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On Formalization of Model-Theoretic
Proofs of Godel's Theorems
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Abstract  Within a weak subsystem of second-order arithm@iik Ly, that
is T19-conservative ovePRA, wereformulate Kreisel's proof of the Second In-
completeness Theorem and Boolos’ proof of the First Incompleteness Theorem.

1 Introduction To bypass the pedagogic obstacles d@l’s original proof of the
Incomplete Theorems, model-theoretic methods have been invented by several peo-
ple (cf. Smoryski [7], Boolos [1], and Kreisel [4]). However, such semantic proofs
usually need such strong assumptions in metamathematics that they do not readily
yield the formalized versions. For instance, as Smeky [7] points out, Kreisel's

proof of the Second Incompleteness Theorem in [4] does not directly lead to the
formalized Second Incompleteness TheorenPRA  Con(PA) — Con(PA +
—Con(PA)).

In this paper, we elucidate the mechanism of such semantic proofs and show that
they can be carried out within a subsystem of second-order arithivéicy. Thus,
we also obtain proofs of the Formalized Incompleteness TheoreRRA) since any
1‘[2 theorem ofWK Ly is provable inPRA by a result of Friedman.

In most semantic proofs, the arithmetized version of the Completeness Theo-
rem is repeatedly used. Although one can easily shoWkLq that any countable
consistent theory has a model (see Theorem 2.2 below), what we really need for the
proofsis not just the existence of such a model but a specific construction. Typically, a
model can be constructed by taking the leftmost path through a certain binary branch-
ing tree, but, as shown in Section 3, we cannot prove the existence of such a path in
WKLg. Instead, our Theorem 5.5 and Corollary 5.6 jointly assert ®R@€A, that
every modeb)t of PA + Con(PA) has a definable end-extensitfhwhich is also a
model of PA (cf. Feferman [2], and Lemma 6.2.3 of Smoski [6]).

In Section 2, we define the systaMK Ly and set up the basics of predicate cal-
culus withinWK L. In Section 3, we define the systeAC Ay and prove that the
existence of the leftmost paths of binary branching trees is equivalekt fy,. In
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Section 4, we introduce the derivability conditions, i.e., the three basic properties of
the provability predicate, and give model-theoretic proofs of theM/KLy. Sec-

tion 5 is devoted to prove our version of the Arithmetized Completeness Theorem,
i.e., Theorem 5.5 and Corollary 5.6. We apply these theorems to formalize Kreisel's
proof in Section 6, and also to extract the First Incompleteness Theorem from Berry’s
paradox in Section 7, which strengthens the argument of Boolos [1]. See Kikuchi [3]
for more information on the latter application.

2 TheSystem WKLy Asusual, first-order arithmetic is formalized in the language
L, with the symbolst, -, 0, 1, <, and second order arithmetic is in the langudge=

L, U{e}. Variablesx, vy, z, . .. range over the natural numbers, axdy, Z, ... over

the sets of natural numbers. Terms and formulas are built up in the usual way. An
Lp-formula with no unbounded quantifiers is calledtgor T§ formula. If  is a9

formula, (vxi ... ¥x0)g is all), ; formula. If is al? formula, (3x; . .. Ix )¢ is a
x9,, formula. Notice that &9 or I formula with no set parameters must be an
Ly-formula.

The systenRC Ay, which stands foRecursive Comprehension Axiom, is an £,-

theory consisting of the following axioms:

(I) Basic axioms of arithmetic, namely the axioms of discretely ordered semi-rings
with the least positive element 1.
({0)) Zg induction: ¢(0) A (VX)(p(X) = ¢o(X+ 1)) — (YX)p(X), wherep(X) is a
20 formula.
(1) Recursive comprehensiontvn) (p(n) < ¥(n)) — @X)(Vn)(p(n) <> n €
X), whereg is a £? formula andy a I19 formula.

Within RC A, we can prove the existence and unigueness of such A Hedt
(VX)(X = X < X € X), and we write this set all.

By Seqp, wedenote the set of codes for finite sequences of zeros and ones. Weak
Konig's Lemma (WKL) is an assertion that every infinite subtre8anf, has an infi-
nite path. TheL,-theoryWK Ly is obtained fronrRC Ag by adding WKL. Since WKL
brings forth the compactness of the closed unit interval and other spaces, mathemat-
ics developed iWK Lg is much richer than that iRC Ag. However, concerning the
consistency issue, these two systems are equivalent to each other. In fact, Harrington
shows that they have the sarﬁ% theorems for any (cf. Simpson [5]).

Friedman was the first to observe that Ifi§ sentence is provable WK Lo, it is
also provable irPRA. Here, PRA is the system which has symbols for the primitive
recursive functions and whose axioms contain all the defining equations for primitive
recursive functions and induction for quantifier-free formulas.

Theorem 2.1 (Friedman’s Conservation Theorem)WKLg - ¢ implies PRAF ¢

for every T1J sentence ¢ in L.

Proof: As Simpson and Tanaka [6] point out, Friedman’s Theorem itself can be
proved withinWK Lo, hence it is also provable iRRA by its own assertion.

Now, we define a basic notion of predicate calculuRRibA;. We fird fix a
countable first-order language We may assume that all the meaningful expres-
sions such as terms and formulas nare encoded by natural numbers under a
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standard @del numbering ™ so that the basic operations on the expressions in
(e.g..disj("e,"y ") =" Vv y") are represented by primitive recursive functions.
Let L-trm(x), £L- fml(x), L-snt(x) be formulas inL; which express thax is the
Godel number of arL-term, of anL-formula, or of anL-sentence, respectively. A
ch’-formuIaT(x) is called anL-theory if RC Ag proves(Vx) (T (x) — L-snt(x)). For

an L-theory T, we can define ar;-formula Prooft (x, y) which means thay en-
codes a proof of the formula with coden the theoryT. Then we define twa;-
formulasPr+(x) andCon(T) by

Prt(x) < (3y)Proofr (X, y),

Con(T) < —Pry ("L,
where L denote a contradiction such agVvx)(x = x). Notice thatPr(x) is aE(l)
formula, andCon(T) is aIl sentence.

To define models, take a s€t= {c,} of new constants and legt’ = LU C. We
can safely assume that has a @del numbering ™ which coincides with the Gdel
numbering of£ on L-terms andL-formulas. LetT be anL-theory. A setht of (the
Godel numbers of)./-sentences is calledraodel of T if it satisfies(VX) (T (x) —
x € M) and the following Tarski clauses:

g eMe ¢ g,

(@AY) eM< (9 eMAY €M),

(VYY) eM< (peMVviyeM),

(> PY)eMo (peM— YyeIM),

(@AX)O(X) € M < (ce C)(B(c) € M),

(VX)0(X) € M < (Vce C)(B(c) € M).
whereg, ¥ andd(c) are L'-sentences. In other words, a modelat the elementary
diagram of anL-structure with univers€ which satisfiesT.

Theorem 2.2 (The Completeness TheoreM/KLg)) Thefollowing are equivalent:

(i) Con(T),
(i) thereisamodel Mt of T.

Proof: The theorem can be proved by the usual Henkin construction. See [5] for the
details. It is also known that this theorem turns out to be equivalevtkd. o over

RCAy.

Using the derivability conditions explained in the next section, we can also easily
obtain the following version of the Completeness Theorem.

Theorem 2.3 (The Completeness Theorem; revis®dK Ly)) For any L-sentence
@, T proves ¢ if and only if ¢ holdsin every model of T.

Proof: The left-to-right direction of the theorem is easily proved by induction on
the length of proofs. We will prove the other direction by showing its contraposition.
Assume thal does not prove. ThenT U {—¢} is consistent (by derivability condi-
tion D2), so there is a mod&lt of T U {—¢}.
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3 Binary Branching Treesand ACA,  In this section, we shall show that the ex-
istence of the leftmost paths of binary branching trees is equivalekt . Except
for the definition of a binary relatior over Seqy, the contents of this section will not
be used in the succeeding sections.

The systemAC Ag, which stands foArithmetical Comprehension Axiom, is the
theory in £, obtained fromRC Ag by adding

Arithmetical Comprehension: (3X) (¥X) (¢(X) <> X € X), whereg is any
L, formula which does not contain
quantifiers for set variables.

It is known that, oveiRC Ay, ACAg is equivalent to Knig's Lemma, which asserts
thatevery finitely branching infinite tree hasan infinite path, and strictly stronger than
WKL (see Simpson [5]). The following lemma is often useful in showing that arith-
metical comprehension is needed to prove various theorems.

Lemma3.1 (RCAp) Thefollowing are equivalent:

(i) ACA,.
(i) For any one-to-onefunctionf: N — N, thereexistsaset X € N suchthatn e X
ifand only if n = f(m) for some me N.

Proof: See Simpson [5].

Now, we introduce a binary relatior on Seq, as follows:

X<y < there exists1 < min{lh(x), Ih(y)} such that
(Ym <M ((X)m= YI)m) A Xn=0A(Y)n=1,

wherelh(x) is the length ok and(x),, is thenth element oik. Namely, ifx < ythen
x occurs on the left of in the treeSeqp,.

Let T C Segp be an infinite tree. We say an infinite pa®hC T is the leftmost
infinite path of T if for any infinite pathQ of T with P # Q, there exists € P and
te Qsuchthas<t.

Theorem 3.2 (RCAy) Thefollowing are equivalent:

(i) ACAq.
(ii) For anyinfiniteset X C Seqp, there existstheminimal tree T C Seq, such that
XCT.
(iii) Everyinfinitetree T € Seqp hasthe leftmost infinite path.

Proof: (i) = (ii): Let X be an infinite subset dBeg,. Then define a séf € N by
xeT e xe SegpA @y)(ye XAy | lhx) = x) for all x e N. This set exists by
arithmetical comprehension. It is clear tHats a tree which satisfies the condition
(ii).

(i) = (iii): Let T C Seq, be an infinite tree. Define a s&tbhyxe X & x ¢
T A (VY)(Y < XATh(x) = lh(y) — y & T) for all x € N. This set exists by the re-
cursive comprehension. Then, by (ii), we can find the minimalltr@ehich contains
X. Now, defineasePbyxe P& xe UA (VY)(X< YA Th(X) =1h(y) > yg U)
for all x € N. This setP is the leftmost infinite path of the trée
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(i) = (i): Instead of provingAC A directly, we prove the existence of images
of one-to-one functions. Lef : N — N be a one-to-one function. Define a Set
byxeT & xe Setp A (Vy < Th(x){(3z < Th(x))(f(2) =y) = (X)y = 1} for
all x € N. This setT exists by the recursive comprehension. ObviouSljorms
an infinite tree. LetP be the leftmost infinite path of. Then,x is an element of
the image off if and only if there is an elementof P such thath(t) = x+ 1 and
(t)x = 1. So the image of exists by the recursive comprehension.

4 The Derivability Conditions It was Bernays who first exposed the machinery

of the proof of the Second Incompleteness Theorem by listing the properties of the
provability predicate, now called the Hilbert-Bernays Derivability Conditions. Then
Lob simplified those conditions, and showed that the Second Incompleteness Theo-
rem can be obtained from the following three assertions (ith T = PA):

D1. T+ gimpliesSk Prr("¢ "),
D2. SEFPrr(Te Y APr(Te — v — Prr(Ty),
D3. S Prr(Te™") — Prr("Pr(Te™MM).

D1 is easily proved by induction on the length of a proopoh T. D2 is afor-
malization of modus ponens, and it is proved by showing that from progfsamid
@ — ¥, one can easily construct a prooffthat is, the concatenation of the former
two proofs plus modus ponens. D3 is a formalization of D1. But to formalize the
syntactical proof of D1, one needs a lengthy argument. So, we will instead formal-
ize the following semantic proof of D1 in the caSe= PRA (or a reasonably strong
subsystem oPA) andT = any theory.

Proof Proof of D1: Assumerl + ¢. Then, Prr("¢™ holds in the standard model
N of arithmetic. Let)t be any model ofS. As 91 is an end-extension a¥, every
2(1’ sentence true il¥ is also true irdt. SoM = Prr ("¢ ). By the Completeness
Theorem, we hav&t Prr(T¢™m).

In the rest of this section, we prove D3 in the c&e PRA andT = PA by
formalizing the above proof iWVK L.

Let 2t be a model off = PA with universeC = {c,}. Then, by the definition
of models, there exist,, andcy, in C such that)t =0 = c,, anddt = 1= c,,. We
denote such elementg, andc,, in C by Oy and Ly, respectively.

The next lemma claims thaR includesN as an initial segment.

Lemma4.1(RCAg) There exists a function ey : N — C which satisfies the
following conditions; for eachi, j € N,

(i)  em(0) = Ogy, em(1) = 1oy,

(i)  MEem+ ) =en()+em()), MEemn-|)=-en) - en(),

(iii) i # jimpliesO k= ey (i) # em()),

(iv) if9 = cnh < eyp(i), thenthere exists k € N such that M = ¢, = e (K).
Proof:  First, we define the successor funct®g C? by (cm, Cn) € sif and only if
MEchn+l=cnH)A M <N Ecn+1+#c). The existence o is obvious
from recursive comprehension, and cleaglyan be viewed as a functiat C — C
such thatlt =s(c) =c+ 1forallce C.
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Then, we define a desired functies; : N — C by primitive recursion:

em(0) =0g, em( +1) =s(ep(i)).

Clearly, this functioreyy (x) satisfies the condition (i). The condition (ii) can be easily
proved by induction orj. The condition (iii) is an immediate consequence of the
conditon (ii). The condition (iv) is proved by induction on

The next theorem is a semantical version of D3, and it also plays an important
role in the following sections.

Theorem 4.2 (RCAy) For any model 97t of PA, (VX1...VXp)(@(Xq, ..., Xn) —
(M k= p(em(X1), - .., em(Xn)))) for every T2 formula p(xq, . . ., Xn).

Proof. It can be readily shown by induction on the complexity of formgjaince
<M obeys the Tarski clauses.

From the above theorem, we also have the following version of D3.
Corollary 4.3  For any X9 sentence o, PRAF o — Prpa(To™).

Proof: Leto be aE‘l) sentence. By the above theoreRCAy - (0 — 9 = o)
for any modebn of PA. So,WKLgF o — Prpa("o™) by Theorem 2.3. Ag —
Prpa("o™ is aH‘ZJ sentence, we haleRAF ¢ — Prpa("o) from Theorem 2.1.

In comparison with usual syntactic arguments for D3 asin 3.2.5 for D3 of [7], the
mechanism of induction in our proof is considerably simpler because models satisfy
the Tarski clauses whereas the provability predicate does not.

5 The Arithmetized Completeness Theorem  Fix a countable first-order language
L. Let T(x) be anL;-formula such thaPA proves(Vx)(T(x) — L-snt(x)). The
Arithmetized Completeness Theorem asserts that B¥e# Con(T), we can con-
struct anL;-formula Tr(x) which expresses validity in a model ®f This version
of the Completeness Theorem is due to Feferman [2].

Tobegin with, we will introduce a Henkin theofly, of T. Take asetC = {c,} of
new constants and pul’ = L U C. The £L'-theory Ty is obtained fronil by adding
all the Henkin axioms. We here assume that the thderys expressed by a;-
formulaTy (X) in PA. Asusual, we havd?A + Con(T) — Con(Ty), since we can
easily rewrite a proof of inconsistency iy (if any) to a proof of it inT.

We now define an;-formulacnsr (x) as follows:

Definition 5.1 cnst(X) <> (Xe Setp) A ({g | L'-snt("o ) AT < Th(X) A (X)ryn
= 0} is consistent witiTy ).
Thencnst (X) can be seen as a certain subtre&af,. Next, we set

[ftr (X) <> cnst(X) A (VYY) (Y < X — —=cnst(Y))

and
Trr(X) < @Ay)(ftr(y) Alh(y) =X+ 1A (Y)x = 0).
We are going to show ifPA+ Con(T) thatTrt(x) defines a model of .
Lemmab.2 PA+ Con(T)F (vYX)(@'y)(h(y) = xAlftr(y)).
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Proof: We prove this lemma by induction o Thecasex = 0 is dear because
Con(T) guarantees that the null sequence satisfigs Forx = n, assume that there
exists a uniquen such thath(m) = nandl ftt(m). If nis the Gdel number of an
L'-sentence) and if the theory{ | L'-snt("¢ ) AT¢ " < nA (M)ryn =0} U (¢} is
shown inPA + Con(T) to be consistent witfy, then we putm’ = m™(0). Other-
wise, putm’ = m™(1). Clearly, ' works for the cas& =n+ 1.

For an £;-formula ¢(x), we sy thate(x) defines a model of, if it satisfies
(YX)(T(X) — ¢(x)) and the Tarski clauses, i.e., the definition of madig(in Section
2) withx € M replaced by (x). Then letMody (¢) be ant,-sentence expressing that
¢ defines a model of .

Lemma 5.3 (The Arithmetized Completeness TheoremPA + Con(T) -+ Mody
(TI’T).

Proof: From the definition offr, itisobvious thatVx) (T (x) — Trt(x)) holdsin
PA+ Con(T). With the help of Lemma 5.1, it is also easy to provéliA+ Con(T)
that Try(x) obeys the Tarski clauses.

By applying D1 to the above theorem, we have
Lemma54 PRAF Prpaicon)(Modt(Trr)).
From this lemma, we obtain

Theorem 5.5 (RCAy) For any model 9t, of PA 4 Con(T), there exists a model
M4 of T suchthat My = Trr (T ™) if and only if M, = ¢ for any L-sentence ¢.

Proof: Wedefine a seflt; by n e M1 < Mo = Trr(egy,(n)) forallne N. Since

My is essentially the set of thed@el numbers of sentences trugity and the func-

tion which maps eachto the Gddel number of the formul@rt (eyy, (n)) is recursive

in Mg, M, is recursive iMiy. Sothe existence dii, is provable inRC Ag although

M, is defined by taking the leftmost path of a binary branching tree. We shall show
in RC Ap that9Jt; forms a model ofT.

Suppose we have partial functioneg, disj, etc., fromN to N which are such
thatneg("p ) = "=, disj("e,"y™") =" Vv ¢, éc. Since these functions can
be defined byzg formulas, we havévm)(¥n)(m = neg(n) — Mo = ey, (M) =
neg(eoy,(n))), etc. by Theorem 4.2. Sind®iy is a model ofPA + Con(T), Mo =
Modr (Trt) by Lemma 5.4. So we havweyx)Mp = (Trr(neg(x)) < —=Trr(X)),
etc., and hencevx)Mly = (Trr(em,(neg(x))) < —Trr(em,(X))), etc., showing
thatt, obeys the Tarski clauses.

Since (Yx) (Prt(x) — Mo = Prr(em,(x))) holds by Theorem 3.2, we have,
with Lemma 4.3 againvx) (Prr(x) — Mo k= Trr (e, (X))). So(¥VX)(Prr(x) —

X € <My). This concludes thdbt; is a model ofT.

Corollary 5.6 (RCAy)  Let Mg and M1, be modelsdefinedin Theorem5.5with T =
PA. Then 9% = ¢ — My k= ¢ for any 9 sentence ¢.

Proof: Suppose that is azg sentence aniy = ¢. By Theorem 4.2 and Corollary
4.3, we havePrpa("¢ — Prpa("e ™) ™). SinceMp is a model of PA, Mg = (¢ —
Proa(Ce™), thus9ty = Prpa(T¢ ™). So, by Lemma 5.401% = Trpa("¢ ™), hence
M1 = o
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6 Kreisel's Proof of the Second Incompleteness Theorem  Now we are ready to
carry out Kreisel’'s model-theoretic proof of the Second Incompleteness Theorem in
WK Lg. For a concise account of Kreisel's proof, see Smeky [7].

Theorem 6.1 (The Diagonalization Lemma) For any L;-formula ¢(x) with at
most one free variable x, thereis an £;-sentence o such that PAF o <> ¢("o ).

Theorem 6.2 (The Second Incompleteness Theorafi{Ly)) Con(PA)
implies =Prpa("Con(PA)™).

Proof: First of all, from Theorem 6.1, we obtain a3-sentenceg such thatPA -~

og < —Trpa("og ). Fix such asg and letny be the numeral denotirigrg . Now
reasoning withirWK Ly, assumeCon(PA) and Prpa("Con(PA)™) by way of con-
tradiction. By Theorem 2.2, there is a mod@l of PA. SinceCon(PA) holds in

any model ofPA, by the repeated use of Theorem 5.5, we can construct a sequence
of models of PA, Mt = Mg, My, ..., Mong+1 Such that, for each < 2not+l o =
Trr(Te™) if and only if M, 1 = ¢ for any £,-sentencep. Then, for each < 2N+

we take a numerah; such that)tj = 1ftpa(my) Alh(my) = ng + 1. The existence of
suchmy’s follows from Lemma 5.2 and a simple factWiK L that there are no more
than 2v+1 sequences frorf0, 1} with lengthng + 1.

Next we want to show thaty < mi ;. Sincedj = og < M1 = —og by
the definition ofog, clearly we havem, = my, 1. So it suffices to show-(m;; <
m;). By way of contradition, assume that,; < m;. Then by Theorem 4.9} =
mi 1 < M. HencedMt; = —~cnspa(my 1) by the choice ofn. Since—~cnspa(my 1)
is aEfl’ sentence, it would follow from Corollary 5.6 th8®;, 1 &= —cnspa(miy1),
which contradicts the choice afi ;. Thus, we haver; < m;1 within WK L.

Now, we obtain a chaimy < my < - - - < Myg+1, Which contradicts the fact that
the number of finite sequences frd 1} with lengthng + 1 is 2%*1,

Finally, we have the following theorem by virtue of Theorem 2.1.

Theorem 6.3 (Formalized Second Incompleteness TheorenBRA + Con(PA)
— = Prpa("Con(PA)™).

7 Berry's Paradox and the First Incompleteness Theorem  The least integer not
nameable in fewer than nineteen syllables is named in eighteen syllables. This is a
paradox due to Berry. In [1], Boolos obtained an interesting proof of the First Incom-
pleteness Theorem based on this paradox. Inspired by his proof, we extract the First
Incompleteness Theorem from Berry’s paradoK Lo, hence inPRA by Theorem

2.1.

An £;-formula is called am-formula (m e N) if it consists of fewer tham
symbols, and if its variables are taken frag) vy, ..., vm_1 and onlyvg may occur
freely init. Let F(x, y) denote an,-formula expressing thatis the Gddel number
of a y-formula. We say that am-formula¢(vg) names a numbar € N in a model
M of PAif

n times

—_——
M = (Yvo) (vo =1+ -+ + 1< ¢(vo)).
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For the sake of convenience, we writame (g, n) for the formula

n times

——
(Yvo)(vo =1+ ---+ 1< @(vp))

if g="¢(vg)". Since M = name (x, 2)” is apredicate recursive i, it can be
shown withinRC Ag that for eachm € N, there exists the least numberlhwhich
cannot be named by amg-formula in 9.

We defineP(X, y) to be ans,-formula expressing that sonyeformula names
in the model defined byr pa, thatis,(32) (F(z, y) A Trpa("name(z, x))). Finally,
let Q(X, y) be—=P(x, y) A (VZ< X)P(z y). Thus,Q(X, y) means thax is the small-
est number that cannot be named by grAprmula in the model defined byr pa.
Now, letk be the number of symbols occurring@(x, y), andt be the closed term

10 times k times

A+---4+1)-A+---+1).

Without loss of generality, we may assume tRdtg, t) is a(10- k)-formula. Then
we have

Lemma7.1(RCAy) Suppose Mg isa model of PA+ Con(PA), and 9, is the
model of PA defined by Trpa(X) in 9% in the same way asin Theorem 4.4. Let s
be the numeral denoting the least number n N such that (VX)(F(x,t) — 90t; =
—name(x, n)). Then,

(i) Mo = Qs 1),

(i) M1 = —Q(s, 1).
Proof: (i): By way of contradiction, we assume tHtg = —Q(s, t). ThenMip =
P(s t) v =(Vz < s)P(z t) by the definition ofQ(X, y). Thus,(Vz < s)(IX) (F (X, t)
A Mo = Trpa("name(x, z) M) by the definition ok, so(Vz < s)(IX) (M = F(x, 1)
A Trpa(Tname(x, 2) ™)) sinceF (X, y) is recursive. Hence, by Lemma 42}, =
Vz < s5) @AX)(F(x,t) A Trpa("name(x, 2)™)), namely, 9y &= (Vz < )
P(z t). Therefore, we must hav®iy = P(s, t), that is, My = AX)(F(x,t) A
Trpa(name(x, s))). By using Lemma 4.1 and the recursivenest ¢f, y) again, we
also obtain@x) (F(x, t) A Mg = Trpa(name(x, s))), thatis,(AX) (F(x, t) AM; =
name(X, s)). This contradicts the definition af

(ii): If we had 0ty = Q(s, t), then we would hav&lt; = name(™ Q(vp, t)7, S),

which contradicts the definition afsinceQ(vg, t) is a(10- k)-formula.

This lemma leads to the following version of the First Incompleteness Theorem.

Theorem 7.2 (The First Incompleteness TheorelWKLg)) If PA+ Con(PA) is
consistent, PA isincomplete.

Proof: Assume thatPA + Con(PA) is consistent. By Theorem 2.2, we have a
modelMNty of PA + Con(PA). Then define a modélt; of PA and the numerad as

in the above lemma. Since bdifip andt; are models oPA, wehavePAL Q(s, 1)
and PAH —=Q(s, t), which means thaPA is incomplete.

We remark that the consistency &A + Con(PA) is easily deduced from the
1-consistency oPA, hence also from the-consistency oPA.
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Corollary 7.3 (The Formalized First Incompleteness TheordhRA - Con(PA +
Con(PA)) — =Prpa(" Q(s, 1) ) A =Prpa("—Q(s, t) ).

Proof: Apply Theorem 2.1 to Theorem 7.2.
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