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NP-Completeness of a
Combinator Optimization Problem

M. S. JOY and V. J. RAYWARD-SMITH

Abstract We consider a deterministic rewrite system for combinatory logic
over combinatorsS, K, I, B, C, S′, B′, andC′. Terms will be represented by
graphs so that reduction of a duplicator will cause the duplicated expression to
be “shared” rather than copied. To each normalizing term we assign a weight-
ing which is the number of reduction steps necessary to reduce the expression
to normal form. A lambda-expression may be represented by several distinct
expressions in combinatory logic, and two combinatory logic expressions are
considered equivalent if they represent the same lambda-expression (up toβ-η-
equivalence). The problem of minimizing the number of reduction steps over
equivalent combinator expressions (i.e., the problem of finding the “fastest run-
ning” combinator representation for a specific lambda-expression) is proved to
be NP-complete by reduction from the “Hitting Set” problem.

1 Introduction The uses of the lambda-calculus (see Barendregt [1]) and combina-
tory logic (see Curry et al. [4],[5]) as notations for defining functions are well known.
As branches of mathematical logic they have been explored in great depth. In recent
years, however, both disciplines have been used in computer science as models for
the evaluation of functional programs. The lambda-calculus has served as a starting
point for, for instance, SECD machines (cf. Glaser et al. [7]) and combinatory logic
for graph reduction machines (cf. Turner [14],[16]).

There is a “natural” correspondence between a lambda-expression and the func-
tion it represents, but to evaluate a function in such a form leads to complications.
This is due to the use in the lambda-calculus of variable names, which results in en-
vironments needing to be stored when recursively defined functions are called in or-
der to avoid clashes of local variable names. In combinatory logic no such variables
are used, so the evaluation of a function is simplified. However such a combinator
expression will probably not be easy to read. It is common practice to consider a
function as being initially a lambda-expression and then to apply an algorithm to the
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lambda-expression to eliminate all the variables and introduce combinators. We as-
sume the reader is familiar with the fundamentals of the lambda-calculus and com-
binatory logic. A good introduction can be found in Hindley and Seldin [8]. Having
created such a combinator expression, it can be considered in a natural way as being
a graph, and to evaluate the function it represents we can apply rewrite rules to the
graph until the graph becomes the required form representing “the answer.”

We shall consider the set{S, K, I, B, C, S′, B′, C′} of combinators, partly be-
cause it is a set in common use, partly since it has known abstraction algorithms as-
sociated with it. The results we prove will be applicable to many sets of combinators,
but the details of the proof are valid only for this set.

A combinatory logic will often be augmented by extra primitives, such as in-
tegers, in order to improve its efficiency as a computer code. In order to simplify
our analysis we shall assume thatno such extra primitives are used. If we assume a
small finite set of combinators in our combinatory logic, we can think of each as cor-
responding to a single “machine instruction” and can thus form a measure of time for
the function to evaluate as being the “number of instructions (reduction steps) exe-
cuted.” This metric is näıve, but it will be sufficient for our purposes.

For simplicity in describing the result here, we shall assume that our combina-
tory logic is augmented by a (countable) set of variables. Variables and combinators
will be considered as “atomic” expressions.

Suppose we have a functionf written as a combinator expression. We con-
sider the size| f | of the combinator expression to be the number of occurrences of
atoms (combinators or variables) in it. Supposef evaluates, using “normal order”
reduction, to “the answer” (that is, an expression in normal form) inr reduction steps
(assuming, of course, thatf is a function which evaluates in finite time). Then the
problem of minimizingr over equivalent combinatory logic expressions of size| f |
is NP-complete. We prove this by reduction from the “Hitting Set” problem.

Investigation into this result was motivated by recent techniques for the imple-
mentation of functional programming languages involving the use of combinatory
logic not just as a semantic domain, but with combinators implemented as primitive
machine instructions (cf. Clarke et al. [3] and Stoye [13]). Given a translation of a
functional program to such combinator code, it is often desirable to optimize the code,
and our result establishes an upper bound to the possibilities for such code improve-
ment techniques.

This result was proved first in Joy [9] and was published (without proof) in Joy
et al. [10].

2 The optimization problem The main result of this paper is that the following
Optimization Problem (“OP”) is NP-complete.

Optimization Problem (OP)
Instance: A combinator expressionE whose only atomic subexpressions are vari-
ablesx1, . . . , xm, and an integerk.
Question: Does there exist an expressionE′, without variables, such that the expres-
sion (E′x1 . . . xm) reduces, using a normal order reduction strategy, ink (or less) re-
duction steps toE?
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E′ is a combinator expression equivalent to the lambda-expression(λx1. . . . λxm.E).
Wewill establish OP∈ NP, and then the NP-completeness of OP will be proved

by exhibiting a polynomial transformation to OP from a known NP-complete prob-
lem. We choose to use the following problem proved to be NP-complete in Garey
and Johnson [6]

Hitting Set (HS)
Instance: CollectionC of distinct subsets of a finite setS such thatci ∈ C satisfies
|ci| = 2 andS = ∪C, apositive integerk ≤ |S|.
Question: Does there exist a subsetS′ of S such that

1. |S′| ≤ k, and
2. for eachci ∈ C, ci ∩ S′ �= ∅?

Before we can detail the transformation HS∝ OP, we need to establish our notation
and prove some intermediate results. We do this in Sections3 and4. In Section5 we
return to the transformation and give the necessary detail.

3 Notations and assumptions

3.1 Combinator expressions A combinator expression is

1. avariable v, or
2. acombinator (an element of{S, K, I, B, C, S′, B′, C′}), or
3. anapplication (L M) whereL andM are combinator expressions.

By default, parentheses may be omitted for clarity on the assumption of left-associa-
tivity, for example

S w (I y) z

is equivalent to
(((S w) (I y)) z).

We adopt the convention that lower-case letters (with or without subscripts) denote
variables unless otherwise stated. We introduceno extra atoms, such as numbers. The
above definition of a combinatory logic is still sufficiently rich to be equivalent to a
Turing Machine, that is, for any partial recursive function there exists an expression
in the combinatory logic which can be used to compute that function. In order to sim-
plify our calculation later on, we do not formally define the lambda-calculus. Instead
we include variables in our definition of combinatory logic. LetCL denote the set of
all such combinator expressions.

Thesize of a combinator expression is given by:

|E| = 1, if E is an atom, else|(F G)| = |F| + |G|.

For instance,|S w x(I (I y))| = 6.
Our plan of attack is to restrict our attention to a subset of lambda-expressions

which we know will reduce to normal form in a finite time after they have been
given the correct number of arguments. These are “proper combinators” of the shape
λv1. . . . λvm.E, whereE contains no lambdas and, as atomic subexpressions, only
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elements of{v1, . . . , vm}. Thus they can be thought of as simple functions which re-
arrange, possibly with duplications, their arguments. Ifv1 . . . vm are provided as ar-
guments such an function withm lambdaswill reduce to normal form (viz.E).

The conversion of such an expression withm lambdas to a combinator expres-
sion containing no lambdas and no variables is equivalent to a mapabstract from CL
to CL, such that, for eachE in CL,

1. abstract(E) contains no variables, and
2. (abstract(E) v1 . . . vm) reduces toE.

We use the symbol “≡” to mean “lexically equal to,” and the symbol “=” (as a re-
lation between combinator expressions) to mean “are equivalent,” that is, represent
the same lambda-expression. Thus, ifE andF are combinator expressions such that
(E v1 . . . vm) reduces to an expressionG containing only variables as atomic subex-
pressions, and (Fv1 . . . vm) reduces toG also, thenE = F.

We use the symbol “>” to denote “reduces to,” and “>X” to mean “reduces in
oneX-reduction step to,” whereX is a combinator. The combinators used, originally
introduced by Turner [15], have definitions as follows (a, b, c, etc., are used here as
meta-variables):

S a b c >S a c (b c)

K a b >K a
I a >I a
B a b c >B a (b c)

C a b c >C a c b
S′ a b c d >S′ a (b d) (c d)

B′ a b c d >B′ a b (c d)

C′ a b c d >C′ a (b d) c

The graph rewrite rules are given in diagrammatic form in Figure1 below; all lines
are directed downwards (the arrows are omitted for clarity). In each rule except those
for I and forK the root node of the redex isoverwritten. For theI andK rules the
pointer to the redex is redirected. AnI or K reduction where the redex is the root of
the whole graph is handled as a special case.

We assume that reduction is normal order, that is, “leftmost-outermost.” This
strategy minimizes the number of reduction steps needed to reduce an expression to
normal form (as redexes are reducedonly if they are needed; cf. Klop [12]).

Initially, before any reductions are applied to an expression, that expression is
stored either as a tree or as a graph in which the only nodes with in-degree greater
than 1 are atoms. This corresponds with the notion of a program being read in from
a source in a way which naturally implies a simple storage mechanism (knowledge
about code-sharing is itself a difficult problem).

The phrasecode-sharing will refer to nodes in a graph with in-degree greater
than 1, and our result depends on the code-sharing yielded by theS andS′ combina-
tors (theduplicators). Thus

S (a b) (c (d e)) (x y z) > (a b (x y z) (c (d e) (x y z)))

will cause the subgraph which(x y z) represents to be shared after the reduction step
rather than copied.
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Figure 1: The Graph Rewrite Rules

3.2 An almost optimal abstraction algorithm We describe an abstraction algo-
rithm, originally due to Turner [14] (although we phrase it somewhat differently)
which produces code that in many cases is optimal. We shall prove the optimality
of the algorithm for some of our expressions.

The algorithm takes the form of a mapabs from {variables ofCL }× CL →
CL. For notational convenience we writeabsx(E) in preference toabs(〈x, E〉), and
absx,y(E) as shorthand forabsx(absy(E)). E andF are here arbitrary combinator ex-
pressions, andk is an arbitrary combinator expression which contains no variables.
The first possible of the following rules should be applied.

absx(x) ≡ I,
absx(E x) ≡ E, if x does not occur inE,
absx(E) ≡ K E, if x does not occur inE,
absx(k x F) ≡ (S k absx(F)), if x occurs inF,
absx(k x F) ≡ (C k F), if x does not occur inF,
absx(k E F) ≡ (S′ k absx(E) absx(F)), if x occurs in bothE andF,
absx(k E F) ≡ (C′ k absx(E) F), if x occurs inE but not inF,
absx(k E F) ≡ (B′ k E absx(F)), if x occurs inF but not inE,
absx(E F) ≡ (S absx(E) absx(F)), if x occurs in bothE andF,
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absx(E F) ≡ (C absx(E) F), if x occurs inE but not inF,

absx(E F) ≡ (B E absx(F)), if x occurs inF but not inE.

To illustrate this algorithm, considerabsx,y(y x x). The successive stages are as
follows:

absx,y(y x x)

= absx(absy(y x x))

= absx(C (absy(y x)) x)

= absx(C (C (absy(y)) x) x)

= absx(C (C I x) x)

= S′ C (absx(C I x)) (absx(x))

= S′ C (C I) I.

4 Intermediate definitions and results The construction of the transformation
HS ∝ OP relies on the use of combinator expressions of the formWn

x,y, which we
now define. The functionsψ andV̄ will also be used later on.

Let x, y andv be variables,n apositive integer, andf andg combinator expres-
sions, then we define

ψ0, f,g ≡ g, and

ψr, f,g ≡ ( f ψr−1, f,g) if r > 0.

Thusψr, f,g ≡ f rg, and f r ≡ ψr−1, f, f .
Let n̄ = 16n, then we define, as illustrated in Figure 2 below,

Vn
x,y ≡ V̄n,1,v,x,y, where

V̄n,m,v,x,y ≡ V̄n,m+1,v,x,y(v
mn̄ x)(vmn̄ y), if n > m ≥ 1, otherwise

V̄n,n,v,x,y ≡ (vnn̄ x)(vnn̄ y).

This is illustrated in Figure 2. Finally we define

Wn
x,y ≡ (Vn

x,yVn
y,x).

Wenote that|Vn
y,x| = nn̄(n + 1) + 2n, which is polynomial inn.

Theleft-depth of a combinator expression is given by

left-depth(E, E) = 0;
left-depth(E, (F G)) = 0 if E does not occur inF,

otherwise 1+ left-depth(E, F).

For example,left-depth(x, (a b (c x d) e f )) = 2. We use the phrase “the left-depth
of E in F” as shorthand forleft-depth(E, F). Right-depth is defined similarly, with
(G F) replacing(F G) in the second clause.
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Thedepth of a combinator expression is given by

depth(E, E) = 0;
depth(E, (F G)) = 0 if E does not occur in(F G),

else 1+ max(depth(E, F), depth(E, G)).

For example,depth(x, (a b (c x d) e f )) = 5.
Thespine of an expressionE is the set of subexpressions ofE whose right-depth

in E is 0. For example,

spine(a b(c x d) e f ) = {(a b (c x d) e f ), (a b (c x d) e), (a b (c x d)), (a b), (a)}.
The notation [E/F]G is used to mean “the combinator expression produced

when all occurrences of the expressionF in G are replaced by the expressionE.”
Let F be a combinator expression in normal form containingx1, . . . , xm as its only
atomic subexpressions. Thenoptx1,...,xm

(F) will be any combinator expression, not
containing any element of{x1, . . . , xm} such that(optx1,...,xm

(F) x1 . . . xm) reduces to
F in the minimum number of reduction steps using normal order reduction, denoted
by redx1,...,xm (F).

Wealso need to introduceZ1 andZ2:

Z1 = [(C′ S (S′ C (K (K I))vnn̄)vnn̄)/(C′ Bvnn̄vnn̄)]absx,y(Vn
x,y),

Z2 = [(S′C(C′S(K(K I))vnn̄)vnn̄)/(B′Cvnn̄vnn̄)]absx,y(Vn
y,x).
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Webegin by giving some basic results onVn
x,y, Wn

x,y, Z1 andZ2.

Lemma 4.1 (absx,y(Vn
x,y) x y) reduces to Vn

x,y in 4n − 2 reduction steps;
(absx,y(Vn

y,x) x y) reduces to Vn
y,x in 4n − 2 reduction steps;

(Z1 x y) reduces to Vn
x,y in 4n + 3 reduction steps;

(Z2 x y) reduces to Vn
y,x in 4n + 3 reduction steps;

(Z1 x) and (Z2 y) each reduces to normal form in 2n + 1 reduction steps.

Proof: These results are all immediate from the definitions ofVn
x,y, Z1, andZ2.

Lemma 4.2 redx(Vn
x,y) ≥ 2n − 1, redx(Vn

y,x) ≥ 2n − 1;
redx,y(Vn

x,y) ≥ 4n − 2, redx,y(Vn
y,x) ≥ 4n − 2.

Proof: The left-depths ofx andy in Vn
x,y are 2n − 1 and 2n − 2 respectively, hence

we get the first two inequalities, as a combinator ofCL can increase the left- (or right-)
depth of one of its arguments by at most 1. Let

X1 ≡ [w1/v
n̄]([w2/v

2n̄]([w3/v
3n̄] . . . ([wn/v

nn̄]Vn
x,y) . . .)),

and
X2 ≡ [w1/v

n̄]([w2/v
2n̄]([w3/v

3n̄] . . . ([wn/v
nn̄]Vn

y,x) . . .)),

where thewi are distinct new variables. SoX1 ≡ ((wn x)(wn y) . . . ((w1 x)(w1 y)),
andv occurs in neitherX1 nor X2.

Wenote thatredx,y(X1) = redx,y(Vn
x,y), since the right-depth ofvin̄ in v(i+1)n̄ is

n̄, and thus any attempt to utilize the fact that there exist common subexpressions of
Vn

x,y, except the instances ofvin̄ in (vin̄ x) and(vin̄ y) for eachi, will necessitate at least
(n̄ − 1) extra reduction steps, which is more than the number needed byabsx,y(Vn

x,y).
X2 is treated similarly. Tocreate each subexpression of the form(wi x) or (wi y), an
A-reduction,

A a1 . . . ar . . . at >A b1 . . . br−1 . . . ar+1 . . . at (r ≤ t),

wherear is eitherx or y, is needed. Each reduction step can increase the left-depth
of eitherx or y (but not both) by at most 1. For, if it increased the left-depth of both
by one, at least one more reduction step would be needed to “separate” them in or-
der for them to be passed singly as arguments to theA combinators. We thus get
redx,y(X1) ≥ 4n − 2, andredx,y(X2) ≥ 4n − 2. The results forVn

x,y then follow.

Lemma 4.3 optx,y(Vn
x,y) ≡ absx,y(Vn

x,y), optx,y(Vn
y,x) ≡ absx,y(Vn

y,x).

Proof: This follows from Lemmas4.1and4.2.

Lemma 4.4 optx,y(Wn
x,y) ≡ absx,y(Wn

x,y), optx,y(Wn
y,x) ≡ absx,y(Wn

y,x).

Proof: Since no node inX1 nor X2, as defined in Lemma4.2, with right-depth 0
and left-depth less than 2n + 1 can be shared, each reduction step inoptx,y(Wn

x,y)

may affect only the spine ofVn
x,y or Vn

y,x (but not both). So each reduction step using
optx,y(X1 X2) can be associated with eitherVn

x,y or Vn
y,x. Thus,

redx,y(Wn
x,y) ≥ redx,y(Vn

x,y) + redy,x(Vn
x,y).

The result then follows from lemmas4.2and4.3.
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Lemma 4.5 redv(absx,y(Vn
x,y)) ≤ nn̄ + 2n̄ + 8n − 3,

redv(absx,y(Vn
y,x)) ≤ nn̄ + 2n̄ + 8n − 3.

Proof: Let V1 ≡ ψn−1( f, g)v̄ (vn̄) ≡ absx,y(Vn
x,y), where

f α β γ > (C′ S (S′ C (α β (β γ)) γ) γ),

g β γ > (C′ B γ γ), and

v̄ ≡ absh(ψn̄(v, h)).

Thus we have

f = (C′ (C′ (S′ (C′ S))) (C′ (C′ (S′ (S′ C))) (C (S′ B) I) I) I),

g = (K (S (C′ B) I)),

v̄ ≡ ψn̄−1((B v), v) = ψn̄−1(((S B), I) v), and

vn̄ = (ψn̄−1((S I), I) v).

Hence,
V0 ≡ (S′ (ψn−1( f, g)) ψn̄−1((S B), I) (ψn̄−1((S I), I)) v)

reduces to normal form(absx,y(Vn
x,y)).

V1 ≡ (S′ F (ψn̄−1((SB), I)) (ψn̄−1((S I), I)) v),

whereF is (ψn−1( f, g)), reduces to normal form(absx,y(Vn
x,y)) in at most

1 because of initialS′

+9(n − 1) because off
+5 because ofg
+ n̄ + (n̄ − 1)(n − 1) because ofψn̄−1((S B), I), since eachB

is used for each occurrence off
+2n̄ − 1 because ofψn̄−1((S I), I))

= nn̄ + 2n̄ + 8n − 3 reduction steps.
The result forabsy,x(Vn

x,y) is almost identical.

Lemma 4.6 redv(Z1) ≤ nn̄ + 2n̄ + 8n + 6,
redv(Z2) ≤ nn̄ + 2n̄ + 8n + 6.

Proof: The proof is essentially the same as that for Lemma4.5, except that

g β γ > (K (K I)),

g = (K (K (K (K I)))),

U0 ≡ (S′ (ψn( f, g)) (ψn̄−1((S B), I)) (ψn̄−1((S I), I)) v)

reduces to normal formZ1;

U1 ≡ (S′ F (ψn̄−1((S B), I)) (ψn̄−1((S I), I)) v),

where f is (ψn( f, g)) reduced to normal form, reduces to normal form,Z1, in at most
nn̄ +2n̄ +8n +6reduction steps. The result forZ2 is almost identical, with the(C′ S)

and(S′ C) in f interchanged.
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We now examineZ1 and Z2 more closely. First of all, by usingZ1 instead of
absx,y(Vn

x,y), andZ2 instead ofabsx,y(Vn
y,x), wehave a structure which is more “sym-

metric.” The extra symmetry manifests itself in the following way.

absx,y(Vn
x,y) = C′ S (S′ C (. . . (C′ B vnn̄ vnn̄) . . .) vn̄) vn̄,

Z1 = C′ S (S′ C(. . . (C′ S (S′ C (K (K I)) vnn̄) vnn̄) . . .) vn̄) vn̄,

so the former contains an expression(C′ B vnn̄ vnn̄), corresponding to(B′ C vnn̄ vnn̄)

in absx,y(Vn
y,x).

Note carefully the ordering of the subscripts x and y. Apart from the interchange
of (C′ B) and(B′ C), absx,y(Vn

x,y) andabsx,y(Vn
y,x) can be interconverted merely by

swapping occurrences of(C′ S) and(S′ C). It is not necessary also to swap occur-
rences of(C′ B) and(B′ C) in the Zi.

Consider the proof of Lemma4.5. Since code which reduces toZ1 can be created
by swapping the occurrences of(S′ C) and (C′ S) in the definition of f , we may
replace(C′ S) and(S′ C) in U0 by variablest1 andt2 respectively and abstract them
out. Thus f would become

(C′ (C′ (S′ t1))(C
′ (C′ (S′ t2)) (C (S′ B) I) I) I).

After U0 had then been reduced to normal form we would have

U ′
0 = t1 (t2 (t1 (t2 . . . (t1 (t2 (K (K I)) vnn̄) vnn̄) . . .) v2n̄) v2n̄) vn̄) vn̄.

Abstractingt1 andt2 from this expression yields 8n new combinators, since

U ′
0 = (U ′

1 t1 t2) andU ′
0 = (U ′

2 t2 t1) where

U ′
1 ≡ C (S C′ (C′ C (B′ S I(. . .)) vn̄)) vn̄,

U ′
2 ≡ C′ C (B′ S I (C (S C′ (. . .)) vn̄)) vn̄,

and so an extra 16n reduction steps, as each combinator must be used twice.

Lemma 4.7 optt1,t2(U
′
0) = U ′

1, optt2,t1(U
′
0) = U ′

2.

Proof: Weexamine the first case; the second is almost identical. As in Lemma4.2,
we are unable to utilize the code-sharing possibilities offered by thevin̄, and the other
internal nodes ofU ′

0 cannot be shared. Due to the symmetry ofU ′
0, weare interested in

codeŪ andŪ ′ such that(Ū t1 t2) reduces to(t1 (t2 (Ū ′ t1 t2) vn̄) vn̄) in the minimal
number of reduction steps. Each combinatorA occurring inŪ must take as its last
argument precisely one oft1 or t2. It isthen straightforward to enumerate the possible
Ū, and the result follows.

However, we cannot simply abstract theti fromU ′
0. Wewould, as in Lemma4.6, need

to considerredv(U ′
1) andredv(U ′

2).

Lemma 4.8 redw,v(w Z1 Z2) ≤ nn̄ + 2n̄ + 28n + 17.

Proof: Replace inU ′
0 abovet1 by (B C (S C′)), andt2 by (B (C′ C) (B

′
S I)), thus

obtainingU ′′
0 , where(U ′′

0 (C′ S) (S′ C)) = Z1 and(U ′′
0 (S′ C) (C′ S)) = Z2. Thus

we have introduced 10 combinators to create eachZi (total of 20n reduction steps).
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Wehave alsoredv(Z1) = redv(U ′′
0 ), since the structures ofZ1 andU ′′

0 are essentially
identical. So

(C′ B (C (C S′ (C (C I (C′ S)) (S′ C))) (C (C I (S′ C)) (C′ S)))optv(U
′′
0 ))w v

reduces to(w Z1 Z2) in at mostredv(U ′′
0 ) + 11 + 20n reduction steps. Apply

Lemma4.6.

Lemma 4.9 redw,v(w absx,y (Vn
x,y) absx,y(Vn

y,x)) ≥ redw,v(w Z1 Z2).

Proof: Clear by symmetry.

Lemma 4.10 optv(v
n̄) ≡ ψn̄−1((S I), I).

Proof: Clear by inspection.

Lemma 4.11 redv(Z1) ≥ nn̄ + 2n̄ + 8n − 10.

Proof: Wecount the minimum number of combinators needed inoptv(Z1). Wenote
first that it will be necessary to share certain sections of code. The occurrences ofvn̄

must be shared, and by Lemma4.10redv(v
n̄) = 2n̄ − 1. Since the expressionsvin̄

must be shared there will be a functionh : vin̄ → v(i+1)n̄ which must be executed
(n − 1) times. Each execution ofh must require at least̄n − 1 reduction steps, as the
depth ofvin̄ in v(i+1)n̄ is n̄. Since the right-depth ofψn̄(v, x) is n̄, at leastn̄ − 1 re-
duction steps will be needed to createh initially. We are using the “simplest” method
for obtaining eachvin̄. Wethus need an expressionZ̄ which will take as argumentsh
andvin̄, returning an expression of the form

(C′ S (S′ C Z̄ ′ vin̄) vin̄),

whereZ̄ ′ is Z̄ with argumentsh and(hvin̄). So

Z̄ = S′ (C′ (C′ S)) (S′ (C′ (S′ C)) (S′ B Z̄ ′ I) I) I.

This code is optimal. We get 9(n − 1) extra reduction steps from thēZ, and the result
follows. Note the effects at the “top” and “bottom” ofZ1 have been ignored and will
introduce (a few) extra combinators.

Lemma 4.12 redw,v(w Z1 Z2) ≥ nn̄ + 2n̄ + 25n − 11.

Proof: Wenote first of all that the only differences betweenZ1 andZ2 are the left-
most(C′ S) and(S′ C) expression referred to at the start of the subsection. Thus the
“obvious” way to achieve the expressionoptw,v(w Z1 Z2) is to use a strategy sim-
ilar to that outlined in Lemma4.8. Such a strategy involves replacingt1 and t2 in
U ′

0 by expressions consisting only of combinators such that the resulting expression
(U ′′

0 , say) acts as ift1 andt2 had been abstracted out, yet is still of the same essential
structure asU0. Thus(U ′′

0 t1 t2) reduces toU ′
0. If such a strategy is adopted, the re-

placements fort1 andt2 previously given are optimal. Unlike the previous lemma, it
is not obvious that this reduction strategy is optimal. However, it is sufficiently close
to optimal for our purposes.

There are two other possible reduction strategies. The first involves creating
some (and by symmetry this impliesall) of the vin̄ and passing them as arguments
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to code representingZ1 andZ2. This would requireO(n2) extra reduction steps, so
such a strategy is unacceptable.

The second involves amending the definition off so that the number of reduc-
tion steps needed to abstract theti is less. For instance,

f α β γ > C (S′ C (C′ C( B′ S I (α β (β γ))) γ)) γ

would implement the optimal abstraction oft1 and t2 from U ′
0 given earlier. Now

suppose that we had decided on another, more efficient, abstraction oft1 andt2 from
U ′

0. The correspondingf will be such thatf α β γ > F, whereα, β andγ occur in
F, but the depth ofα in F is increased by at least one, and thus abstractingα, β andγ

from F will yield at least one extra combinator, hence a total ofn − 1 extra reduction
steps. The optimal number of combinators introduced to abstractt1 andt2 from U ′

0 is
8n, hence

redw,v(w Z1 Z2) ≥ 2redt1,t2(U
′
0) + (n − 1) + redv(Z1)

= 2(8n) + (n − 1) + (nn̄ + 2n̄ + 8n − 10)

(by Lemma4.11).

Lemma 4.13 Let sn,m = max
E |absx1,...,xm (E)| as E ranges over expressions in CL

with |E| = n. Then sn,m < 2mn.

Proof: See Joy [9] or Kennaway [11].

5 The transformation Given an instance,I, of HS, we construct an instancef (I)
of OP as follows.

We assumem = |S|, r = |C| andci = {ci,1, ci,2}, then f (I) comprises a combi-
nator expressionE, containing variablesv, d1, . . . , dm (all distinct), defined by

E ≡ (Wn
c1,1c1,2

. . . Wn
cr,1cr,2

),

wheren = 100r3, and an integerk′ = 30r(m + r) + 4n(r + k) + (nn̄ + 2n̄ + 28n).
Note that thef so constructed is injective and that the size of the instance of OP is
polynomial in the size of the instance of HS. We see also thatm ≤ 2r. Weshall assume
thatr is large, for instancer ≥ 100. To compute the transformation, we need to show
that I is aYES-instance of HS ifff (I) is aYES-instance of OP. Before doing this we
motivate our definition and establish two further lemmas.

Let � be the set of all functions from{1, . . . , r} → {1,2}. Thus� represents the
possibilities for ordering the elements of theci as the suffices of theWs. Fix some
ϕ ∈ �, andlet ai = ci,3−ϕ(i). Let b1,...,bq be an enumeration of theai, so wehave not
presupposed an ordering on theai, and

X1
i ≡ [(S (C (K I) (vnn̄ ci,3−ϕ(i))))/(B (vnn̄ ci,3−ϕ(i)) vnn̄)] absci,ϕ(i) (Vn

ci,1,ci,2
),

X2
i ≡ [(C (S (K I) vnn̄) (vnn̄ ci,3−ϕ(i)))/(C vnn̄ (vnn̄ ci,3−ϕ(i)))] absci,ϕ(i) (Vn

ci,2,ci,1
),

thus(Z j ci,ϕ(i)) reduces toXi
j.
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Let Y1, . . . , Y2p be an enumeration of theX1
i andX2

i , where we note that, due to
the symmetry of theXi

j there must be an even number ofYi. Let x1
i , x2

i , and y j be
variables which will correspond withX1

i , X2
i , andYj respectively.

Ē1 ≡ absy1,...,y2p,b1,...,bq (Ē2),

Ē2 ≡ ((x1
1 a1)(x2

1 a1) . . . (x1
r ar)(x2

r ar)),

Ē3 ≡ Ē1 Y1 . . . Y2p b1 . . . bq.

Thus the choice ofϕ(i) corresponds with code-sharing variablesv andci,ϕ(i)) in Wn
x,y,

and p will correspond tok in HS.
Ē3 reduces toE in e1 + ex reduction steps, where, by Lemma4.13,

e1 < 2(2p + q)(4r) ≤ 24r2

(sinceq ≤ r and p ≤ r). e1 is the number of combinators introduced byabs in Ē1,
and, by Lemma4.1, ex = 2r(2n + 2) is the number of reduction steps for theX1

i and
X2

i .
So we now have a situation where we have takenE and abstracted two variables

(one of them beingv) from eachWn
x,y in E (we remember that there are three variables

occurring inWn
x,y). By introducing thebi we have ensured that no predefined ordering

has been specified for the abstraction of the variables inE different tov. This has led
to code-sharing; thus if, for instance,Wn

x,y andWn
z,x are inE, then wemay have chosen

to code-share the occurrences of(vin̄ x) in Wn
x,y andWn

z,x.
Now, Yi = (Zi yi), whereZi ∈ {Z1,Z2}, yi occurs inYi, andyi �= v (1 ≤ i ≤ 2p).

Let

Ē4 = (absz1,z2,d1,...,dm (Ē1(z1 y1) . . . (z2p y2p) b1 . . . bq)),

where thezi are variables corresponding to theZi, andz1, z2 is the enumeration of
thezi corresponding toZ1, Z2, and we note that each ofZ1 andZ2 contains precisely
one variablev. (Ē4 Z1 Z2 d1 . . . dm) reduces toĒ3 in e4 + ey reduction steps, where
e4 < 2(m + 2)(4p + q + 2) < 24mr, by Lemma4.13. e4 is the number of combina-
tors introduced byabs in Ē4, ey = 2p(2n + 1) is the number of reduction steps for
the Z1 andZ2. Now, let

Z̄ = optw,v(w Z1 Z2) and

ez = redw,v(w Z1 Z2).

Wehave, by Lemmas4.8and4.12, nn̄ + 2n̄ + 25n − 11≤ ez < nn̄ + 2n̄ + 28n + 17,
and( Z̄ Ē4 v d1 . . . dm) reduces toĒ3 in e4 + ey + ez reduction steps.

Wenote that, by usingZ1 instead ofabsx,y(Vn
x,y) andZ2 instead ofabsx,y(Vn

y,x)

we have introducedat most 12r extra reduction steps from using the optimal code for
each individualVn

x,y, and have got improved code for the abstraction ofv from Vn
x,y,

by Lemma4.9.

Lemma 5.1 There exists an expression Ē5 containing no variables such that (re-
calling that v, d1,. . . ,dm is our enumeration of the variables occurring in E)
Ē5 v d1 . . . dm reduces to E in e steps, where

e < 30r(m + r) + 4n(r + p) + (nn̄ + 2n̄ + 28n).
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Proof: From the above discussion, letĒ5 = ( Z̄ Ē4).

e = e1 + ex + e4 + ey + ez

< 24r2 + 2r(2n + 2) + 24mr + 2p(2n + 1) + ez

< 27r(m + r) + 4n(r + p) + ez, since 4r + 2p < 3r2

< 30r(m + r) + 4n(r + p) + (nn̄ + 2n̄ + 28n), since 17< 3r2.

We assume thatn is “large” (though only polynomially so) compared tor andm.
Wehave found an expression̄E5 which after suitable arguments have been added re-
duces toE in 4n(r + p) + ez + O(r2) reduction steps. We associatep in this with
k in HS. We next show that “optimal” code representingE reduces in approximately
4n(r + p) + ez reduction steps.

We know the value ofez to within (approximately) 3n. Thus we know the “op-
timal” size of code, and we have an algorithm for getting to within narrow bounds of
such code and certainly to sufficient accuracy to evaluate the value ofk necessary to
furnish a solution of HS. Thus we argue that, if we can find code representingE of
size at most 30r(m + r) + 4nr + 4nk + (nn̄ + 2n̄ + 28n) for E in polynomial time,
we can solve HS in polynomial time also.

Lemma 5.2 redv,d1,...,dm (E) ≥ (4n − 2)(r + p) + (nn̄ + 2n̄ + 25n − 11).

Proof: Since the depth ofVn
x,y is greater thannn̄, optimal code to representVn

x,y re-
duces in at leastnn̄ steps, and by Lemma4.5there exists code representingE which
reduces in less than 2nn̄ steps. Thus to produce optimal code forE some code-
sharing will be necessary. An “obvious” strategy would be to share as many common
subexpressions as possible, in particular all occurrences ofvin̄ and of(vin̄ z), where
z ∈ {d1, . . . , dm}. This does not, however, yield astrategy for producing optimal
code, since we may assume only thatmost of these subexpressions must be shared,
and we have not exhibited an optimal method for generating them.

ConsiderVn
x,y and Vn

a,b, wherex, y, a, andb are distinct. The only sharable
subexpressions are those containing only occurrences ofv, that is thevin̄. Suppose
we require to find codēV such that(V̄ v x y a b) reduces to(Vn

x,y Vn
a,b) in the min-

imum number of steps. Then we may assume that we share codeX where(X x y)

reduces toVn
x,y. For, if we share code that allows more complicated arguments, we

donot improve the code we produce, since we still require a similar amount of work
for eachVn

x,y, of which less may be shared. By Lemma4.3, we may assume that
X ≡ absx,y(Vn

x,y). If a ≡ x then this allows us the possibility of sharing the instances
of vin̄ also.

Consider nowVn
x,y andVn

a,y, wherex, y, anda are distinct. Suppose we wish
to find codeV̄ such that(V̄ v x y a) reduces to(Vn

x,y Vn
a,y) in the minimum number

of steps. If we share code asX above, we lose the possibility of sharing expressions
(vin̄ y) containingy. However, if we have createdabsx,y(Vn

y,x), we will be able to
share those expressions. By symmetry, for a nontrivialE it will be necessary to create
bothabsx,y(Vn

x,y) andabsx,y(Vn
y,x), hence we will need at leastez reduction steps to

perform that creation. At this point we note that, by Lemma4.4, we would not be
better off treating eachWn

x,y as a single unit rather than a combination ofVn
x,y and

Vn
y,x.
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Each occurrence ofabsx,y(Vn
x,y) or absx,y(Vn

y,x) will, by Lemma 4.1, require
4n −2reduction steps, of which 2n −1cannot be shared (viz. the second arguments),
and 2n − 1 may be shared (the first arguments), thus yielding 4n − 2 for eachWn

x,y
(total (4n − 2)r) and4n − 2 for each shared expression (total(4n − 2)p). We also
have, by Lemma4.12, ez ≥ nn̄ + 2n̄ + 25n − 11.

UsingWn
x,y ensures that, if at any point we introduceabsx,y(Vn

x,y), wemust also
introduceabsy,x(Vn

x,y), thus ensuring symmetry. Use ofZ1 and Z2 in the previous
analysis serves to iron out the asymmetry which is introduced at the “bottom” ofVn

x,y
when applyingabs.

Theorem 5.3 HS transforms to OP.

Proof: Wehave, from Lemmas5.1and5.2:

1. A map f from an instance of HS to an instance of OP which can be evaluated
in polynomial time, and which is injective;

2. An algorithm which will find code for an instance OP which reduces (after suit-
able arguments have been added) toE in e steps, where
e < k′ = 30r(m + r) + 4n(r + k) + (nn̄ + 2n̄ + 28n); and

3. A proof thatredv,d1,...,dm (E) ≥ (4n − 2)(r + k) + (nn̄ + 2n̄ + 25n − 11).

The difference between these two bounds is 30r(m + r) + 2(r + k) + 3n − 11, which
is less than the change in value of either of them ifk is altered by 1 (viz. 4n), since
n = 100r3. If we produce code which reduces ink′ reduction steps, we can find a
value fork which is uniquely determined, which will solve the corresponding instance
of HS.

Lemma 5.4 Suppose expression E1, which contains only combinators, is such that
(E1 x1 . . . xm) reduces to E3 in p reduction steps, where E3 contains no combinators
and the xi are distinct variables. Then there exists an expression E2, containing only
combinators, such that (E2 x1 . . . xm) reduces to E3 in at most p steps, with
|E2| ≤ (|E3| + 4p − m)2.

Proof: Let the combinators for thep reduction steps when(E1 x1 . . . xm) is reduced
be (in order)c1, . . . , cp. We can construct the expressionE2 by working “backwards”
from the graph representingE3, effectively “mimicking” the original reduction in re-
verse. Where necessary we insert a “dummy” symbol, which is then replaced by an
expression when appropriate.

When (E2 x1 . . . xm) is finally constructed, each remaining dummy symbol
is replaced by a single combinator, as this atom will have been “deleted” when
(E2 x1 . . . xm) is reduced.

Since the original reduction was normal order,E2 will be in normal form. How-
ever there may be some code-sharing inE2, but since this expression is in normal
form the number of reduction steps for(E2 x1 . . . xm) will be the same as ifE2 were
considered as a tree with the shared subgraphs copied. This is because no shared node
in E2 will be overwritten.

At no point must we introduce more than 4 extra symbols at any one step (for
example, suppose our expression after reduction stepn isα and anS′ reduction is used
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at reduction stepn, then the expression after step(n − 1) would be:(S′ κ β γ δ), i.e.,
symbolα has been replaced by expression(κ (β δ)(γ δ)).

Weare constructing a graph, therefore the number of leaf nodes inE2 will be at
most(|E3|+4p − m). Since this graph may contain shared nodes,

|E2| ≤ (|E3|+4p − m)2.

Note that this construction is nondeterministic: it assumes one has been able to
choose which subexpression of an an intermediate expression to rewrite in order to
mimic the original reduction.

Theorem 5.5 The Optimization Problem is in NP.

Proof: From Lemma5.4, we need only generate expressionsE
′
nondeterministi-

cally, with |E′| ≤ (|E|+4k
′ − m)

2
, such that the only atomic subexpressions ofE′

are combinators and(E′ x1 . . . xm) reduces toE in at mostk′ steps. We note here that
we have already producedan expressionE′ which such that(E′ x1 . . . xm) reduces to
E in at mostk′ steps (see Lemma5.1above), and we may without loss of generality
assume thatk < k′. The steps necessary from creating the expressionE′ to deciding
whetherE′ is a suitable expression can clearly be completed in polynomial time.

Theorem 5.6 The Optimization Problem is NP-Complete

Proof: This is a consequence of Theorems5.3and5.5.

6 Final observations If we restrict our attention to a subset of combinators, asub-
base, and the corresponding set of functions which are representable using them, then
the problem of producing optimal codemay be simplified, as Batini and Pettorossi [2]
show for the subbase{B}.

However, it is reasonable to assume that the result we have given is true if we do
not restrict the functions we allow, provided that we use only a finite set of combina-
tors. Our proof is specific to one particular set of combinators (it would, for example,
fail at Lemmas4.5and4.6for a different set of combinators). A general proof is re-
quired.
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