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Model Companions of TAut for Stable T

John T. Baldwin and Saharon Shelah

Abstract We introduce the notion T does not omit obstructions. If a stable
theory does not admit obstructions then it does not have the finite cover property
(nfcp). For any theory T , form a new theory TAut by adding a new unary function
symbol and axioms asserting it is an automorphism. The main result of the paper
asserts the following: If T is a stable theory, T does not admit obstructions if and
only if TAut has a model companion. The proof involves some interesting new
consequences of the nfcp.

1 Introduction

Let T be a complete first-order theory in a countable relational language L. We as-
sume relation symbols have been added to make each formula equivalent to a pred-
icate. Adjoin a new unary function symbol σ to obtain the language Lσ ; TAut is
obtained by adding axioms asserting that σ is an L-automorphism.

The modern study of the model companion of theories with an automorphism
has two aspects. One line, stemming from Lascar [7], deals with “generic” au-
tomorphisms of arbitrary structures. A second, beginning with Chatzidakis and
Hrushovski [3] and questions of Macintyre about the Frobenius automorphism, is
more concerned with specific algebraic theories. This paper is more in the first tra-
dition: we find general necessary and sufficient conditions for a stable first-order
theory with automorphism to have a model companion.

Kikyo in [4] investigates the existence of model companions of TAut when T is
unstable. He also includes an argument of Kudaibergenov showing that if T is stable
with the finite cover property then TAut has no model companion. This argument
was implicit in Chatzidakis and Pillay [2] and is a rediscovery of a theorem of Win-
kler [11] in the 70s. We provide necessary and sufficient conditions for TAut to have
a model companion when T is stable. Namely, we introduce a new condition, T ad-
mits obstructions, and show that TAut has a model companion if and only if T does
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not admit obstructions. This condition is a weakening of the finite cover property: if
a stable theory T has the finite cover property then T admits obstructions.

Kikyo also proved that if T is an unstable theory without the independence prop-
erty, TAut does not have a model companion. Kikyo and Shelah [6] have improved
this by weakening the hypothesis to T has the strict order property.

For p a type over A and σ an automorphism, σ(p) denotes

{ϕ(x, σ (a)) : ϕ(x, a) ∈ p}.

(References of the form ‘ II.4.13’ are to Shelah [9].) Further related work is con-
tained in Shelah [10] which investigates when TAut has a stable model completion.

2 Example

In the following example we examine exactly why a particular TAut does not have
a model companion. Eventually we will show that the obstruction illustrated here
represents the reason TAut (for stable T ) can fail to have a model companion. Let L
contain two binary relation symbols E and R and unary predicates Pi for i < ω. The
theory T asserts that E and R are equivalence relations and that E has infinitely many
infinite classes which are refined by R into two-element classes. Moreover, each Pi
holds only elements from one E-class and contains exactly one element from each
R-class of that E-class. Thus, x 6= y ∧ Pi (x) ∧ Pj (y) implies ¬R(x, y) if i 6= j .

Now TAut does not have a model companion. To see this, let ψ(x, y, z) be the
formula, E(x, z) ∧ E(y, z) ∧ R(x, y) ∧ x 6= y. Let 0 be the Lσ -type in the vari-
ables {z} ∪ {xi yi : i < ω} which asserts ψ(xi , yi , z) holds for each i , the sequence
〈xi yi : i < ω〉 is L-indiscernible, the xi are distinct and the yi are distinct, and for
every ϕ(x,w) ∈ L(T ),

(∀w)
∨

{
∧

i∈U

ϕ(xi ,w) ↔ ϕ(yi, σ (w)) : U ⊆ lg(w)+ 3, |U | > (lg(w)+ 3)/2}.

Thus if 〈bici : i < ω〉a realize 0 in a model M ,

σ(avg(〈bi : i < ω〉/M)) = avg(〈ci : i < ω〉/M).

For any finite 1 ⊂ L(T ), let χ1,k(x, y, z) be the conjunction of the 1-formulas
satisfied by 〈bici : i < k〉a where 〈bi ci : i < k〉a are an initial segment of a
realization of 0. Let θ1,k be the sentence

(∀x0, . . . , xk−1, y0, . . . , yk−1, z)χ1,k(x0, . . . , xk−1, y0, . . . , yk−1, z) →

(∃x0, y0, x1, y1)[ψ(x0, y0, z) ∧ ψ(x1, y1, z) ∧ σ(x1) = y1].

We claim that if TAut has a model companion T ∗
Aut, then for some k and 1,

T ∗
Aut ` θ1,k .

For this, let M |H T ∗
Aut such that 〈bici : i < k〉a satisfy 0 in M . Suppose M � L ≺ N

and N is an |M|+-saturated model of T . In N we can find b, c realizing the average
of 〈bi : i < ω〉 and 〈ci : i < ω〉 over M , respectively. Then

σ(avg(〈bi : i < ω〉/M)) = avg(〈ci : i < ω〉/M),

and so there is an automorphism σ ∗ of N extending σ and taking b to c. Since
(M, σ ) is existentially closed (T ∗

Aut is model complete), we can pull b, c down to M .
By compactness, some finite subset 00 of 0 suffices and letting 1 be the formulas
mentioned in 00 and k the number of xi , yi appearing in 00 we have the claim.
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But now we show that if (M, σ ) is any model of TAut, then for any finite 1 and
any k, (M, σ ) |H ¬θ1,k . For this, choose bi , ci for i < k which are E-equivalent
to each other and to an element a in a class P j where Pj does not occur in 1 and
with R(bi , ci ) and bi 6= ci . Then b, c, a satisfy χ1,k but there are no bk, ck and
automorphism σ which make θ1,k true. So, for each j ,

T ` (∀x, y, z)(ψ(x, y, z) ∧ Pj (z) → [Pj (x) ↔ ¬Pj (y)]).

To put this situation in a more general framework, recall some notation from [9]. 1
will denote a finite set of formulas: {ϕi(x, yi) : lg(x) = m, i < |1|}; p is a 1-
m-type over A if p is a set of formulas ϕi(x, a) where x = 〈x1, . . . , xm−1〉 (these
specific variables), and a from A is substituted for yi . Thus, if A is finite there are
only finitely many1-m-types over A.

Now let 11 contain Boolean combinations of x = y, R(x, y), E(x, y). Let 12
expand 11 by adding a finite number of the Pj (z) and let 13 contain Pk(x) where
Pk does not occur in 12.

Now we have the following situation: there exists a set X = {b0, b1, c0, c1, a},
Pj (a) holds, all five are E-equivalent, and R(bi , ci) for i = 0, 1 such that

1. 〈bici : i ≤ 12〉 is 12-indiscernible over a;
2. 〈b0c0, b1c1〉 can be extended to an infinite set of indiscernibles bc which

satisfy the following:
(a) ψ(bi , ci , a);
(b) σ(avg12(b/M)) = avg12(c/M);

3. tp11(b2c2/X) ` σ(tp13(b2/X)) 6= tp13(c2/X).

We call a sequence such as 〈bici : i ≤ 2〉a a (σ,11,12,13, n)-obstruction over
the empty set. In order to “finitize” the notions we will give below more technical
formulations of the last two conditions; we will have to discuss obstructions over a
finite set A. In the example, the identity was the only automorphism of the prime
model. We will have to introduce a third sequence b′ to deal with arbitrary σ . But
this example demonstrates the key aspects of obstruction that are the second reason
for TAut to lack a model companion.

3 Preliminaries

In order to express the notions described in the example, we need several notions
from basic stability theory. By working with finite sets of formulas in a stable theory
without the finite cover property, we are able to refine arguments about infinite sets
of indiscernibles to arguments about sufficiently long finite sequences.

We may speak recklessly of indiscernible sequence but in this paper we deal ex-
clusively with 1-indiscernible sets which are defined just below. For infinite se-
quences in a stable theory such recklessness is without penalty (since infinite indis-
cernible sequences are indiscernible sets); since we are speaking of finite sequences,
it is essential that we really mean indiscernible sets.

Definition 3.1 Let1 be a finite set of formulas which we will assume to be closed
under permutation or identification of variables and under negation; ¬¬ϕ is identi-
fied with ϕ.

1. We say that E = 〈ai : i ∈ I 〉, where all ai have the same length m, is (1, r)-
indiscernible if it satisfies the following conditions. Suppose i0, . . . , ir−1 and
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j0, . . . , jr−1 are distinct elements of I and for i < t < r , u i is a subset of m
with 6i<t |ui | = r , lg(xi) = ui , and ϕ(x0, . . . , xt−1) ∈ 1. Then

ϕ(ai0 � u0, ai1 � u1, . . . , ait−1 � ut−1) ↔

ϕ(a j0 � u0, a j1 � u1, . . . , a jt−1 � ut−1).

2. E is 1-indiscernible if it is (1, r)-indiscernible for all r , or equivalently for
all r ′ with r ′ at most the maximum number of variables in a formula in 1.

3. For any sequence E = 〈ai : i ∈ I 〉 and j ∈ I we write E j for 〈ai : i < j 〉.

Remark 3.2 Pedantically the formulas in 1 contain variables only among
x0, . . . , xn for some n, but we will freely write ϕ(x), ϕ(y) to increase intelligi-
bility. We do not distinguish strictly between an arbitrary finite set of formulas 1
and its closure described in Definition 3.1.

We will rely on the following facts/definitions from [9] to introduce two crucial func-
tions for this paper: F(1, n) and f (1, n).

Fact 3.3 Recall that if T is stable, then for every finite 1 ⊂ L(T ) and n < ω

there is a finite 1′ = F(1, n) with 1 ⊆ 1′ ⊂ L(T ) and a k∗ = f (1, n) with the
following properties.

1. Assume we have finite set A and a set E = 〈ei : i ∈ I 〉 of n-tuples such that
for i < j ,

tp1′(ej/EiA) = tp1′(ei/EiA)

and
R(1′,2)(e j/E j A) = R(1′,2)(ei/Ei A),

(whence, tp1′(ej/EiA) is definable over A). Then E is a set of 1-
indiscernibles over A.

2. For any set of 1′-indiscernibles over the empty set, E = 〈ei : i < k〉 with
lg(ei) = n and k ≥ k∗ for any ϕ(u, v) ∈ 1 and any d with lg(d) = lg(v) = m
either {ei : ϕ(ei , d)} or {ei : ¬ϕ(ei , d)} has strictly less than k∗/10 elements.
(II.4.13, II.2.20)

3. This implies that, for appropriate choice of k∗,
(a) there is an integer m = m(1, n) ≥ n such that for any set of 1′-

indiscernibles 〈ei : i < k〉 over A with lg(ei) = n and k ≥ k∗ and
any a with lg(a) ≤ m there is a U ⊆ k with |U | < k∗/2 such that
〈ei : i ∈ k − U 〉 is 1-indiscernible over Aa;

(b) moreover, if k ≥ k∗, for any set A, avg1(〈ei : i < k〉/A) is well defined:
namely, avg1(〈ei : i < k〉/A) =

{ϕ(x, a) : |{ei : i < k, ϕ(ei , a)}| ≥
k∗

10
, a ∈ A, ϕ(x, y) ∈ 1}.

In (3a), m is the least k ≥ n such that all ϕ ∈ 1 have at most k free variables. But in
(3b), avg1(〈ei : i < k〉/A) need not be consistent. (Let A be all the members of one
finite class in the standard fcp example.)

The closure conditions on 1 given in Definition 3.1 guarantee the following.

Fact 3.4 If 〈ai bi : i < α〉 is a set of1-indiscernibles over a, with the length of the
ai equal to n, then 〈aiaibi : i < α〉 and 〈bi : i < α〉 are1-indiscernible sets as well.
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Definition 3.5 The theory T does not have the finite cover property if for every
finite 1 (considered with n-variable parameters) there is a k such that for any A and
any1-type q over A, if q is k-consistent then q is consistent. We require f (1, n) to
be greater than this k.

Fact 3.6 If T does not have the finite cover property, in addition to Fact 3.3, we
can choose k∗ = f (1, n) to satisfy the following conditions.

1. If E = 〈ei : i < k∗〉 is a set of n-tuples, which is 1′-indiscernible over the
empty set, for any A, avg1(E/A) is a consistent complete 1-type over A.

2. Any set of 1′-indiscernibles (of n-tuples) with length at least k∗ can be ex-
tended to one of infinite length (II.4.6).

3. For any pair of F(F(1, n), n)-indiscernible sets E1 = 〈e1
i : i < k〉 and

E2 = 〈e2
i : i < k〉 over a with lg(e j

i ) = n (for j = 1, 2) and k ≥ k∗ such that

avgF(1,n)(E1/aE1E2) = avgF(1,n)(E2/aE1E2),

there exists J = 〈e j : k < j < ω〉 such that both E1J and E2J are F(1, n)-
indiscernible over a.

4. We express the displayed condition in (3) on E1,E2 by the formula,
λ1(e1, e2, a) , where ei enumerates Ei .

5. If E1 and E2 contained in a model M are F(1, n)-indiscernible over a ∈ M
and each have length at least k∗, then M |H λ1(e1, e2, a) if and only if
avg1(E2/M) = avg1(E2/M).

Proof For (1), make sure that k∗ is large enough that every 1-type which is
k∗-consistent is consistent (II.4.4(3)). Now (3) follows by extending the common
F(1, n)-average of E1 and E2 over aE1E2 by (2). Finally, condition 5 holds by
adapting the argument for III.1.8 from the set of all L-formulas to 1. �

Note that both F and f can be chosen to be increasing in 1 and n.
The following observations culminate in a new consequence of nfcp that will be

used to reduce from “obstruction” to “simple obstruction” in Section 4. The first is
III.3.4 of [9] or V.1.23 of Baldwin [1]. Just choose u such that tp(b∗/X) does not
fork over u and tp(b∗/u) is stationary. Note that we do not assume the existence of
an a∗.

Fact 3.7 Suppose T is stable, and further suppose that 〈bi : i < |T |+〉 ∪ {b∗}

and X = 〈aibi : i < |T |+〉 are sequences of L-indiscernibles over a. Then there is
a U ⊆ X , U indexed by an initial segment of cardinality ≤ |T |, such that if XU, j
denotes X − (U ∪ {a j b j }), for every b j 6∈ U,

tp(b∗/XU,j) = tp(bj/XU,j).

Now we “finitize” this fact.

Lemma 3.8 Fix n and m. For every finite set of formulas 1 there exist k0, k1 < ω

and a finite set of formulas1+ such that if k2 ≥ k1, ai , bi are sequences of length n,
a is set of parameters of size m, while X = 〈ai bi : i < k2〉 and 〈bi : i < k2〉 ∪ b∗ are
sets of 1+-indiscernibles over a, then there is a U ⊆ X, |U| < k0 such that if XU, j
denotes X − (U ∪ a j b j ), for every a j , b j 6∈ U,

tp1(b∗/XU,j) = tp1(bj/XU,j).
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Proof If not, for every t = 〈k0, k1,11〉 with 11 a finite set of formulas containing
1 there is a kt

2 ≥ k1, a structure M t , and a sequence X t = 〈at
i b

t
i : i < k2〉 and

bt
∗ such that X and 〈bt

i : i < k2〉 ∪ {b∗} are sequences of 1+-indiscernibles over a
contained in M t but for every U ⊆ X , with |U| < k t

0, for some b j 6∈ U,

tp1(b∗/XU,j) 6= tp1(bj/XU,j).

Now expand L by adding constants for a, b∗ and a new 2n-ary predicate symbol P.
Then (M t , P), where P holds of each tuple 〈at

ib
t
i 〉, satisfies the first-order sentence

expressing this failure. By compactness and saturation we obtain a contradiction to
Fact 3.7. �

Lemma 3.9 Suppose T is stable without the finite cover property. For every finite
1, n there are k0, k1 and 11 such that if X = 〈aibi : i < k1〉, X′ = 〈bi : i < k1〉,
and X ′ ∪ b∗ are sequences of 11-indiscernibles (of sequences of length n) there is
V ⊆ k1 with |V | < k0 and there is an a∗ such that 〈aibi : i ∈ k1 − V 〉 ∪ {a∗b∗} is a
sequence of 1-indiscernibles.

Proof Choose 1+, k0, k1 according to Lemma 3.8. Choose ak1 , bk1 to realize
the average of X and let q(x, y) denote the 1-type of ak1 , bk1 over X. Since the
finite cover property fails there is an r such that the consistency of q is deter-
mined by its r -element subsets. Let 11 contain 1+ and all formulas of the form∧

i<r (∃x)ϕi(x, y, u1, v1, . . . , us, vs) where ϕi(ak1 , bk1 , ai1 , bi1 , . . . , ais , bis ) holds
and ϕi ∈ 1. Now if X and X′ satisfy the hypotheses for this choice of 11, by
Lemma 3.8, q(x, b∗) is consistent as required. �

4 Obstructions

In this section we introduce the main new notion of this paper: obstruction. We are
concerned with a formula ψ(x, y, z) where lg(x) = lg(y) = n and lg(z) = m. We
will apply Facts 3.3 and 3.6 with ei = bib′

ici where each of bi , b′
i , and ci has length

n. Thus, our exposition will depend on functions F(1, 3n), f (1, 3n). In several
cases, we apply Fact 3.3 with ϕ(u1, u2, u3, v) as θ(u2, v) ↔ θ(u3, v) for various θ .
The following notation is crucial to state the definition.

Notation 4.1 If d = 〈di : i < r 〉 is a sequence of 3n-tuples, which is 1-
indiscernible over a finite sequence f, and r ≥ k∗ = f (1, 3n), then τ1(z, df) is
the formula with free variable z of length 3n and parameters df which asserts that
there is a subsequence d′

of d with length f (1, 3n) so that d′z forms a set of 1-
indiscernibles over f.

Now we come to the main notion. Intuitively, 〈bi b′
ici : i < k〉a is a (11,12,13, n)-

obstruction over A if 〈bib′
i ci : i < k〉 is an indefinitely extendible sequence of 12-

indiscernibles over a such that the bis, b′
is, and ci s each have length n, and the 12-

average of the b′
i s and the cis is the same (over any set) but any realizations of the

11-type of the b′
i and the 11-type of the ci over a and the sequence 〈bi b′

ici : i < k〉

have different13-types over A. We state the definition more formally.

Definition 4.2 Fix a finite 11 ⊆12 ⊆ L(T ) and 13 ⊆ L(T ), finite a⊆ A⊂ M |HT
with lg(a) ≤ m(12, n) (as in Fact 3.3), σ an automorphism of M , and a natural
number n. We say 〈biσ(bi )ci : i < k〉a is a (σ,11,12,13, n)-obstruction over A
if the following conditions hold.
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1. 〈biσ(bi )ci : i < k〉 is F(12, 3n)-indiscernible over a.
2. k ≥ f (12, 3n); lg(bi ) = lg(b′

i ) = lg(ci) = n.
3. avg12(e

1/M) = avg12(e
2/M)

where e1 = 〈σ(bi ) : i < k〉 and e2 = 〈ci : i < k〉.
4. Using the formula τ11 from Notation 4.1 with x, x′, y representing the free

variable z there, we have

M |H (∀x, x′, y)[τ11(x, x′, y, 〈biσ(bi)ci : i < k〉a) →
∨

{ϕ(x′, f) ∧ ¬ϕ(y, f) : f ∈ A, ϕ ∈ 13}].

By Fact 3.6, condition 3 is expressed by a formula of e1, e2, and a. Crucially,
the hypothesis of condition 4 in Definition 4.2 is an L-formula with parameters
〈biσ(bi )ci) : i < k〉a; the conclusion is an L-formula with parameters from A
as well. 11 and12 have 3n type-variables;13 has n type-variables.

Fact 4.3 Note that (a) if 〈bi b′
ici : i ≤ k〉a is a (σ,11,12,13, n)-obstruction over

A and 11 ⊆ 1′
2 ⊆ 12, then 〈bib′

i ci : i ≤ k〉a is a (σ,11,1
′
2,13, n)-obstruction

over A. Further, (b) if 〈bi b′
ici : i ≤ k〉a is a (σ,11,12,13, n)-obstruction over

A and A ⊆ A′, where A′ is finite, 11 ⊆ 1′
2 ⊆ 12, then 〈bi b′

ici : i ≤ k〉a is a
(σ,11,1

′
2,13, n)-obstruction over A′. Finally, (c) if W ⊆ k is large enough then

〈bib′
i ci : i ∈ W 〉a is a (σ,11,1

′
2,13, n)-obstruction over A.

Definition 4.4

1. We say (M, σ ) |H TAut has no σ -obstructions when there is a function
G(11, n) with F(11, 3n) ⊆ G(11, n) ⊂<ω L(T ) such that if 11 is a finite
subset of L(T ) and G(11, n) is contained in the finite 13 ⊂ L(T ), then for
every finite subset A of M , there is no (σ,11,G(11, n),13, n)-obstruction
over A.

2. We say T has no obstructions when there is a function G(11, n)—which
does not depend on (M, σ )—such that for each (M, σ ) |H TAut, if 11 is a
finite subset of L(T ), A is finite subset of M , and 13 is a finite subset of
L(T ), there is no (σ,11,G(11, n),13, n)-obstruction over A.

Definition 4.5 A simple obstruction is an obstruction where the automorphism σ

is the identity. The notions of a theory or model having a simple obstruction are the
obvious modifications of the previous definition.

Lemma 4.6 T has obstructions if and only if T has simple obstructions.

Proof Suppose T has obstructions; we must find simple obstructions; the other
direction is obvious. So, suppose for some 11, and n, and for every finite
12 ⊇ F(11, 3n), there is a finite 13 and a tuple (M12, σ12 , A12, k12) such
that (M12 , σ12) |H TAut, A12 is a finite subset of M12 and b12, σ (b12), c12, a12

contained in M12 are a (σ12,11,12,13, n)-obstruction of length k12 over A12 .
Choose12 so that it contains the set of formulas1+

1 associated to11 as 11 is asso-
ciated to 1 in Lemma 3.9. Without loss of generality lg(a) = m = m(11, 3n), and
we can choose an appropriate 13 depending on 12. Now define a family of simple
obstructions by replacing each component of the given sequence of obstructions by
an appropriate object with left prefix sim.
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sim A12 = A12 .
sim(b12

i ) = sim(b′12
i ) = σ(b12

i ).

simc12
i = c12

i .

sima12 = a12 .
sim11 = 1+

1 .

We use the same sets of formulas for the 12 and13.
We now have an obstruction with respect to the identity. For condition 1 this

follows from Fact 3.4; conditions 2 and 3 are immediate; we check condition 4. Since
the following argument is uniform 12, we omit the superscript 12. Examining the
implication in condition 1 for both the original obstruction and the simple obstruction
we see it suffices to show, if we write

τ 1(x′, x′, y) for τ1+
1
(x′, x′, y, 〈σ(bi )σ (bi)ci : i < k〉a)

and
τ 2(x, x′, y) for τ1+

1
(x, x′, y, 〈biσ(bi)ci : i < k〉a),

that
(∀x′)(∀y)[τ 1(x′, x′, y) → (∃x)τ 2(x, x′, y)].

We verify the implication. Lemma 3.9 (taking the bi there as σ(bi ), ci here) implies
for any b′, c such that 〈σ(bi ), ci : i < k〉∪{b′, c} is a sequence of1+

1 -indiscernibles,
there is a b so that 〈biσ(bi), ci : i < k〉∪{b, b′, c} is a sequence of11-indiscernibles.
Thus [τ 1(b′, b′, c) → τ 2(b, b′, c)] and we finish. �

Lemma 4.7 If T is a stable theory with the finite cover property then T has a simple
obstruction.

Proof By II.4.4 of [9], there is a formula E(x, y, z) such that for each d, E(x, y, d)
is an equivalence relation and for arbitrarily large n there is a dn such that E(x, y, dn)

has exactly n classes. Let 11 be {E(x, y, z),¬E(x, y, z)} and consider any 12. Fix
lg(x) = lg(y) = r . There are arbitrarily long sequences bn = 〈bn

j : j < n〉 such
that for some dn, bn is a set of representatives for distinct classes of E(x, y, dn).
So by Ramsey, for any 12 we can find such bk where k = f (12, 3r) and bk is a
sequence of length k of F(12, 3n)-indiscernibles over the empty set and bk is a set
of representatives for distinct classes of E(x, y, dn). Now, if 13 contains formulas
which express that the number of equivalence classes of E(x, y, z) is greater than n
and A contains representatives of all equivalence classes of E(x, y, dn) we have an
(identity,11,12,13, r)-obstruction over A. (Let b = b′ = c = bk ; the hypothesis
of clause 4 of Definition 4.2 is trivially false so the condition is satisfied.) �

5 Model Companions of TAut

In this section we establish necessary and sufficient conditions on stable T for TAut
to have a model companion. First, we notice when the model companion, if it exists,
is complete.

Note that acl(∅) = dcl(∅) in Ceq
T means every finite equivalence relation E(x, y)

of T is defined by a finite conjunction:
∧

i<n ϕi(x) ↔ ϕi(y).

Fact 5.1

1. If T is stable, TAut has the amalgamation property.
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2. If, in addition, acl(∅) = dcl(∅) in C eq
T then TAut has the joint embedding

property.

Proof The first part of this lemma was proved by Theorem 3.3 of [7] using the
definability of types. For the second part, the hypothesis implies that types over the
empty set are stationary and the result follows by similar arguments. �

Lemma 5.2 Suppose T is stable and TAut has a model companion T ∗
σ .

1. Then T ∗
σ is complete if and only if acl(∅) = dcl(∅) in C eq

T .
2. If (M, σ ) |H TAut then the union of the complete diagram of M (in L) with

the diagram of (M, σ ) and T ∗
σ is complete.

Proof (1) We have just seen that if acl(∅) = dcl(∅) in C eq
T , then TAut has the joint

embedding property; this implies in general that the model companion is complete.
If acl(∅) 6= dcl(∅) in Ceq

T , let E(x, y) be a finite equivalence relation witnessing
acl(∅) 6= dcl(∅). Because E is a finite equivalence relation,

T1 = TAut ∪ {(∀x)E(x, σ (x))}
is a consistent extension of TAut. But since

TAut ∪ {¬E(x, y)} ∪ {ϕ(x) ↔ ϕ(y) : ϕ ∈ L(T )}

is consistent, so is
T2 = TAut ∪ {(∃x)¬E(x, σ (x))}.

But T1 and T2 are contradictory, so T ∗
σ is not complete.

(2) Since we have joint embedding (from amalgamation over any model) the result
follows as in Fact 5.1. �

We now prove the equivalence of three conditions. The first is a condition on a pair
of models. The second is given by an infinite set of Lσ -sentences (take the union
over all finite12) and the average requires names for infinitely many elements of M .
The third is expressed by a single first-order sentence in Lσ . The equivalence of the
first and third suffices (Theorem 5.8) to show the existence of a model companion.
In fact, (1) implies (2) implies (3) requires only stability; the nfcp is used to prove
(3) implies (1).

Lemma 5.3 Suppose T is stable without the fcp. Let (M, σ ) |H TAut, a ∈ M
and suppose that (M, σ ) has no σ -obstructions. Fix ψ(x, y, z) ∈ L T with
lg(x) = lg(y) = n and lg(z) = lg(a) = m. The following three assertions are
equivalent.

1. There exists (N, σ ), (M, σ ) ⊆ (N, σ ) |H TAut and

N |H (∃xy)[ψ(x, y, a) ∧ σ(x) = y].
2. Fix 11 = {ψ(x, y, z)} and without loss of generality lg(z) ≤ m(11, n). For

k ≥ 5 · f (11, 3n) and any finite 12 ⊇ F(11, 3n) (Fact 3.3), there are
biσ(bi)ci ∈ 3n M for i < k such that
(a) 〈biσ(bi )ci : i < k〉 is F(12, 3n)-indiscernible over a,
(b) for each i < k, ψ(bi , ci , a) holds,
(c) for every d ∈ m M and ϕ(u, v) ∈ 12 we have

|{i < k : ϕ(σ (bi), d) ↔ ϕ(ci , d)}| ≥ f (12, 3n)/2.
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3. Let12 = G(11, n). Then there are biσ(bi)ci ∈ 3n M for i < k = 5· f (12, 3n)
such that (for λ12 from Fact 3.6 (4)),
(a) 〈biσ(bi )ci : i < k〉 is F(G(11, n), 3n)-indiscernible over a,
(b) for each i < k, ψ(bi , ci , a),
(c) λ12(〈σ(bi) : i < k〉, 〈ci : i < k〉, a).

Proof First we show (1) implies (2). Fix b, c ∈ N with N |H ψ(b, c, a)∧σ(b) = c.
For12, let1+

2 = F(F(12, 3n), 3n). For each12, choose a finite p⊆ tpL(T)(b, c/M)
with the same (1+

2 , 2) rank as tp12(b, c/M) (so tp12(b, c/M) is definable over
dom p). Now inductively construct (by Fact 3.3) an F(12, 3n)-indiscernible
sequence 〈bi , ci : i < ω〉 by choosing bi , ci in M realizing the restriction of
tp1+

2
(b, c/M) to dom p along with the points already chosen. Let b′

i = σ(bi).
For some infinite U ⊆ ω, 〈bi , b′

i , ci : i ∈ U 〉 is F(12, 3n)-indiscernible over a;
renumbering let U = ω. Now conditions (2a) and (2b) of assertion 2 are clear. For
clause (2c),

avg12(〈ci : i < ω〉/M) = tp12(c,M)
= σ(tp12(b,M))
= σ(avg12(〈bi : i < ω〉/M)).

The first and last equalities hold by the choice of the bi , ci and the middle since
σ(b) = c. So, for each ϕ ∈ 12 and each d ∈ M of appropriate length,

ϕ(x, d) ∈ avg12(〈ci : i < ω〉/M)

if and only if
ϕ(x, σ−1(d)) ∈ avg12(〈bi : i < ω〉/M).

So for some S1, S2 ⊂ ω with |S1|, |S2| < f (12, 3n)/2, we have for all i ∈ ω −

(S1 ∪ S2), ϕ(ci , d) if and only if ϕ(bi , σ
−1(d)). Since σ is an automorphism of M

this implies for i ∈ ω − (S1 ∪ S2), ϕ(ci , d) if and only if ϕ(σ (bi), d) which gives
condition (2c) by using the first k elements of 〈bi , σ (bi)ci : i ∈ ω − S1 ∪ S2〉.

(3) is a special case of (2). To see this, note that (3c) is easily implied by the form
analogous to (2c): For every m ≤ m(11, n) and d ∈ m M and ϕ(u, v) ∈ G(11, n)
we have

|{i < k : ϕ(σ (bi), d) ↔ ϕ(ci , d)}| ≥ f (12, 3n)/2.
If T does not have fcp (3c) implies (2c) holds and we use that fact implicitly in the
following argument. It remains only to show that (3) implies (1) with 11 = {ψ} and
12 = G(11, n). Without loss of generality we may assume N is ℵ1-saturated. We
claim the type

0 = {ψ(x, y, a)} ∪ {ϕ(x, d) ↔ ϕ(y, σ (d)) : d ∈ M, ϕ ∈ L(T )} ∪ diag (M)

is consistent. This clearly suffices.
Let k = f (12, 3n). Suppose 〈biσ(bi )ci : i < k〉a satisfy (3). Let 00 be a finite

subset of 0 and suppose only formulas from the finite set 13 and only parameters
from the finite set A appear in 00. Write b′

i for σ(bi).
Now 〈bib′

i ci : i ≤ f (12, 3n)〉a easily satisfy conditions 1 and 2 of Definition 4.2
for being a (11,12,13, n)-obstruction over A and, in view of Fact 3.6 (3), (4), the
third is given by condition (3c). Since there is no obstruction, condition 4 must fail.
So there exist b∗, (b∗)′, c∗ so that

M |H τ11(b
∗, (b∗)′, c∗, 〈bi , b′

i , ci : i < k〉a),
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and tp13((b
∗)′/A) = tp13(c∗/A) so 00 is satisfiable. �

As we will note in Theorem 5.8, we have established a sufficient condition for TAut
to have a model companion. The next argument shows it is also necessary.

Lemma 5.4 Suppose T is stable; if T has an obstruction then TAut does not have
a model companion.

Proof We may assume T does not have fcp since if it does we know by Winkler [11]
and Kudaibergenov [4] that TAut does not have a model companion. By Lemma 4.6,
we may assume T has a simple obstruction. So it suffices to prove the following:

Suppose for some 11, and n, and for every finite 12 ⊇ F(11, 3n),
there is a finite 13 and a tuple (M12 , idM12 ,A12, k12) such
that (M12 , idM12 ) |H TAut, A12 is a finite subset of M12 ,
b12, σ12(b12) = idM12 (b12) = b12, c12, a12 contained in M12 are an
(idM12 ,11,12,13, n)-obstruction of length k12 over A12 .

Then the collection Kσ of existentially closed models of TAut is not an ele-
mentary class.

Without loss of generality lg(a) = m = m(11, 3n) and we can write13 = 13(12).
By the usual coding we may assume 11 = {ψ(x, y, z)} with lg(x) = lg(y) = n,
lg(z) = m, k = f (11, 3n). Again, without loss of generality each (M12, idM12 )

can be expanded to an existentially closed model (M12, σM12 ) such that σM12

fixes A12 , a12 , b12 , and c12 pointwise. Let D be a nonprincipal ultrafilter on
Y = {12 : F(11, 3n) ⊆ 12 ⊂ω L(T )} such that for any 1 ∈ Y the family of su-
persets in Y of 1 is in D . Expand the language L to L+ by adding a unary function
symbol σ , a new unary predicate symbol P, a 3n-ary relation symbol Q and con-
stants a. Expand each of the M12 to an L+-structure N12 by interpreting P as A12 ,
a as a12 σ as σ12 = idM12 and Q as the set {b12

i b12
i c12

i : i < k12} of 3n-tuples.
Let N∗ be the ultraproduct of the N12 modulo D . Let A denote P(N∗), a∗ denote
the ultraproduct of the a12 , and 〈bi bici : i ∈ I 〉 enumerate Q(N∗).

Claim 5.5

1. lg(bi ) = lg(σ (bi)) = lg(c) = n ; lg(a) = m.
2. 〈bibici : i ∈ I 〉 is a sequence of L(T )-indiscernibles over a∗.
3. For each finite 12 ⊆ L(T ) with 12 ⊇ F(11, 3n) and each finite subse-

quence from 〈bi bici : i ∈ I 〉 indexed by J of length at least k = f (12, 3n)
the 12-type of 〈bibici : i ∈ J 〉a is the 12-type of some (id,11,12,13, n)-
obstruction 〈b12, b12, c12〉a12 in M12 over A12 .

4. (avgL(〈bi : i ∈ I〉/N∗) = avgL(〈ci : i ∈ I〉/N∗).

Proof This claim follows directly from the properties of ultraproducts. (For item 3,
apply Fact 4.3 and the definition of the ultrafilter D .) �

Let 0 be the L-type in the variables 〈xi x′
i yi : i ∈ I 〉 ∪ {z} over the empty set of

〈bi , bi , ci : i ∈ I 〉a∗. For any finite 1 ⊂ L(T ), let χ1,k(xx′y, z) be the conjunction
of the1-type over the empty set of a subsequence of k elements from 〈bibi ci : i ∈ I 〉
and a∗ from a realization of 0 with z for a∗.
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Notation 5.6 Recall the definition of τ11 from Notation 4.1. Let r = f (11, n)
and let θ11(x0, . . . , xr−1, x′

0, . . . , x′
r−1, y0, . . . , yr−1, z) be the formula

(∃x, x′, y)[χ11,r(x0, . . . , xr−1, x′
0, . . . , x′

r−1, y0, . . . , yr−1, z)
∧τ11(x, x′, y, x0, . . . , xr−1, x′

0, . . . , x′
r−1, y0, . . . , yr−1, z) ∧ σ(x′) = y].

Without loss of generality we assume 0, 1, . . . , r − 1 index disjoint sequences.

Claim 5.7 If Kσ , the family of existentially closed models of TAut, is axiomatized
by T ∗

Aut, then

T ∗
Aut ∪ 0 ∪ {σ(xi) = x′

i : i ∈ I } ` θ11(x0, . . . , xr−1, x′
0, . . . , x′

r−1, y0, . . . , yr−1, z).

(Abusing notation we write this with the xi , x′
i , yi for i ∈ I free.)

Proof Note for each i , xi = x′
i is in 0. For this, let (M ′, σ ′) |H T ∗

Aut such
that 〈bi , bi , ci : i ∈ I 〉a satisfy 0 in M ′. Suppose M ′ ≺ M ′′ and M ′′ is an
|M ′|+-saturated model of T . In M ′′ we can find b, b′, c realizing the average of
〈bibi ci : i ∈ I 〉 over M ′. Then

σ ′(tp(b/M′)) = σ ′(avg(〈bi : i ∈ I〉/M′))

= avg(〈σ ′(bi) : i ∈ I〉/M′)

= avg(〈ci : i ∈ I〉/M′)

= (tp(c/M′).

(The first and last equalities are by the choice of b, c; the second holds as σ ′ is an
automorphism, and the third follows from clause 4 in the description of the ultra-
product, Claim 5.5.) Now since M ′′ is |M ′|+-saturated there is an automorphism σ

′′

of M ′′ extending σ ′ and taking b to c.
As (M ′, σ ′) |H T ∗

Aut, it is existentially closed. So we can pull b, c down to M ′.
Thus, (M ′, σ ′) |H θ11(b0, . . . , br−1, b0, . . . , br−1, c0, . . . , cr−1, a). But (M ′, σ ′)

was an arbitrary model of T ∗
Aut ∪ 0 ∪ {σ(xi ) = x′

i : i ∈ I }; so

T ∗
Aut ∪ 0 ∪ {σ(xi ) = x′

i : i ∈ I } `

θ11(x0, . . . , xr−1, x′
0, . . . , x′

r−1, y0, . . . , yr−1, z). �

By compactness, some finite subset 00 of 0 and a finite number of the specifications
of σ suffice; let 1∗ be the formulas mentioned in 00 along with those in F(11, 3n)
and k the number of xi , yi appearing in 00 and let 12 = F(1∗, n). Without loss of
generality, k ≥ f (11, 3n). Then, T ∗

Aut `

(∀x0, . . . , xk−1, x′
0, . . . , x′

k−1, y0, . . . , yk−1)

[(χ12,k(x0, . . . , xk−1, x′
0, . . . , x′

k−1, y0, . . . , yk−1, z)

∧
∧

i<k

σ(xi) = x′
i) → θ11(x0, . . . , xr−1, x′

0, . . . , x′
r−1, y0, . . . , yr−1, z)].

By item 3 in Claim 5.5, fix a 12 and 13 = 13(12,m) containing 12 and
〈b12

i , b12
i c12

i : i < k〉a12 which form an (id,11,12,13, n)-obstruction over
A12 and so that

M12 |H χ12,k(〈b
12
i b12

i c12
i : i < k〉a12).

So by the choice of 00,

(M12, σ12) |H θ11(〈b
12
i b12

i c12
i : i < r 〉a12).
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Now, let b, b′, c ∈ M12 witness this sentence; then σ12(b′) = c. Then

(M12 , σ12) |H τ11(b, b′, c, 〈b12
i b12

i c12
i : i < k〉a12).

By the definition of obstruction,

σ12(tp13(b
′/A12 ∪ a12)) 6= tp13(c/A

12 ∪ a12).

Since σ12 fixes A12 ∪ a12 pointwise, this contradicts that σ12(b′) = c and we
finish. �

Finally we have the main result.

Theorem 5.8 If T is a stable theory, TAut has a model companion if and only if T
admits no obstructions.

Proof We showed in Lemma 5.4 that if TAut has a model companion then there is no
obstruction. If there is no obstruction, Lemma 4.7 implies T does not have the finite
cover property. By Lemma 5.3 for every formula ψ(x, y, z) there is an Lσ -formula
θψ (z)—write out condition 3 of Lemma 5.3—which for any (M, σ ) |H TAut holds
of any a in M if and only if there exists (N, σ ), (M, σ ) ⊆ (N, σ ) |H TAut and

(N, σ ) |H (∃xy)[ψ(x, y, a) ∧ σ(x) = y].

Thus, the class of existentially closed models of TAut is axiomatized by the sen-
tences (∀z)θψ (z) → (∃xy)[ψ(x, y, a) ∧ σ(x) = y]. (We can restrict to formulas of
the form ψ(x, σ (x), a) by the standard trick (Kikyo and Pillay [5]; Chatzidakis and
Hrushovski [3]). �

Kikyo and Pillay [5] note that if a strongly minimal theory has the definable mul-
tiplicity property then TAut has a model companion. In view of Theorem 5.8, this
implies that if T has the definable multiplicity property, then T admits no obstruc-
tions. Kikyo and Pillay conjecture that for a strongly minimal set, the converse holds:
if TAut has a model companion then T has the definable multiplicity property. They
prove this result if T is a finite cover of a theory with the finite multiplicity property.
It would follow in general from a positive answer to the following question.

Question 5.9 If the ω-stable theory T with finite rank does not have the definable
multiplicity property, must it admit obstructions?

Pillay has given a direct proof that if a strongly minimal T has the definable mul-
tiplicity property, then T admits no obstructions. Pillay has provided an insightful
reworking of the ideas here in a note which is available on his website [8]. Here is a
final question.

Question 5.10 Can TAut for an ℵ0-categorical stable T admit obstructions?
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