A Counterexample in Tense Logic

FRANK WOLTER

Abstract

We construct a normal extension of $\mathbf{K} 4$ with the finite model property whose minimal tense extension is not complete with respect to Kripke semantics.

Call a normal bimodal logic in the propositional language withand \squarea tense logic if it contains the tense axioms

$$
\text { tense }=\left\{p \rightarrow \square^{+} \diamond^{-} p, p \rightarrow \square^{-} \diamond^{+} p\right\}
$$

With each normal modal logic Λ containing K4 we associate its minimal tense extension $\Lambda^{+} . t$, which is the smallest tense logic containing Λ formulated in \square^{+}. Recall that a modal logic is called complete (has the finite model property) iff the following is equivalent for all formulas $\varphi: \varphi \in \Lambda \Leftrightarrow\langle g, R\rangle \models \varphi$, for all (finite) frames $\langle g, R\rangle$ validating Λ. This paper provides a counterexample to the natural assumption that completeness is transferable when moving to the minimal tense extension. The problem whether completeness transfers from Λ to $\Lambda^{+} . t$ can also be described as an axiomatization problem. Indeed, the existence of a complete logic Λ such that $\Lambda^{+} . t$ is incomplete is equivalent to the existence of a modally definable class of transitive Kripke-frames \mathbf{M} such that the theory of

$$
\mathbf{M}^{t}=\left\{\left\langle g, R, R^{-1}\right\rangle \mid\langle g, R\rangle \in \mathbf{M}\right\}
$$

is not axiomatizable by a set of formulas formulated in \square^{+}and tense. (Here the theory of a class of frames F is the set of all formulas which are valid in all frames in F.)

It is easy to construct modal logics containing $\mathbf{K 4}$ with the finite model property (fmp, for short) whose minimal tense extensions do not enjoy fmp. Take for instance provability logic $\mathbf{G}=\mathbf{K 4} \oplus \square(\square p \rightarrow p) \rightarrow \square p . \mathbf{G}$ is known as the theory of the class of inverse well-founded frames and has fmp (cf. Fine 2]). But $\mathbf{G}^{+} . t$ does not have fmp since the tense logic determined by the finite inverse well-founded frames is

$$
\mathbf{G}^{+} . t \oplus \square^{-}\left(\square^{-} p \rightarrow p\right) \rightarrow \square^{-} p
$$

(cf. Wolter [31). Note however that $\mathbf{G}^{+} . t$ is complete, by (3) of Theorem 1 below. Wolter [3] and [4] deliver general positive results as concerns transfer properties of the map $\Lambda \mapsto \Lambda^{+}$.t. The following theorem summarizes some results of those papers. First recall the following definitions. All frames are assumed to be transitive. For a frame $\langle g, R\rangle$ we write $x \vec{R} y$ iff $x R y$ and $x \neq y$ and $\neg(y R x)$. Let $x \in g$ and suppose that there is a longest finite chain $x=x_{0} \vec{R} \ldots \vec{R} x_{n}$ in $\langle g, R\rangle$. Then the depth of x in $\langle g, R\rangle$ is $d p(x)=n$ and x is said to be of finite depth. We say that a modal logic Λ containing $\mathbf{K 4}$ has finite depth if there exists an $n \in \omega$ such that all points in all frames validating Λ have depth $\leq n$.

Theorem 1 Let Λ be a logic above K4. Then

1. if Λ has finite depth, then Λ^{+}.t has finp;
2. if Λ has finite width (in the sense of Fine $\$), then $\Lambda^{+} . t$ is complete. Especially, $\Lambda^{+} . t$ is complete whenever $\Lambda \supseteq \mathbf{K} 4.3$;
3. if Λ is a (cofinal) subframe logic (in the sense of Zakharyaschev (6) and 2], respectively), then Λ^{+}.t is complete. Λ^{+}.t has the fmp iff the frames validating Λ form a first order definable class.
Given that this result covers all natural extensions of $\mathbf{K 4}$, it is clear that our example is (in some sense) similar to the construction of incomplete logics above K4. Let us start with the definition of the frames involved in the construction. Define $\langle g, R\rangle$ by putting:

$$
g=\bigcup\{\omega \times\{i\} \mid 1 \leq i \leq 7\} \cup\{u\}
$$

and R as the transitive closure of R_{1} with

$$
\begin{aligned}
R_{1}= & \{(x, y) \mid x \in \omega \times\{i\}, y \in \omega \times\{j\}, j<i \leq 5\} \cup \\
& \cup\{((m, i),(n, i)) \mid m<n, i=2,5\} \cup \\
& \cup\{((m, i),(n, i)) \mid m>n, i=1,3,4\} \cup \\
& \cup\{(x, x) \mid x \in \omega \times\{6,7\}\} \cup\{(u, u)\} \cup \\
& \cup\{((m, 5),(m, 6)) \mid m \in \omega\} \cup\{((m, 4),(m, 7)) \mid m \in \omega\} \cup \\
& \cup\{((m, 6),(m, 1)) \mid m \in \omega\} \cup\{((m, 7),(m, 2)) \mid m \in \omega\} \cup \\
& \cup\{(x, u) \mid x \in \omega \times\{3,4,5\}\} .
\end{aligned}
$$

See the figure below. We draw frames in such a way that \bullet represents a reflexive point and x represents an irreflexive point.

Denote by \mathcal{G}_{n} the subframe of $\langle g, R\rangle$ induced by

$$
g_{n}=\{(m, i) \mid m \leq n, i=1,3,5,6\} \cup\{u\},
$$

and denote by Λ the theory of the set of frames $\left\{\mathcal{G}_{n} \mid n \in \omega\right\}$. We will show the following.
Theorem 2Λ has the fmp and $\Lambda^{+} . t$ is incomplete.
That Λ has the fmp follows from the definition. To prove that $\Lambda^{+} . t$ is incomplete we need a general tense frame validating $\Lambda^{+} . t$ and refuting a formula φ which holds in all Kripke frames validating Λ^{+}.t. (Consult, e.g., 3 for the definition of general frames). We first define a general monomodal frame $\mathcal{G}=\langle g, R, A\rangle$ by defining A as the boolean closure of $C \subseteq 2^{g}$, where $c \in C$ iff

Figure: the frame \mathcal{G}

- $c \subseteq \omega \times\{3\}$ or
- $c \subseteq \omega \times\{i, j\}$ and c is finite or cofinite relative to $\omega \times\{i, j\}$ and $\{i, j\}=\{1,2\}$, $\{4,5\},\{6,7\}$.
It is readily checked that \mathcal{G} is a general monomodal frame and also that

$$
\mathcal{G}^{t}=\left\langle g, R, R^{-1}, A\right\rangle
$$

is a general tense frame (i.e., that A is also closed under

$$
\left.\square^{-} a:=\{x \in g:(\forall y \in g)(y R x \Rightarrow y \in a)\}\right)
$$

Lemma $3 \quad \mathcal{G} \models \Lambda$.

Proof: Suppose \mathcal{G} refutes a formula $\neg \varphi$. We show that there is an $n \in \omega$ such that \mathcal{G}_{n} refutes $\neg \varphi$. Take a valuation β so that $\langle\mathcal{G}, \beta\rangle \nLeftarrow \neg \varphi$. Call a point $x \in g \varphi$-maximal iff there is a subformula ψ of φ such that $x \in \beta(\psi)$ but no proper R-successor of x is in $\beta(\psi)$. Denote by g^{r} the set of φ-maximal points which are in $\omega \times\{1, \ldots, 5\}$. Now define an ordering \preceq on $\omega \times\{6,7\}$ by putting

$$
\begin{array}{lll}
(m, i) \preceq(n, j) & \text { iff } \quad i<j \\
& \text { or } \quad i=j=6 \text { and } m \leq n \\
& \text { or } \quad i=j=7 \text { and } m \geq n
\end{array}
$$

Denote by h^{r} the set of φ-maximal points in $\omega \times\{6,7\}$ relative to \preceq. (We say that $y \in \omega \times\{6,7\}$ is φ-maximal in $\omega \times\{6,7\}$ relative to \preceq iff there exists a subformula ψ of φ such that $y \in \beta(\psi)$ and such that there does not exist a $z \in \beta(\psi) \cap(\omega \times\{6,7\})$ with $y \neq z$ and $y \preceq z$.) Put

$$
M:=\max \left\{n \in \omega \mid(\exists i)\left(1 \leq i \leq 7 \text { and }(n, i) \in g^{r} \cup h^{r}\right)\right\}
$$

Using the definition of A it is readily checked that $M \in \omega$. Put

$$
h=\{u\} \cup\{(m, i) \mid m \leq M, i=1, \ldots, 7\} \cup\{(m, 3) \mid m \leq 2 M+1\}
$$

Define $\mathcal{H}=\langle h, R \cap(h \times h)\rangle$ and $\gamma(p)=\beta(p) \cap h$. A straightforward induction shows for all $x \in h$ and subformulas ψ of φ

$$
\langle\mathcal{H}, \gamma, x\rangle \models \psi \Leftrightarrow\langle\mathcal{G}, \beta, x\rangle \models \psi .
$$

Hence \mathcal{H} refutes $\neg \varphi$ and $\mathcal{H} \simeq \mathcal{G}_{2 M+1}$. It follows that $\mathcal{G}^{t} \models \Lambda^{+}$.t.
We are now going to write down some important formulas belonging to Λ. In what follows we shall assume that Λ is formulated in the monomodal language with \square. Put $\square{ }^{(1)} \psi=\psi \wedge \square \psi$. With each finite and rooted frame $\langle h, S\rangle$ we can associate the formula

$$
\begin{aligned}
W(\langle h, S\rangle)= & \bigwedge\left\langle p_{x} \rightarrow \diamond p_{y} \mid x S y\right\rangle \wedge \\
& \wedge \bigwedge\left\langle p_{x} \rightarrow \neg \diamond p_{y} \mid x \neq y, \neg(x S y)\right\rangle \wedge \\
& \wedge \bigwedge\left\langle p_{x} \rightarrow \neg p_{y} \mid x \neq y\right\rangle
\end{aligned}
$$

(Here p_{x} denotes a propositional variable attached to a point $x \in h$). Put $\mathcal{D}_{m}:=$ $\langle\{0, \ldots, m\},<\rangle$ and

$$
d p_{m}^{\geq}=p_{0} \wedge \square^{(1)} W\left(\mathcal{D}_{m} .\right)
$$

Clearly $d p_{m}^{\geq}$is satisfiable in a point x in a frame f iff x has depth $\geq m$ in f. By extending the formula $W(\langle h, S\rangle)$ to

$$
\Delta(\langle h, S\rangle)=W(\langle h, S\rangle) \wedge \bigwedge\left\langle p_{x} \rightarrow \neg \diamond p_{y} \mid \neg(x S y)\right\rangle
$$

we get the well-known subframe formula $\alpha(\langle h, S\rangle)=\square^{(1)} \Delta(\langle h, S\rangle) \rightarrow \neg p_{r}$, where r denotes a root of $\langle h, S\rangle$ (cf. (2). The following axioms belong to Λ. (In the frames below 0 is intended to be the root r.)

$$
\begin{aligned}
\varphi_{1} & =\alpha(\langle\{0,1,2\},\{(0,1),(0,2)\}\rangle) \\
\varphi_{2} & =\alpha(\langle\{0,1,2\},\{(0,1),(0,2),(0,0)\}\rangle) \\
\varphi_{3} & =\alpha(\langle\{0,1\},\{0,1\} \times\{0,1\}\rangle) \\
\varphi_{4} & =\alpha(\langle\{0,1\},\{(0,1),(0,0),(1,1)\}\rangle)
\end{aligned}
$$

$\varphi_{1} \wedge \varphi_{2}$ says that there are no two incomparable irreflexive points with a common ancestor. The meaning of $\varphi_{3} \wedge \varphi_{4}$ is that there is no infinite strictly ascending chain, no cluster with more than one element and no reflexive point which sees a reflexive point. We now come to the axioms which force the incompleteness of $\Lambda^{+} . t$. Define, for $i \in \omega$,

$$
\begin{aligned}
\alpha_{0} & =\square \perp ; \alpha_{i+1}=\square^{i+2} \perp \wedge \neg \square^{i+1} \perp ; \\
\beta_{i} & =\diamond \diamond \alpha_{i} \wedge \neg \diamond \alpha_{i+1} ; \\
\gamma_{0} & =\neg \beta_{0} \wedge \diamond \beta_{0} ; \gamma_{i+1}=\neg \beta_{i+1} \wedge \diamond \beta_{i+1} \wedge \neg \gamma_{i} \wedge \neg \diamond \gamma_{i}
\end{aligned}
$$

In \mathcal{G}_{m} the formulas α_{i} hold precisely in $(i, 1), i \leq m$, the formulas β_{i} hold precisely in ($i, 6$), $i \leq m$, and the formulas γ_{i} hold precisely in $(i, 5), i \leq m$. So we have, for all $m \in \omega$,

$$
d_{m}:=d p_{3 m+2}^{\geq} \wedge \gamma_{0} \rightarrow \square^{(1)} \bigwedge\left\langle\gamma_{i} \rightarrow \diamond \gamma_{i+1} \mid i<m\right\rangle \in \Lambda .
$$

For a monomodal formula ψ formulated in the language with \square, let ψ^{+}and ψ^{-}denote the translation of ψ into the language with \square^{+}and \square^{-}respectively. Put

$$
\begin{aligned}
\varphi= & \diamond^{-} \neg \alpha^{-}(\{(\{0,1\},\{0,1\} \times\{0,1\}\rangle) \wedge \\
& \wedge \square^{-}\left(\left(p_{0} \vee p_{1}\right) \rightarrow \diamond^{-} \gamma_{0}^{+} \wedge \diamond^{+}\left(\diamond^{+} \top \wedge \square^{+} \diamond^{+} \top\right)\right)
\end{aligned}
$$

Lemma $4 \quad \neg \varphi \notin \Lambda^{+} . t$.
Proof: Define a valuation β of \mathcal{G}^{t} so that $\beta\left(p_{0}\right), \beta\left(p_{1}\right) \subseteq \omega \times\{3\}$ are disjoint and so that both sets are cofinal in $\omega \times\{3\}$ with respect to R^{-1} (i.e., $\forall x \in \beta\left(p_{i}\right) \exists y \in$ $\left.\beta\left(p_{i}\right)(y R x)\right)$. Clearly $\left\langle\mathcal{G}^{t}, \beta,(0,1)\right\rangle \models \varphi$.

Lemma $5 \quad \neg \varphi$ holds in all Kripke-frames for $\Lambda^{+} . t$.

Proof: Suppose there is a Kripke-frame $\mathcal{H}=\left\langle h, S^{+}, S^{-}\right\rangle$for $\Lambda^{+} . t$ such that $\mathcal{M}, x \models \varphi$ for a model $\mathcal{M}=\langle\mathcal{H}, \beta\rangle$. By $\varphi_{3} \in \Lambda$ and $\mathscr{M}, x \vDash \varphi$, there is an infinite S^{-}-chain $\left\langle y_{i} \mid i \in \omega\right\rangle$ with $x S^{-} y_{0}$ and $\mathcal{M}, y_{i} \models p_{0} \vee p_{1}$, for $i \in \omega$. Furthermore, $\mathcal{M}, y_{0} \models \diamond^{+}\left(\diamond^{+} \top \wedge \square^{+} \diamond^{+} \top\right)$. We may assume, by $\varphi_{3}, \varphi_{4} \in \Lambda$, that all $y_{i}, i \in \omega$, are irreflexive. There are points $z_{i}, i \in \omega$, with $z_{i} S^{+} y_{i}$ and $\mathcal{M}, z_{i} \models \gamma_{0}^{+}$.
Claim 6 There is a $z_{i}, i \in \omega$, of infinite S^{+}-depth.
Assume there is no z_{i} of infinite depth. Then y_{0} has finite depth, say $m \in \omega$. There is a $z_{i}, i \in \omega$, of depth $\geq 3 m+2$, since the depth of y_{i} is increasing. Hence there exists y with $z_{i} S^{+} y$ and $\mathcal{M}, y \models \alpha_{m}^{+} . y$ has depth m, y is irreflexive and y is incomparable with y_{0} since $\mathscr{M}, y_{0} \models \diamond^{+}\left(\diamond^{+} \top \wedge \square^{+} \diamond^{+} \top\right)$. But this contradicts $\varphi_{1} \wedge \varphi_{2} \in \Lambda$.

Take a $z_{i}, i \in \omega$, of infinite depth. Then $\mathscr{M}, z_{i} \models\left(\square^{+}\right)^{(1)}\left(\gamma_{j} \rightarrow \diamond \gamma_{j+1}\right)^{+}$, for all $j \in \omega$, since $D_{m} \in \Lambda$. \mathcal{H} contains an infinite strictly ascending S^{+}-chain which contradicts to $\varphi_{3} \in \Lambda$.

By Lemmas 4 and 5the logic $\Lambda^{+} . t$ is incomplete and the Theorem is shown.
One can prove that Λ is not finitely axiomatizable. Hence the following remains open.

Problem 7 Is there a finitely axiomatizable complete logic whose minimal tense extension is incomplete?
Let us finally note another question about transfer from Λ to $\Lambda^{+} . t$.
Problem 8 Does decidability transfer from Λ to $\Lambda^{+} . t$?
Although we believe that there is a counterexample, the construction of such an example seems to be quite difficult. Again for all standard systems, decidability transfers, as follows from the results of Wolter [4] and 5].

Acknowledgments The author would like to thank two anonymous referees for a number of helpful remarks.

REFERENCES

[1] Fine, K., "Logics containing K4, Part I," The Journal of Symbolic Logic, vol. 39 (1974), pp. 229-237. Zbl 0287.02010 MR 49:8814 2
[2] Fine, K., "Logics containing K4, Part II," The Journal of Symbolic Logic, vol. 50 (1985), pp. 619-651. Zbl 0574.03008 0.3.10
[3] Wolter, F., "The finite model property in tense logic," The Journal of Symbolic Logic, vol. 60 (1995), pp. 757-774. Zbl 0836.03015 MR 96j:03037 0,0,0
[4] Wolter, F., "Completeness and decidability of tense logics closely related to logics above K4," forthcoming in The Journal of Symbolic Logic. Zbl 0893.03005|MR 98c:03054 0. 0
[5] Wolter, F., "Tense Logic without tense operators," Mathematical Logic Quarterly, vol. 42 (1996), pp. 145-171.Zbl 0858.03019MR 97c:03074 0
[6] Zakharyaschev, M., "Canonical formulas for K4, Part I," The Journal of Symbolic Logic, vol. 57 (1992), pp. 377-402. Zbl 0774.03005|MR 94b:03040 3

TENSE LOGIC

Department of Information Science
JAIST
Tatsunokuchi
Ishikawa, 923-12
Japan
email: wolter@jaist.ac.jp

