game satisfies non-absentmindedness, if
h, h′ ∈ Si

j , and if h 4 h′ then h = h′. Let a depth d(Q) of a logical component Q in
an LIF-formula ϕ be defined inductively in a standard way. It can be observed that
G∗(ϕ,M) for LIF-formulas ϕ satisfy nonabsentmindedness. This follows from the
fact that all logical components Q in any LIF-formula ϕ have a unique depth d(Q),
and so every subformula of ϕ has a unique position in G∗ given by L(h). Thus for
any two subformulas of ϕ at h, h ′ ∈ H within Si

j , h 64 h′ and h′ 64 h.
In other words, for any LIF-formulas ϕ andψ , if ψ is a subformula of ϕ at h ∈ H

and η is a subformula of ψ at h ′ ∈ H , and ψ and η labeled along the same history
h ∈ Z , if ψ ∈ Si

j and η ∈ Sk
l , then i = k. (Since there is no (Ii )i∈N in G, it

vacuously satisfies non-absentmindedness.)
Let Z(h) be a set of plays that pass through any h ∈ H , if h becomes a subse-

quence of any h′ ∈ Z(h). Likewise, let Z(ai) be a set of plays that pass through
an action ai ∈ A (or a sequence of actions 〈ai 〉n

i=1), if ai ∈ h′ ∈ Z(ai). Define a
precedence relation <∗ between any two information sets Si

j , Si
k as follows:

If h, h′ ∈ Si
j × Si

k such that h ≺ h′, then Si
j <

∗ Si
k .

Thus Si
j <

∗ Si
k says that there exists a play h′′ ∈ Z passing through h and h ′. If

non-absentmindedness holds then any h ′′ ∈ Z passes through Si
j or Si

k at most once.
Let P−1({i}) be the set of histories where i moves playing a strategy fi . Si

j is
relevant for fi if Si

j ∩ P−1({i}) is nonempty.
The property of recall is now characterized so that a game G∗

A has perfect recall1
if Si

j is relevant for fi implies Si
j ⊂ P−1({i}) for all fi , Si

j ∈ Ii . There is also an
alternative way of characterizing perfect recall. A game G∗

A has perfect recall2 if
Si

j <
∗ Si

k implies the existence of a sequence of actions 〈a i 〉n
i=1 ∈ A available from

Si
j such that Z(Si

k) ⊆ Z(〈ai 〉n
i=1).

It can now be observed that games G∗(ϕ,M) for LIF-formulas ϕ do not satisfy
perfect recalli , i = 1, 2. This is because any LIF-formula ϕ containing a subformula
ψ = Q1i1, . . . , (Q2in/ i1), Q1, Q2 = ∃ or Q1, Q2 = ∀ and d(Q1) < d(Q2),
gives rise to a partition in which the subformula of ψ beginning with Q2 induces
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Si
k and the subformula of ϕ beginning with Q1 induces Si

j such that Si
j <

∗ Si
k .

Thus the actions A that the player i ∈ {∃, ∀} chooses for Q1i1 are available from
Si

j , but then Z(〈ai 〉n
i∈1) = Z(Si

k). On the other hand, perfect recall1 depends on
allowing “nonstandard” information sets that are not relevant for players’ strategies
fi . But any such information set violates perfect recall1, in which all P−1({i}) are
L(P−1({i})).

Thus it is possible to study fragments of imperfect information logic in which
perfect recall holds only in some restricted sense, in which case we need to study
aspects of bounded recall (see Lehrer [20] for bounded recall in game theory).

6 Information Consistency and Team Players

In order to understand partitional information structure for semantic games some
qualifications are needed. First, the game-theoretic notion of information or time
consistency says that the notion of time has an unambiguous meaning in games: the
information partition distinguishes between the past, present, and future choices in
an unambiguous way. This is something that can be tried to be captured by assuming
that information sets are partially ordered in the sense of <∗.

Apart from partially-ordered information sets, time inconsistencies may arise in
situations in which the same information set may be visited more than once during
a play of the game. This was described in Section 5 in terms of histories which lie
within the same path but are included into the same information set. The resulting
property of absentmindedness informally says that a player may not be able to recall
his or her own location in a game.

Absentmindedness describes rather erratic player behavior and may give rise to
certain game-theoretic paradoxes (Piccione and Rubinstein [24]). Therefore it is
reasonable that the partition (Ii)i∈N in any G∗(ϕ,M) is time consistent, that is,
all Si

j ∈ Ii are partially ordered and non-absentminded. Now we have seen that
there is no absentmindedness in LIF, and so the question arises whether the time
consistency holds for all IF propositional formulas. It indeed turns out that time
consistency holds, for example, for formulas of IF first-order logic, but surprisingly,
in propositional fragments there, in fact, are formulas in which information sets may
not always be time consistent. An example is provided by

(p1 (∨/∧) p2) ∧ (q1 ∨ q2). (2)

What is the corresponding information partition for this formula? One cannot just
draw an information set around the histories labeled with p1 (∨/∧) p2 and q1 ∨ q2
because there is no imperfect information on the right-hand side conjunct.

Two options seem to be available. Either the information set gives rise to a time
inconsistent game in which two consecutive histories may form an information set, or
else the definition of information sets needs to be revised. Neither option is particu-
larly attractive. In the former case, the initial move in the game becomes ambiguous,
since a decision has to be made between ∀’s choice of a conjunct or ∃’s choice of a
disjunct for the left-hand side conjunct, but this indecisiveness has been precluded by
the above remarks. In the latter case, the modified definition would say that informa-
tion sets do not form equivalence classes but are asymmetric instead (yet transitive
and reflexive). This could mean that at the history labeled with p1 (∨/∧) p2, ∃ has
imperfect information and does not know whether Left or Right has been chosen for
conjunction, whereas at the history labeled with q1 ∨ q2 information is not hidden.
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Thus even the existence of imperfect information alone can be conditioned by single
actions taken in the game.2

The second remark concerns forward-looking reasoning essential in propositional
games. Players can sometimes recover knowledge about their location within an
information set by looking at the available choices. This happens, for instance, in
cases in which some of the histories within an information set are terminal. An
example is provided by

(p1 (∨/∧) p2) ∧ p3. (3)
In this and similar cases one may apply the idempotence law to make the otherwise
terminal histories nonterminal by adding superfluous moves so that a player repeat-
edly chooses p3. How this is done in terms of extensive games is straightforward.

There is also a dual notion to the phenomenon of imperfect recall. One can char-
acterize learning or information increase that happens with, say

∀i1(∃i2/ i1)∃i3 pi1i2 i3 . (4)

Of course, in one formula both imperfect recall and learning can happen, for consider

∀i1(∃i2/ i1)(∃i3/ i2) pi1i2 i3 . (5)
Game-theoretically, such an information increase reminds us of screening games
(Rasmusen [28]) in which the first player is uninformed of certain aspects of the
game and the second player, being fully informed, can screen his or her actions. In
contrast, in signaling games, the informed player moves first and may signal previous
features of the game to the subsequent uninformed player. In the former case, if the
types of the first and the second player are the same, then screening amounts to
learning, and likewise, signaling means that some (higher level) information is being
forgotten.

To make more precise sense of these aspects of information fluctuation in logic, a
convenient way to understand imperfect recall is to view players as teams of agents.
A team is a set of noncoordinating players i = {1, . . . , n} who have identical payoffs
ui (h) but who act individually.3 The teams ∃ and ∀ have a finite number of individ-
ual members ∃l ∈ ∃ and ∀k ∈ ∀, l, k ≤ n. The members of a team are not allowed to
communicate because this destroys team’s ability, if viewed as one player, to forget
information. The members of the same team all receive the payoff u i(h) as soon as
the outcome of a play is solved.

More precisely, then, whenever a move associated with the team ∃ or the team
∀ is regarded as independent of the move made by the same team, a new member
∃l ∈ ∃ or ∀k ∈ ∀, 0 < i, j ≤ n makes the new move. Therefore, in the second step
in evaluating G∗(φ,M), in which

φ = ∃i1(∃i2/ i1) pi1i2 , (6)

a new member ∃2 makes a decision, and this time she does not have the information
∃ had when making the first move in the game. This is the way to prevent ∃ signaling
her first choice further, and a consequence could be that, unlike in classical case, a
winning strategy does not exist for ∃. The information for individual team mem-
bers remains persistent although the teams, viewed as single players, do not forget
information.

To see another example, consider

∃i1∀i2(∃i2/ i1) pi1i2i3 . (7)
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Here the move for (∃i2/ i1) is made in ignorance of the first move for ∃i1. Clearly, this
game has both imperfect information and imperfect recall and the latter is realized
by splitting ∃ into ∃1 and ∃2.

The idea of team or multiperson games for imperfect recall goes back to von
Neumann and Morgenstern [35], Strotz [33], and Isbell [15]. Whereas this approach
is not unproblematic, it immediately provides a way to understand the behavior of
semantic games.4 It should be emphasized that the team approach is a device to
understand the information flow in imperfect recall games rather than a technical
necessity. Viewing imperfect recall as team games aims at explaining what happens
when information is dispelled from player’s memory, and since information should
be persistent for decision makers, this team approach provides a way to understand
semantic games for IF logic. When there is complete independence between logical
components, what one gets is an agent normal form of extensive games in which
each information set belongs to a separate player.

The phenomenon of multiple players puts the games here broadly within Team
Theory, which sees teams as groups of agents with identical interests but individual
actions and individual information (Kim and Roush [16]). In team games, strategies
may be based on previous information in a game but not on information the other
members of the team might have. A connection is provided by the result that ba-
sic solution concepts for two-person zero-sum games hold also for games played by
teams (Ho and Sun [12]). It has also been argued in Koller and Megiddo [18] that
imperfect recall games should use strategies more appropriate than just the tradi-
tional mixed ones, such as team-maxmin strategy profiles. A logical representation
of teams, of course, has scores of potential applications in system and organization
theory as well as in distributed computing.

7 Applications to Quantum Physics and Logic

The logic LIF, and its game-theoretic interpretation, has some interesting applica-
tions and correlates in the field of quantum physics and quantum logics.

7.1 Skirmish To start with an example of classical “mechanics,” consider the fol-
lowing game with two flesh-and-blood players: Player 1 is hiding behind a small
bump and Player 2 is armed with a ball. Player 1’s goal is to run and get home with-
out being hit by the ball, and Player 2’s goal is to prevent 1 from getting home by
trying to hit him with the ball. There are four actions: Player 2 waits or throws, and
Player 1 hides or runs. Both players fix their choice of action independently and si-
multaneously. The winning condition for 1 is ‘get home’, and the winning condition
for 2 is ‘not get home’, so I assume that if 1 hides and 2 waits, nothing happens and
1 never gets home.

The point here is that even this simple game needs LIF for its adequate modeling.
This is because players make concurrent and independent choices. By taking ϕ = ‘2
waits’, ¬ϕ = ‘2 throws’, ψ = ‘1 hides’, and ¬ψ = ‘1 runs’:

φ = (ϕ (∨/∧) ¬ϕ) ∧ (ψ (∨/∧) ¬ψ). (8)

If we look away from the possibility of partially interpreted models, the game
G∗(φ,M) is given in Figure 2, with one nontrivial information set S∃

1 for ∃. Con-
sequently, the apparent sequential format of a game of imperfect information game
does not have to correspond to the real or physical notion of time. Because of
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Figure 2

imperfect information, the games of this kind are not determined and thus the law of
excluded middle fails.

Further analysis of this game would take into account repeated plays that occur
when the game is drawn back to its initial state. Games with repetition would then in-
volve probability distributions over strategies. In addition, winning strategies would
have memories, that is, carry information from previous plays to future ones, in or-
der to verify that certain probabilities are consistently used. Improper randomization
may give strategic advantages to contestants.

7.2 Quantum mechanics Apart from the macro-world decision problems out-
lined above, we can relate our logic to quantum theory and quantum logic in par-
ticular.

As soon as one moves from classical to quantum mechanics, certain logical prop-
erties have to be given up. The step involves a transition from Boolean algebra
(represented by a complemented distributive lattice) to non-Boolean algebra isomor-
phic to the lattice structure describing the properties of a physical system, which are
closed subspaces of a Hilbert space (Bub [5]).

Quantum mechanical properties cannot be approached in terms of classical
Boolean logic, however, and hence some new logics and logical laws are inevitable.
It is nonetheless possible to describe at least some quantum phenomena in terms not
particularly far removed from classical logic.

One of the characteristic features of the classical universe is that the algebra of
variables forms a commutative algebra of real-valued functions on a phase space
S, and properties or propositions become isomorphic to Borel subsets of S. The
law of commutativity does not hold in the quantum realm, however, and the non-
Boolean lattice properties form a noncommutative structure. Hence quantum logic
of propositions that represent the non-Boolean structure conflicts with the classical
law of commutativity.

An explanation of the failure of commutativity is foreseeable, however. One way
of looking at it is as a manifestation of the overall failure of perfect information
in the associated semantic evaluation games for quantum logical propositions. In
preliminary terms, noncommutativity boils down to the phenomenon that in certain
situations requiring simultaneous actions or decisions by one of the players, the order
of the components of a connective cannot be arbitrarily changed. This, in turn, is so
because such a change in the order of propositions would prevent certain strategies
to be applicable, since game theory requires that when actions are planned, players
observe their available choices and make inferences on the basis of that information.
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If a player can detect an irregularity in the order of available actions in cases in
which there are simultaneous or hidden moves in the game, the states are no longer
indistinguishable from each other and the imperfectness of information vanishes. I
will return to the nature of the laws of propositional logic later.

7.3 Nonlocality Let us consider next the prima facie striking, but by now rather
well-researched, phenomenon of quantum theoretic nonlocality (Einstein et al. [7]).
Nonlocality is a property of “entangled” photon pairs. Two spacelike separated pho-
tons originating from the same source can exist in an entangled state such that when
one photon is manipulated by an interaction with a polarization filter changing the
polarization of the photon, there is a 100% anticorrelation to that polarization in the
other photon as well. This is because the polarized photon has to maintain its original
correlations with the other photon in the entangled system.

Again, this translates into simultaneous action. Reading the propositions in (9) as
follows,

1. ϕ: the measurement outcome of a photon x being left-polarized,
2. ψ : the measurement outcome of a photon x not polarized,
3. θ : the measurement outcome of a photon y anticorrelated (right-polarized),
4. χ : the measurement outcome of a photon y not anticorrelated (not polarized),

there is an LIF-formula corresponding to nonlocality:

(ϕ (∨/∧) ψ) ∧ (θ (∨/∧) χ). (9)

In terms of (9), one may throw some light on the phenomenon of nonlocality and its
role in quantum mechanics and quantum logics. For what being spacelike separated
but correlated means is that no physical information is allowed to pass between two
quantum subsystems, and in this sense the two particles are separated. However, en-
tanglement means that the outcome of the measurement on one of the particles is not
independent of how the measurement is chosen to be performed on the other, sepa-
rated particle. Game-theoretically, when simultaneous action has to be represented,
the outcome of one of the actions determines the winner on which the winning strate-
gies, and hence the truth-values, of the propositions are based, which in turn depends
on other actions in the game (irrespectively of whether the actions are taken to be
hidden or not).

Thus the barriers needed for the information trespassing in the evaluation of (9)
are brought out by the information encapsulation, which implies that the information
regarding ∃’s choice of the two disjunctions may not be used when ∀ plans a decision
between the conjuncts (and vice versa).

This kind of information encapsulation is of course not a sufficient reason to ac-
count for the nonlocality. In entangled systems, some further effect such as a quan-
tum field is needed to correlate the separated systems. In logical terms, however, the
answer to what nonlocality means is surprisingly simple. It can be directly derived
from the truth-value of the formula representing the entangled system and its nonlo-
cality. This is because in order to make (9) true, one has to be able to make at least
one atomic formula in both conjuncts true, and this in turn requires that, despite the
hidden information regarding the conjunct that has been chosen at the other history,
both conjuncts that represent the states of the two separated systems are needed in
establishing its truth.
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Nothing in our argument—purported here to show that logic of quantum mechan-
ics goes beyond not only the purviews of classical but to some extent also received
quantum logics—hinges on this traditional EPR formulation of nonlocality as action
at distance concerning two separated but correlated particle systems. Similar remarks
are valid also for other descriptions of nonlocality. Consequently, the argument does
not hinge on the Bell inequalities either (Bell [1]).

To see another example, consider the Greenberger-Horne-Zeilinger (GHZ) ex-
periment for entangled systems introduced in Greenberger et al. [8]. Following the
presentation in Mermin [21], the GHZ-experiment involves three spin-1/2 particles
extending to different directions from the common source. There are two possible
measurements to be performed on each particle: one can measure the particle’s X-
spin or its Y-spin. Now quantum theory predicts with certainty that if the Y-spin of
two of the three particles and the X-spin of the third particle are measured, an even
number of measurements will have the outcome “spindown,” whereas if the X-spin
of all three particles is measured, an odd number of measurements will have that
outcome. The particularity of this experiment in distinction to its traditional EPR
counterpart is that it ascribes no Y-spin values to the third unmeasured particle be-
fore the measurement of the other two particles is performed. Like in its traditional
EPR-version, these values are determined after the measurement has been performed
to a sufficient number of other particles in the system.

The logical structure of the GHZ setup would then be of the following form (the
key—X1: ‘X-spin of particle 1’; Y2: ‘Y-spin of particle 2’; Se: ‘an even number of
particles has a spindown state’):

(((X1(∧/∨)Y2(∧/∨)Y3) ∨ (Y1(∧/∨)X2(∧/∨)Y3) ∨
(Y1 (∧/∨) Y2 (∧/∨) X3)) → Se) ∧ ((X1 ∧ X2 ∧ X3) → S⊥

e ). (10)

The symbol ‘⊥’ marks a singular orthocomplementation operation which corre-
sponds to the game-theoretic negation. The hidden disjunctions refer to either
disjunction.

As seen from (10), some information encapsulation is again needed in order to
account for nonlocality. But such encapsulation is lacking in traditional logics for
quantum theory. In fact, nonlocality is information encapsulation: a certain density
matrix exhibits nonlocality precisely when there is no way of explaining the corre-
lation between two spacelike separated particles A and B in terms of information
extant at particle A or information extant at particle B. The probability distributions
that the density matrix assigns to the observables then give rise to the correlations for-
mulated in Bell inequalities [1] (or, alternatively, to the correlations that Kochen and
Specker formulated by dispensing with the quantum probability formalism in [17]).

These EPR- and GHZ-experimentation schemes nonetheless have much wider
repercussions than just the need for a reconsideration of the logic of nonlocality.
Namely, these implications pertain to the indispensability of the nonlocality phe-
nomenon and its versions under the different interpretations of quantum theory and
in experimental testing,5 and also to the arguments for the essentially incomplete
nature of quantum theory. These traits will not be pursued here any further, however.

7.4 Quantum logic Further connections between the logic of imperfect informa-
tion and quantum theory surface in quantum logic. Quantum logic was introduced
in Birkhoff and von Neumann [3]. The key observation in that work was that one can
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start with a Hilbert space formalism of quantum mechanics and make observables or
subspaces of Hilbert space correspond to propositions about a quantum physical sys-
tem. This procedure constitutes an algebraic lattice-theoretic structure. The laws of
quantum logic differ from the laws of classical logical, however, and have sometimes
argued to derive their justification from empirical considerations about the physical
reality (Putnam [27]).

One important classically valid propositional rule is commutativity, which is not
valid in quantum logic. As previously was remarked, it is possible to spell out the
reasons for its failure, using the game-theoretic semantics of imperfect information.
In such games, commutativity is constrained by a highly nontrivial principle of the
existence of nonsingleton information sets. Those connectives that are influenced by
imperfect information, that is, the locations in which the partition of histories into
information sets affect outcome actions, do not permit commutation to be applied to
actions. This is because in such histories, the strategy functions have to satisfy that
all the actions have to be the same for all the histories within the same information
set.

However, similar remarks may be voiced on distributivity:

p ∧ (q ∨ r) = (p ∧ q) ∨ (p ∧ r). (11)

In quantum logical terms, distributivity holds just in case the propositions are not
members of a common sublattice, that is, they denote incompatible subspaces (ob-
servables). Then the left-hand side sentence and right-hand side sentence mean that
the subspaces in question are different, and hence not equivalent.

How can this be explained in game-theoretic terms? In short, the explanation
is that distributivity changes the order in which players make their moves. Hence
the left- and right-hand sides of (11) cannot be taken to exemplify the same logical
situation. In other words, incompatible subspaces simply cannot be conjoined—
starting from p ∧ (q ∨ r) one cannot infer (p ∧ q)∨ (p ∧ r) because the pairs {p, q}
and {p, r} are mutually incompatible. Indeed, these laws do not hold in quantum
theoretic algebra that is non-Boolean.

Consider also modularity which is weaker than distributivity. If p ≤ r then

p ∧ (q ∨ r) = (p ∧ q) ∨ r. (12)

Again, modularity illustrates an imperfect information phenomenon. It boils down
to the following:

p ∧ (q (∨/∧) r) = (p (∧/∨) q) ∨ r. (13)

For if you choose disjunction independently of conjunction, you can as well go ahead
and choose it before conjunction.

However, in quantum logic with infinite-dimensional Hilbert space one is inter-
ested in orthomodular structures which have the following order between elements
in a lattice:

If a ≤ b, then b = a ∨ (b ∧ a⊥). (14)

The relation ‘≤’ means that a is a subspace of b. Logically, orthomodularity replaces
distributivity since it does not try to form conjunctions of mutually incompatible
proposition (propositions that are not members of a common Boolean sublattice).
The conjugation is legitimate only in the case any two propositions in p ∧ (q ∨ r)
are complements of each other, and then distributivity would be retained.
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Like modularity, orthomodularity illustrates a relative independence phenome-
non, although in a weaker sense than full modularity. In brief, orthomodular nondis-
tributive lattices are models for certain first-order sentences with imperfect informa-
tion that are not first-order representable.

What is the lattice structure of the set of subspaces of a Hilbert space? An alter-
native to orthomodularity is to characterize it as a partial Boolean algebra (Hughes
[13]). A partial Boolean algebra Bi = 〈Bi ,

∨
i ,

∧
i ,

⊥i , 0i , 1i 〉 with B a set with at
least two elements can be characterized with two conditions: it is an algebra that (1)
forms a Boolean manifold (Hughes [14], p. 192) and (2) satisfies the following: For
all elements a, b, c ∈ ∪{Bi}, if there are i, j, k ∈ I such that a, b ∈ Bi , b, c ∈ B j ,
c, a ∈ Bk, then there exists an m ∈ I such that a, b, c ∈ Bm .

The part (2) of the definition expresses quantifier structure that cannot be symbol-
ized using traditional first-order logic. Instead, one needs imperfect information for
quantifiers:

∀a∀b∀c(∃i/c)(∃ j/a)(∃k/b) (P1abci jk → ∃m P2abcm). (15)

This sentence expresses what is sometimes called the coherence condition on
Boolean algebras (Hardegree and Frazer [9]).

Let us make two final remarks here. It was seen above that certain laws of
propositional logic have their counterparts in extensive forms of games. It is an
old problem in game theory, going back to at least Thompson [34], how to con-
duct certain transformations on extensive games so that the strategic aspects of the
games are preserved (Osborne and Rubinstein [22] summarize these transforma-
tions). These proposed transformations indeed reflect propositional laws: an in-
terchange of moves corresponds to commutativity, an addition of superfluous moves
corresponds to idempotence, and so on. In general, the games in question are ones
of imperfect information and hence, when they are associated with formulas, gener-
alize ordinary propositional logic. But so does quantum logic, the central concepts
of which, such as orthocomplemented quasi-modular lattices, provide models for a
generalized (imperfect information) propositional logic. Not only does the law of
excluded middle fail in both, but also the logical laws of quantum logic have their
correlates in laws that are used in manipulating these imperfect-information games.

Second, the existence of imperfect information explains the partial nature of con-
nectives and truth-values of complex sentences by making some of the games nonde-
termined. But partiality is a common property of quantum logics in which operations
are based on the algebraic structure of the lattice of projections of a Hilbert space as
partial Boolean algebras, that is, operations that ascribe properties to systems in a
partial way. The partiality proposed here means that there will be propositions in
a lattice that are not given the truth-value True, and they are not given the truth-
value False. This kind of partiality can, however, be generated without assuming
any partial assignment of atomic propositions or ultrafilters taking each proposition
to a truth-value. It is the game-theoretic failure of perfect information that suffices
to provide a semantic ground for partiality, games in which from the existence of a
winning strategy for one of the players it does not follow that there exists a winning
strategy for the other, opposing player.

7.5 Quantum computation Let us finally describe yet another novel logical per-
spective to quantum phenomena. In quantum computation, the notion of quantum
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interference is important in performing computations by quantum logic gates. One
can think of such quantum logical switches as randomizing devices mapping {0, 1}n

into {0, 1}m. That is, each of the four possibilities for a particle (say, a photon)
has an identical probability of 0.5. However, when two such identical machines are
concatenated the net effect of the combined system is the logical complementation
operation instead of the randomization. This surprising phenomenon contradicts the
usual additivity of the received probability calculus, because the probability of the
combined event is not the sum of two mutually exclusive constituent events (Deutsch
et al. [6]).

What is going on? In [6, p. 269] it is claimed that there exists no corresponding
operator (or a priori mathematical construction) in logic that could capture the nature
of these randomizing devices, and hence they cannot really exist. Yet physicists have
directly observed exactly this type of single-particle interference behavior.

Contrary to these pessimistic sentiments, the game-theoretic framework advo-
cated in this paper is capable of throwing some light on this issue. First of all, the
simultaneous nature of single-photon trajectories in quantum interference devices
takes place inside the quantum gates; there is no interaction between the gates and
environment. Now if one interprets these simultaneous actions as uncertainty cod-
ing, or imperfect information in the sense of game theory, one sees that the third
choice of action in the concatenated system, even though simultaneous with respect
to the second choice, is not simultaneous with respect to the choice of action made
at the first interference gate of the combined system. Thus the third action can carry
information concerning the first action, and hence is capable of complementing the
input signal. The corresponding game can be constructed as a three-stage game with
imperfect information with respect to the second and the third move, but not with
respect to the first and the third move, representing the logical operation or connec-
tive describing quantum interference. Syntactically, this connective is symbolized
by ‘

√
¬’ in the literature. However, its meaning in concatenated quantum system

consisting of two quantum interference gates can be captured by

∀i1∃i2(∃i3/ i2) pi1i2 i3 . (16)

The associated extensive semantic game is drawn in Figure 3.
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(∃i2/ i1)(∃i3/ i2) pa1a2i3

pa1a2a3 pa1b2a3

(∃i2/ i1)(∃i3/ i2) pa1i2i3

pb1b2b3pa1b2b3 pb1a2b3pb1a2a3 pb1b2a3

(∃i2/ i1)(∃i3/ i2) pb1a2i3

(∃i2/ i1)(∃i3/ i2) pb1i2i3

pa1a2b3

•

. . . (1,−1)(1,−1) . . .

•

∀i1(∃i2/ i1)(∃i3/ i2) pi1i2i3

a1 b1

a2 b2

b3

a2
b2

a3 a3 a3 a3b3 b3 b3

∃ :

Figure 3 The semantic game for a concatenated quantum system
consisting of two quantum interference devices.

8 Conclusion

Recently, various logical methods have been employed in analyzing games, and
novel game-theoretic methods have been used in evaluating logics. Only a small
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portion of the usefulness of games in the overall logical study can be illustrated
here, however. The latter connection can nonetheless be made tighter than before,
an example of which has here been propositional logic with nonsequential (partial or
nontransitive) information flow, interpreted via extensive forms of semantic games
with imperfect information. These logics and associated games throw light on some
logical anomalies in quantum theory and in quantum computation.6 That such an
enterprise is increasingly important has recently been shown in Boukas [4] in which
classical von Neumann-Morgenstern games are given a quantum theoretic formula-
tion by game moves that are associated with eigenvalues of a self-adjoint operator in
a Hilbert space.

Notes

1. A more detailed exposition of this new logic, together with discussion as to why proposi-
tional imperfect information of this type is meaningful, and an alternative compositional
semantics for it, is given in [30] and [32].

2. There are perhaps more feasible examples of such intensionalized imperfect informa-
tion in games with quantifier moves, in which choices of an individual can conditional-
ize the existence of later information loss while retaining equivalence relations between
histories.

3. Thus coalition games, which assume coordination, do not provide proper models for
understanding imperfect recall. Indeed, they have not been considered in relation to
imperfect recall in the game-theoretic literature.

4. But see Binmore [2] who criticizes multiself games because they lack realistic physical
applications.

5. The GHZ-scheme has recently been experimentally tested and observed to verify the pre-
dictions of quantum mechanics in Pan et al. [23]. Sackett et al. [29] report experiments
with four atom entangled systems by a method that in principle allows any number of
atoms to be entangled.

6. The paper Pietarinen [25] explores further some of the game-theoretic issues that rear
their heads in quantum logic and quantum theory.
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