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On Formalization of Model-Theoretic
Proofs of Gödel’s Theorems

MAKOTO KIKUCHI and KAZUYUKI TANAKA

Abstract Within a weak subsystem of second-order arithmeticW K L0, that
is�0

2-conservative overPRA, wereformulate Kreisel’s proof of the Second In-
completeness Theorem and Boolos’ proof of the First Incompleteness Theorem.

1 Introduction To bypass the pedagogic obstacles in Gödel’s original proof of the
Incomplete Theorems, model-theoretic methods have been invented by several peo-
ple (cf. Smorýnski [7], Boolos [1], and Kreisel [4]). However, such semantic proofs
usually need such strong assumptions in metamathematics that they do not readily
yield the formalized versions. For instance, as Smoryński [7] points out, Kreisel’s
proof of the Second Incompleteness Theorem in [4] does not directly lead to the
formalized Second Incompleteness Theorem:PRA � Con(PA) → Con(PA +
¬Con(PA)).

In this paper, we elucidate the mechanism of such semantic proofs and show that
they can be carried out within a subsystem of second-order arithmeticW K L0. Thus,
we also obtain proofs of the Formalized Incompleteness Theorems inPRA, since any
�0

2 theorem ofW K L0 is provable inPRA by a result of Friedman.
In most semantic proofs, the arithmetized version of the Completeness Theo-

rem is repeatedly used. Although one can easily show inW K L0 that any countable
consistent theory has a model (see Theorem 2.2 below), what we really need for the
proofs is not just the existence of such a model but a specific construction. Typically, a
model can be constructed by taking the leftmost path through a certain binary branch-
ing tree, but, as shown in Section 3, we cannot prove the existence of such a path in
W K L0. Instead, our Theorem 5.5 and Corollary 5.6 jointly assert overRC A0 that
every modelM of PA + Con(PA) has a definable end-extensionN which is also a
model ofPA (cf. Feferman [2], and Lemma 6.2.3 of Smoryński [6]).

In Section 2, we define the systemW K L0 and set up the basics of predicate cal-
culus withinW K L0. In Section 3, we define the systemAC A0 and prove that the
existence of the leftmost paths of binary branching trees is equivalent toAC A0. In
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Section 4, we introduce the derivability conditions, i.e., the three basic properties of
the provability predicate, and give model-theoretic proofs of them inW K L0. Sec-
tion 5 is devoted to prove our version of the Arithmetized Completeness Theorem,
i.e., Theorem 5.5 and Corollary 5.6. We apply these theorems to formalize Kreisel’s
proof in Section 6, and also to extract the First Incompleteness Theorem from Berry’s
paradox in Section 7, which strengthens the argument of Boolos [1]. See Kikuchi [3]
for more information on the latter application.

2 The System W K L0 As usual, first-order arithmetic is formalized in the language
L1 with the symbols+, ·,0,1,<, and second order arithmetic is in the languageL2 =
L1 ∪ {∈}. Variablesx, y, z, . . . range over the natural numbers, andX, Y, Z, . . . over
the sets of natural numbers. Terms and formulas are built up in the usual way. An
L2-formula with no unbounded quantifiers is called a�0

0 or �0
0 formula. If ϕ is a�0

j

formula,(∀x1 . . .∀xk)ϕ is a�0
j+1 formula. If ϕ is a�0

j formula,(∃x1 . . .∃xk)ϕ is a

�0
j+1 formula. Notice that a�0

j or �0
j formula with no set parameters must be an

L1-formula.
The systemRC A0, which stands forRecursive Comprehension Axiom, is anL2-

theory consisting of the following axioms:

(I) Basic axioms of arithmetic, namely the axioms of discretely ordered semi-rings
with the least positive element 1.

(II) �0
1 induction: ϕ(0) ∧ (∀x)(ϕ(x) → ϕ(x + 1)) → (∀x)ϕ(x), whereϕ(x) is a

�0
1 formula.

(III) Recursive comprehension:(∀n)(ϕ(n) ↔ ψ(n)) → (∃X)(∀n)(ϕ(n) ↔ n ∈
X), whereϕ is a�0

1 formula andψ a�0
1 formula.

Within RC A0, we can prove the existence and uniqueness of such a setX that
(∀x)(x = x ↔ x ∈ X), and we write this set as̃N.

By Seq2, wedenote the set of codes for finite sequences of zeros and ones. Weak
König’s Lemma (WKL) is an assertion that every infinite subtree ofSeq2 has an infi-
nite path. TheL2-theoryW K L0 is obtained fromRC A0 by adding WKL. Since WKL
brings forth the compactness of the closed unit interval and other spaces, mathemat-
ics developed inW K L0 is much richer than that inRC A0. However, concerning the
consistency issue, these two systems are equivalent to each other. In fact, Harrington
shows that they have the same�0

j theorems for anyj (cf. Simpson [5]).

Friedman was the first to observe that if a�0
2 sentence is provable inW K L0, it is

also provable inPRA. Here, PRA is the system which has symbols for the primitive
recursive functions and whose axioms contain all the defining equations for primitive
recursive functions and induction for quantifier-free formulas.

Theorem 2.1 (Friedman’s Conservation Theorem)W K L0 � ϕ implies PRA � ϕ

for every �0
2 sentence ϕ in L1.

Proof: As Simpson and Tanaka [6] point out, Friedman’s Theorem itself can be
proved withinW K L0, hence it is also provable inPRA by its own assertion.

Now, we define a basic notion of predicate calculus inRC A0. We first fix a
countable first-order languageL . We may assume that all the meaningful expres-
sions such as terms and formulas inL are encoded by natural numbers under a
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standard G̈odel numbering� � so that the basic operations on the expressions inL
(e.g.,disj(�ϕ�,�ψ�) = �ϕ ∨ ψ�) are represented by primitive recursive functions.
Let L-trm(x),L- f ml(x),L-snt(x) be formulas inL1 which express thatx is the
Gödel number of anL-term, of anL-formula, or of anL-sentence, respectively. A
�0

1-formulaT(x) is called anL-theory if RC A0 proves(∀x)(T (x) → L-snt(x)). For
anL-theoryT , we can define anL1-formula Proo fT (x, y) which means thaty en-
codes a proof of the formula with codex in the theoryT . Then we define twoL1-
formulasPrT (x) andCon(T ) by

PrT (x) ↔ (∃y)Proo fT (x, y),

Con(T ) ↔ ¬PrT (�⊥�),

where⊥ denote a contradiction such as¬(∀x)(x = x). Notice thatPrT (x) is a�0
1

formula, andCon(T ) is a�0
1 sentence.

To define models, take a setC = {cn} of new constants and letL ′ = L ∪ C . We
can safely assume thatL ′ has a G̈odel numbering�� which coincides with the G̈odel
numbering ofL onL-terms andL-formulas. LetT be anL-theory. A setM of (the
Gödel numbers of)L ′-sentences is called amodel of T if it satisfies(∀x)(T(x) →
x ∈ M) and the following Tarski clauses:

¬ϕ ∈ M ↔ ϕ �∈ M,

(ϕ ∧ ψ) ∈ M ↔ (ϕ ∈ M ∧ ψ ∈ M),

(ϕ ∨ ψ) ∈ M ↔ (ϕ ∈ M ∨ ψ ∈ M),

(ϕ → ψ) ∈ M ↔ (ϕ ∈ M → ψ ∈ M),

(∃x)θ(x) ∈ M ↔ (∃c ∈ C )(θ(c) ∈ M),

(∀x)θ(x) ∈ M ↔ (∀c ∈ C )(θ(c) ∈ M).

whereϕ, ψ andθ(c) areL ′-sentences. In other words, a model ofT is the elementary
diagram of anL-structure with universeC which satisfiesT .

Theorem 2.2 (The Completeness Theorem (W K L0)) The following are equivalent:

(i) Con(T ),

(ii) there is a model M of T.

Proof: The theorem can be proved by the usual Henkin construction. See [5] for the
details. It is also known that this theorem turns out to be equivalent toW K L0 over
RC A0.

Using the derivability conditions explained in the next section, we can also easily
obtain the following version of the Completeness Theorem.

Theorem 2.3 (The Completeness Theorem; revised (W K L0)) For any L-sentence
ϕ, T proves ϕ if and only if ϕ holds in every model of T.

Proof: The left-to-right direction of the theorem is easily proved by induction on
the length of proofs. We will prove the other direction by showing its contraposition.
Assume thatT does not proveϕ. ThenT ∪ {¬ϕ} is consistent (by derivability condi-
tion D2), so there is a modelM of T ∪ {¬ϕ}.
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3 Binary Branching Trees and AC A0 In this section, we shall show that the ex-
istence of the leftmost paths of binary branching trees is equivalent toAC A0. Except
for the definition of a binary relation≺ overSeq2, the contents of this section will not
be used in the succeeding sections.

The systemAC A0, which stands forArithmetical Comprehension Axiom, is the
theory inL2 obtained fromRC A0 by adding

Arithmetical Comprehension:(∃X)(∀x)(ϕ(x) ↔ x ∈ X), whereϕ is any
L2 formula which does not contain
quantifiers for set variables.

It is known that, overRC A0, AC A0 is equivalent to K̈onig’s Lemma, which asserts
thatevery finitely branching infinite tree has an infinite path, and strictly stronger than
W K L0 (see Simpson [5]). The following lemma is often useful in showing that arith-
metical comprehension is needed to prove various theorems.

Lemma 3.1 (RC A0) The following are equivalent:

(i) AC A0.

(ii) For any one-to-one function f : Ñ → Ñ, there exists a set X ⊆ Ñ such that n ∈ X
if and only if n = f (m) for some m ∈ Ñ.

Proof: See Simpson [5].

Now, we introduce a binary relation≺ on Seq2 as follows:

x ≺ y ↔ there existsn < min{lh(x), lh(y)} such that

(∀m < n)((x)m = (y)m) ∧ (x)n = 0∧ (y)n = 1,

wherelh(x) is the length ofx and(x)n is thenth element ofx. Namely, ifx ≺ y then
x occurs on the left ofy in the treeSeq2.

Let T ⊆ Seq2 be an infinite tree. We say an infinite pathP ⊆ T is the leftmost
infinite path ofT if for any infinite pathQ of T with P �= Q, there existss ∈ P and
t ∈ Q such thats ≺ t.

Theorem 3.2 (RC A0) The following are equivalent:

(i) AC A0.

(ii) For any infinite set X ⊆ Seq2, there exists the minimal tree T ⊆ Seq2 such that
X ⊆ T.

(iii) Every infinite tree T ⊆ Seq2 has the leftmost infinite path.

Proof: (i) ⇒ (ii): Let X be an infinite subset ofSeq2. Then define a setT ⊆ Ñ by
x ∈ T ⇔ x ∈ Seq2 ∧ (∃y)(y ∈ X ∧ y � lh(x) = x) for all x ∈ Ñ. This set exists by
arithmetical comprehension. It is clear thatT is a tree which satisfies the condition
(ii).

(ii) ⇒ (iii): Let T ⊆ Seq2 be an infinite tree. Define a setX by x ∈ X ⇔ x ∈
T ∧ (∀y)(y ≺ x ∧ lh(x) = lh(y) → y �∈ T ) for all x ∈ Ñ. This set exists by the re-
cursive comprehension. Then, by (ii), we can find the minimal treeU which contains
X. Now, define a setP by x ∈ P ⇔ x ∈ U ∧ (∀y)(x ≺ y ∧ lh(x) = lh(y) → y �∈ U)

for all x ∈ Ñ. This setP is the leftmost infinite path of the treeT .
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(iii) ⇒ (i): Instead of provingAC A0 directly, we prove the existence of images
of one-to-one functions. Letf : Ñ → Ñ be a one-to-one function. Define a setT
by x ∈ T ⇔ x ∈ Seq2 ∧ (∀y < lh(x)){(∃z < lh(x))( f (z) = y) → (x)y = 1} for
all x ∈ Ñ. This setT exists by the recursive comprehension. Obviously,T forms
an infinite tree. LetP be the leftmost infinite path ofT . Then,x is an element of
the image off if and only if there is an elementt of P such thatlh(t) = x + 1 and
(t)x = 1. So the image off exists by the recursive comprehension.

4 The Derivability Conditions It was Bernays who first exposed the machinery
of the proof of the Second Incompleteness Theorem by listing the properties of the
provability predicate, now called the Hilbert-Bernays Derivability Conditions. Then
Löb simplified those conditions, and showed that the Second Incompleteness Theo-
rem can be obtained from the following three assertions (withS = T = PA):

D1. T � ϕ implies S � PrT (�ϕ�),
D2. S � PrT (�ϕ�) ∧ PrT (�ϕ → ψ�) → PrT (�ψ�),
D3. S � PrT (�ϕ�) → PrT (�PrT (�ϕ�)�).

D1 is easily proved by induction on the length of a proof ofϕ in T . D2 is afor-
malization of modus ponens, and it is proved by showing that from proofs ofϕ and
ϕ → ψ, one can easily construct a proof ofψ, that is, the concatenation of the former
two proofs plus modus ponens. D3 is a formalization of D1. But to formalize the
syntactical proof of D1, one needs a lengthy argument. So, we will instead formal-
ize the following semantic proof of D1 in the caseS = PRA (or a reasonably strong
subsystem ofPA) andT = any theory.

Proof Proof of D1: AssumeT � ϕ. Then, PrT (�ϕ�) holds in the standard model
N of arithmetic. LetM be any model ofS. As M is an end-extension ofN, every
�0

1 sentence true inN is also true inM. SoM |= PrT (�ϕ�). By the Completeness
Theorem, we haveS � PrT (�ϕ�).

In the rest of this section, we prove D3 in the caseS = PRA andT = PA by
formalizing the above proof inW K L0.

Let M be a model ofT = PA with universeC = {cn}. Then, by the definition
of models, there existcn0 andcn1 in C such thatM |= 0 = cn0 andM |= 1 = cn1. We
denote such elementscn0 andcn1 in C by 0M and 1M, respectively.

The next lemma claims thatM includesÑ as an initial segment.

Lemma 4.1 (RC A0) There exists a function eM : Ñ → C which satisfies the
following conditions; for each i, j ∈ Ñ,

(i) eM(0) = 0M, eM(1) = 1M,
(ii) M |= eM(i + j) = eM(i) + eM( j),M |= eM(i · j) = eM(i) · eM( j),

(iii) i �= j implies M |= eM(i) �= eM( j),
(iv) if M |= cn < eM(i), then there exists k ∈ Ñ such that M |= cn = eM(k).

Proof: First, we define the successor functions ⊆ C 2 by (cm, cn) ∈ s if and only if
(M |= cm + 1 = cn) ∧ (∀l < n)(M |= cm + 1 �= cl ). The existence ofs is obvious
from recursive comprehension, and clearlys can be viewed as a functions : C → C
such thatM |= s(c) = c + 1 for all c ∈ C .
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Then, we define a desired functioneM : Ñ → C by primitive recursion:

eM(0) = 0M, eM(i + 1) = s(eM(i)).

Clearly, this functioneM(x) satisfies the condition (i). The condition (ii) can be easily
proved by induction onj. The condition (iii) is an immediate consequence of the
conditon (ii). The condition (iv) is proved by induction oni.

The next theorem is a semantical version of D3, and it also plays an important
role in the following sections.

Theorem 4.2 (RC A0) For any model M of PA, (∀x1 . . .∀xn)(ϕ(x1, . . . , xn) →
(M |= ϕ(eM(x1), . . . , eM(xn)))) for every �0

1 formula ϕ(x1, . . . , xn).

Proof: It can be readily shown by induction on the complexity of formulaϕ, since
M obeys the Tarski clauses.

From the above theorem, we also have the following version of D3.

Corollary 4.3 For any �0
1 sentence σ, PRA � σ → PrPA(�σ�).

Proof: Let σ be a�0
1 sentence. By the above theorem,RC A0 � (σ → M |= σ)

for any modelM of PA. So,W K L0 � σ → PrPA(�σ�) by Theorem 2.3. Asσ →
PrPA(�σ�) is a�0

2 sentence, we havePRA � σ → PrPA(�σ�) from Theorem 2.1.

In comparison with usual syntactic arguments for D3 as in 3.2.5 for D3 of [7], the
mechanism of induction in our proof is considerably simpler because models satisfy
the Tarski clauses whereas the provability predicate does not.

5 The Arithmetized Completeness Theorem Fix a countable first-order language
L . Let T(x) be anL1-formula such thatPA proves(∀x)(T(x) → L-snt(x)). The
Arithmetized Completeness Theorem asserts that overPA + Con(T ), we can con-
struct anL1-formulaTrT (x) which expresses validity in a model ofT . This version
of the Completeness Theorem is due to Feferman [2].

Tobegin with, we will introduce a Henkin theoryTH of T . Take a setC = {cn} of
new constants and putL ′ = L ∪ C . TheL ′-theoryTH is obtained fromT by adding
all the Henkin axioms. We here assume that the theoryTH is expressed by anL1-
formulaTH(x) in PA. As usual, we havePA � Con(T ) → Con(TH ), since we can
easily rewrite a proof of inconsistency inTH (if any) to a proof of it inT .

Wenow define anL1-formulacnsT (x) as follows:

Definition 5.1 cnsT (x) ↔ (x ∈ Seq2)∧ ({ϕ | L ′-snt(�ϕ�)∧ �ϕ� < lh(x)∧ (x)�ϕ�
= 0} is consistent withTH ).

ThencnsT (x) can be seen as a certain subtree ofSeq2. Next, we set

l f tT (x) ↔ cnsT (x) ∧ (∀y)(y ≺ x → ¬cnsT (y))

and
TrT (x) ↔ (∃y)(l f tT (y) ∧ lh(y) = x + 1∧ (y)x = 0).

Weare going to show inPA + Con(T ) thatTrT (x) defines a model ofT .

Lemma 5.2 PA + Con(T ) � (∀x)(∃!y)(lh(y) = x ∧ l f tT (y)).
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Proof: We prove this lemma by induction onx. Thecasex = 0 is clear because
Con(T ) guarantees that the null sequence satisfiesl f tT . For x = n, assume that there
exists a uniquem such thatlh(m) = n andl f tT (m). If n is the G̈odel number of an
L ′-sentenceψ and if the theory{ϕ | L ′-snt(�ϕ�) ∧ �ϕ� < n ∧ (m)�ϕ� = 0} ∪ {ψ} is
shown inPA + Con(T ) to be consistent withTH , then we putm′ = m�〈0〉. Other-
wise, putm′ = m�〈1〉. Clearly,m′ works for the casex = n + 1.

For anL1-formula ϕ(x), we say thatϕ(x) defines a model ofT , if i t satisfies
(∀x)(T(x) → ϕ(x)) and the Tarski clauses, i.e., the definition of modelM (in Section
2) with x ∈ M replaced byϕ(x). Then letModT (ϕ) be anL1-sentence expressing that
ϕ defines a model ofT .

Lemma 5.3 (The Arithmetized Completeness Theorem)PA + Con(T ) � ModT

(TrT ).

Proof: From the definition ofTrT , it isobvious that(∀x)(T (x) → TrT (x)) holds in
PA + Con(T ). With the help of Lemma 5.1, it is also easy to prove inPA + Con(T )

thatTrT (x) obeys the Tarski clauses.

By applying D1 to the above theorem, we have

Lemma 5.4 PRA � PrPA+Con(T )(ModT (TrT )).

From this lemma, we obtain

Theorem 5.5 (RC A0) For any model M0 of PA + Con(T ), there exists a model
M1 of T such that M0 |= TrT (�ϕ�) if and only if M1 |= ϕ for any L-sentence ϕ.

Proof: Wedefine a setM1 by n ∈ M1 ↔ M0 |= TrT (eM0
(n)) for all n ∈ Ñ. Since

M0 is essentially the set of the Gödel numbers of sentences true inM0 and the func-
tion which maps eachn to the G̈odel number of the formulaTrT (eM0

(n)) is recursive
in M0, M1 is recursive inM0. So the existence ofM1 is provable inRC A0 although
M1 is defined by taking the leftmost path of a binary branching tree. We shall show
in RC A0 thatM1 forms a model ofT .

Suppose we have partial functionsneg, disj, etc., fromÑ to Ñ which are such
that neg(�ϕ�) = �¬ϕ�, disj(�ϕ�,�ψ�) = �ϕ ∨ ψ�, etc. Since these functions can
be defined by�0

1 formulas, we have(∀m)(∀n)(m = neg(n) → M0 |= eM0
(m) =

neg(eM0
(n))), etc. by Theorem 4.2. SinceM0 is a model ofPA + Con(T ), M0 |=

ModT (TrT ) by Lemma 5.4. So we have(∀x)M0 |= (TrT (neg(x)) ↔ ¬TrT (x)),
etc., and hence(∀x)M0 |= (TrT (eM0

(neg(x))) ↔ ¬TrT (eM0
(x))), etc., showing

thatM1 obeys the Tarski clauses.
Since(∀x)(PrT (x) → M0 |= PrT (eM0

(x))) holds by Theorem 3.2, we have,
with Lemma 4.3 again,(∀x)(PrT (x) → M0 |= TrT (eM0

(x))). So(∀x)(PrT (x) →
x ∈ M1). This concludes thatM1 is a model ofT .

Corollary 5.6 (RC A0) Let M0 and M1 be models defined in Theorem 5.5 with T =
PA. Then M0 |= ϕ → M1 |= ϕ for any �0

1 sentence ϕ.

Proof: Suppose thatϕ is a�0
1 sentence andM0 |= ϕ. By Theorem 4.2 and Corollary

4.3, we havePrPA(�ϕ → PrPA(�ϕ�)�). SinceM0 is a model ofPA, M0 |= (ϕ →
PrPA(�ϕ�)), thusM0 |= PrPA(�ϕ�). So, by Lemma 5.4,M0 |= TrPA(�ϕ�), hence
M1 |= ϕ.
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6 Kreisel’s Proof of the Second Incompleteness Theorem Now we are ready to
carry out Kreisel’s model-theoretic proof of the Second Incompleteness Theorem in
W K L0. For a concise account of Kreisel’s proof, see Smoryński [7].

Theorem 6.1 (The Diagonalization Lemma) For any L1-formula ϕ(x) with at
most one free variable x, there is an L1-sentence σ such that PA � σ ↔ ϕ(�σ�).

Theorem 6.2 (The Second Incompleteness Theorem (W K L0)) Con(PA)

implies ¬PrPA(�Con(PA)�).

Proof: First of all, from Theorem 6.1, we obtain anL1-sentenceσ0 such thatPA �
σ0 ↔ ¬TrPA(�σ0�). Fix such aσ0 and letn0 be the numeral denoting�σ0�. Now
reasoning withinW K L0, assumeCon(PA) and PrPA(�Con(PA)�) by way of con-
tradiction. By Theorem 2.2, there is a modelM of PA. SinceCon(PA) holds in
any model ofPA, by the repeated use of Theorem 5.5, we can construct a sequence
of models ofPA, M = M0,M1, . . . ,M2n0+1 such that, for eachi < 2n0+1, Mi |=
TrT (�ϕ�) if and only if Mi+1 |= ϕ for anyL1-sentenceϕ. Then, for eachi ≤ 2n0+1,
we take a numeralmi such thatMi |= l f tPA(mi) ∧ lh(mi) = n0 + 1. The existence of
suchmi’s follows from Lemma 5.2 and a simple fact inW K L0 that there are no more
than 2n0+1 sequences from{0,1} with lengthn0 + 1.

Next we want to show thatmi ≺ mi+1. SinceM j |= σ0 ↔ M j+1 |= ¬σ0 by
the definition ofσ0, clearly we havemi �= mi+1. So it suffices to show¬(mi+1 ≺
mi). By way of contradition, assume thatmi+1 ≺ mi. Then by Theorem 4.5,Mi |=
mi+1 ≺ mi. HenceMi |= ¬cnsPA(mi+1) by the choice ofmi. Since¬cnsPA(mi+1)

is a�0
1 sentence, it would follow from Corollary 5.6 thatMi+1 |= ¬cnsPA(mi+1),

which contradicts the choice ofmi+1. Thus, we havemi ≺ mi+1 within W K L0.
Now, we obtain a chainm0 ≺ m1 ≺ · · · ≺ m2n0+1, which contradicts the fact that

the number of finite sequences from{0,1} with lengthn0 + 1 is 2n0+1.

Finally, we have the following theorem by virtue of Theorem 2.1.

Theorem 6.3 (Formalized Second Incompleteness Theorem)PRA � Con(PA)

→ ¬PrPA(�Con(PA)�).

7 Berry’s Paradox and the First Incompleteness Theorem The least integer not
nameable in fewer than nineteen syllables is named in eighteen syllables. This is a
paradox due to Berry. In [1], Boolos obtained an interesting proof of the First Incom-
pleteness Theorem based on this paradox. Inspired by his proof, we extract the First
Incompleteness Theorem from Berry’s paradox inW K L0, hence inPRA by Theorem
2.1.

An L1-formula is called anm-formula (m ∈ Ñ) if i t consists of fewer thanm
symbols, and if its variables are taken fromv0, v1, . . . , vm−1 and onlyv0 may occur
freely in it. Let F(x, y) denote anL1-formula expressing thatx is the G̈odel number
of a y-formula. We say that anm-formulaϕ(v0) names a numbern ∈ Ñ in a model
M of PA if

M |= (∀v0)(v0 =
n times

︷ ︸︸ ︷

1+ · · · + 1↔ ϕ(v0)).
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For the sake of convenience, we writename (g, n) for the formula

(∀v0)(v0 =
n times

︷ ︸︸ ︷

1+ · · · + 1↔ ϕ(v0))

if g = �ϕ(v0)�. Since “M |= name (x, z)” i s apredicate recursive inM, it can be
shown withinRC A0 that for eachm ∈ Ñ, there exists the least number inÑ which
cannot be named by anym-formula inM.

WedefineP(x, y) to be anL1-formula expressing that somey-formula namesx
in the model defined byTrPA, that is,(∃z)(F(z, y) ∧ TrPA(�name(z, x)�)). Finally,
let Q(x, y) be¬P(x, y) ∧ (∀z < x)P(z, y). Thus,Q(x, y) means thatx is the small-
est number that cannot be named by anyy-formula in the model defined byTrPA.
Now, letk be the number of symbols occurring inQ(x, y), andt be the closed term

10 times
︷ ︸︸ ︷

(1+ · · · + 1) ·
k times

︷ ︸︸ ︷

(1+ · · · + 1) .

Without loss of generality, we may assume thatQ(v0, t) is a (10 · k)-formula. Then
we have

Lemma 7.1 (RC A0) Suppose M0 is a model of PA + Con(PA), and M1 is the
model of PA defined by TrPA(x) in M0 in the same way as in Theorem 4.4. Let s
be the numeral denoting the least number n ∈ Ñ such that (∀x)(F(x, t) → M1 |=
¬name(x, n)). Then,

(i) M0 |= Q(s, t),
(ii) M1 |= ¬Q(s, t).

Proof: (i): By way of contradiction, we assume thatM0 |= ¬Q(s, t). ThenM0 |=
P(s, t) ∨ ¬(∀z < s)P(z, t) by the definition ofQ(x, y). Thus,(∀z < s)(∃x)(F(x, t)
∧M0 |= TrPA(�name(x, z)�)) by the definition ofs, so(∀z < s)(∃x)(M0 |= F(x, t)
∧ TrPA(�name(x, z)�)) sinceF(x, y) is recursive. Hence, by Lemma 4.1,M0 |=
(∀z < s) (∃x)(F(x, t) ∧ TrPA(�name(x, z)�)), namely, M0 |= (∀z < s)
P(z, t). Therefore, we must haveM0 |= P(s, t), that is, M0 |= (∃x)(F(x, t) ∧
TrPA(name(x, s))). By using Lemma 4.1 and the recursiveness ofF(x, y) again, we
also obtain(∃x)(F(x, t) ∧ M0 |= TrPA(name(x, s))), that is,(∃x)(F(x, t) ∧ M1 |=
name(x, s)). This contradicts the definition ofs.

(ii): If we hadM1 |= Q(s, t), then we would haveM1 |= name(�Q(v0, t)�, s),
which contradicts the definition ofs sinceQ(v0, t) is a(10· k)-formula.

This lemma leads to the following version of the First Incompleteness Theorem.

Theorem 7.2 (The First Incompleteness Theorem (W K L0)) If PA + Con(PA) is
consistent, PA is incomplete.

Proof: Assume thatPA + Con(PA) is consistent. By Theorem 2.2, we have a
modelM0 of PA + Con(PA). Then define a modelM1 of PA and the numerals as
in the above lemma. Since bothM0 andM1 are models ofPA, wehavePA �� Q(s, t)
andPA �� ¬Q(s, t), which means thatPA is incomplete.

We remark that the consistency ofPA + Con(PA) is easily deduced from the
1-consistency ofPA, hence also from theω-consistency ofPA.
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Corollary 7.3 (The Formalized First Incompleteness Theorem)PRA � Con(PA +
Con(PA)) → ¬PrPA(�Q(s, t)�) ∧ ¬PrPA(�¬Q(s, t)�).

Proof: Apply Theorem 2.1 to Theorem 7.2.
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