A Counterexample in Tense Logic

FRANK WOLTER

Abstract We construct a normal extension of **K4** with the finite model property whose minimal tense extension is not complete with respect to Kripke semantics.

Call a normal bimodal logic in the propositional language with \Box^+ and \Box^- a tense logic if it contains the tense axioms

tense =
$$\{p \to \Box^+ \lozenge^- p, \ p \to \Box^- \lozenge^+ p\}.$$

With each normal modal logic Λ containing **K4** we associate its minimal tense extension $\Lambda^+.t$, which is the smallest tense logic containing Λ formulated in \Box^+ . Recall that a modal logic is called complete (has the finite model property) iff the following is equivalent for all formulas $\varphi \colon \varphi \in \Lambda \Leftrightarrow \langle g, R \rangle \models \varphi$, for all (finite) frames $\langle g, R \rangle$ validating Λ . This paper provides a counterexample to the natural assumption that completeness is transferable when moving to the minimal tense extension. The problem whether completeness transfers from Λ to $\Lambda^+.t$ can also be described as an axiomatization problem. Indeed, the existence of a complete logic Λ such that $\Lambda^+.t$ is incomplete is equivalent to the existence of a modally definable class of transitive Kripke-frames **M** such that the theory of

$$\mathbf{M}^t = \{ \langle g, R, R^{-1} \rangle | \langle g, R \rangle \in \mathbf{M} \}$$

is not axiomatizable by a set of formulas formulated in \Box^+ and **tense**. (Here the theory of a class of frames F is the set of all formulas which are valid in all frames in F.)

It is easy to construct modal logics containing **K4** with the finite model property (fmp, for short) whose minimal tense extensions do not enjoy fmp. Take for instance provability logic $\mathbf{G} = \mathbf{K4} \oplus \Box(\Box p \to p) \to \Box p$. **G** is known as the theory of the class of inverse well-founded frames and has fmp (cf. Fine [2]). But \mathbf{G}^+ .t does not have fmp since the tense logic determined by the finite inverse well-founded frames is

$$\mathbf{G}^+.t \oplus \Box^-(\Box^-p \to p) \to \Box^-p$$

(cf. Wolter [3]). Note however that $G^+.t$ is complete, by (3) of Theorem 1 below. Wolter [3] and [4] deliver general positive results as concerns transfer properties of the map $\Lambda \mapsto \Lambda^+.t$. The following theorem summarizes some results of those papers. First recall the following definitions. All frames are assumed to be transitive. For a frame $\langle g, R \rangle$ we write $x \vec{R} y$ iff x R y and $x \neq y$ and $\neg (y R x)$. Let $x \in g$ and suppose that there is a longest finite chain $x = x_0 \vec{R} \dots \vec{R} x_n$ in $\langle g, R \rangle$. Then the depth of x in $\langle g, R \rangle$ is dp(x) = n and x is said to be of finite depth. We say that a modal logic Λ containing K4 has finite depth if there exists an $n \in \omega$ such that all points in all frames validating Λ have depth $\leq n$.

Theorem 1 Let Λ be a logic above **K4**. Then

- 1. if Λ has finite depth, then Λ^+ .t has fmp;
- 2. if Λ has finite width (in the sense of Fine [1]), then Λ^+ .t is complete. Especially, Λ^+ .t is complete whenever $\Lambda \supseteq \mathbf{K4.3}$;
- 3. if Λ is a (cofinal) subframe logic (in the sense of Zakharyaschev [6] and [2], respectively), then Λ^+ .t is complete. Λ^+ .t has the fmp iff the frames validating Λ form a first order definable class.

Given that this result covers all natural extensions of **K4**, it is clear that our example is (in some sense) similar to the construction of incomplete logics above **K4**. Let us start with the definition of the frames involved in the construction. Define $\langle g, R \rangle$ by putting:

$$g = \bigcup \{\omega \times \{i\} | 1 \le i \le 7\} \cup \{u\}$$

and R as the transitive closure of R_1 with

$$R_{1} = \{(x, y) | x \in \omega \times \{i\}, y \in \omega \times \{j\}, j < i \le 5\} \cup \\ \cup \{((m, i), (n, i)) | m < n, i = 2, 5\} \cup \\ \cup \{((m, i), (n, i)) | m > n, i = 1, 3, 4\} \cup \\ \cup \{(x, x) | x \in \omega \times \{6, 7\}\} \cup \{(u, u)\} \cup \\ \cup \{((m, 5), (m, 6)) | m \in \omega\} \cup \{((m, 4), (m, 7)) | m \in \omega\} \cup \\ \cup \{((m, 6), (m, 1)) | m \in \omega\} \cup \{((m, 7), (m, 2)) | m \in \omega\} \cup \\ \cup \{(x, u) | x \in \omega \times \{3, 4, 5\}\}.$$

See the figure below. We draw frames in such a way that • represents a reflexive point and X represents an irreflexive point.

Denote by G_n the subframe of $\langle g, R \rangle$ induced by

$$g_n = \{(m, i) | m \le n, i = 1, 3, 5, 6\} \cup \{u\},\$$

and denote by Λ the theory of the set of frames $\{G_n | n \in \omega\}$. We will show the following.

Theorem 2 Λ has the fmp and Λ^+ .t is incomplete.

That Λ has the fmp follows from the definition. To prove that $\Lambda^+.t$ is incomplete we need a general tense frame validating $\Lambda^+.t$ and refuting a formula φ which holds in all Kripke frames validating $\Lambda^+.t$. (Consult, e.g., [3] for the definition of general frames). We first define a general monomodal frame $\mathcal{G} = \langle g, R, A \rangle$ by defining A as the boolean closure of $C \subseteq 2^g$, where $c \in C$ iff

Figure: the frame \mathcal{G}

- $c \subseteq \omega \times \{3\}$ or
- $c \subseteq \omega \times \{i, j\}$ and c is finite or cofinite relative to $\omega \times \{i, j\}$ and $\{i, j\} = \{1, 2\}$, $\{4, 5\}, \{6, 7\}$.

It is readily checked that G is a general monomodal frame and also that

$$G^t = \langle g, R, R^{-1}, A \rangle$$

is a general tense frame (i.e., that A is also closed under

$$\Box^{-}a := \{ x \in g : (\forall y \in g)(yRx \Rightarrow y \in a) \}).$$

Lemma 3 $G \models \Lambda$.

Proof: Suppose \mathcal{G} refutes a formula $\neg \varphi$. We show that there is an $n \in \omega$ such that \mathcal{G}_n refutes $\neg \varphi$. Take a valuation β so that $\langle \mathcal{G}, \beta \rangle \not\models \neg \varphi$. Call a point $x \in g$ φ -maximal iff there is a subformula ψ of φ such that $x \in \beta(\psi)$ but no proper R-successor of x is in $\beta(\psi)$. Denote by g^r the set of φ -maximal points which are in $\omega \times \{1, \ldots, 5\}$. Now define an ordering \leq on $\omega \times \{6, 7\}$ by putting

$$(m, i) \leq (n, j)$$
 iff $i < j$
or $i = j = 6$ and $m \leq n$
or $i = j = 7$ and $m \geq n$.

Denote by h^r the set of φ -maximal points in $\omega \times \{6,7\}$ relative to \leq . (We say that $y \in \omega \times \{6,7\}$ is φ -maximal in $\omega \times \{6,7\}$ relative to \leq iff there exists a subformula ψ of φ such that $y \in \beta(\psi)$ and such that there does not exist a $z \in \beta(\psi) \cap (\omega \times \{6,7\})$ with $y \neq z$ and $y \leq z$.) Put

$$M := \max\{n \in \omega | (\exists i) (1 < i < 7 \text{ and } (n, i) \in g^r \cup h^r)\}.$$

Using the definition of A it is readily checked that $M \in \omega$. Put

$$h = \{u\} \cup \{(m, i) | m \le M, i = 1, ..., 7\} \cup \{(m, 3) | m \le 2M + 1\}.$$

Define $\mathcal{H} = \langle h, R \cap (h \times h) \rangle$ and $\gamma(p) = \beta(p) \cap h$. A straightforward induction shows for all $x \in h$ and subformulas ψ of φ

$$\langle \mathcal{H}, \gamma, x \rangle \models \psi \Leftrightarrow \langle \mathcal{G}, \beta, x \rangle \models \psi.$$

Hence \mathcal{H} refutes $\neg \varphi$ and $\mathcal{H} \simeq \mathcal{G}_{2M+1}$. It follows that $\mathcal{G}^t \models \Lambda^+.t$.

We are now going to write down some important formulas belonging to Λ . In what follows we shall assume that Λ is formulated in the monomodal language with \Box . Put $\Box^{(1)}\psi = \psi \wedge \Box \psi$. With each finite and rooted frame $\langle h, S \rangle$ we can associate the formula

$$W(\langle h, S \rangle) = \bigwedge \langle p_x \to \Diamond p_y | x S y \rangle \land$$

$$\land \bigwedge \langle p_x \to \neg \Diamond p_y | x \neq y, \neg (x S y) \rangle \land$$

$$\land \bigwedge \langle p_x \to \neg p_y | x \neq y \rangle$$

(Here p_x denotes a propositional variable attached to a point $x \in h$). Put $\mathcal{D}_m := \langle \{0, \dots, m\}, < \rangle$ and

$$dp_m^{\geq} = p_0 \wedge \Box^{(1)} W(\mathcal{D}_m.)$$

Clearly dp_m^{\geq} is satisfiable in a point x in a frame f iff x has depth $\geq m$ in f. By extending the formula $W(\langle h, S \rangle)$ to

$$\Delta(\langle h, S \rangle) = W(\langle h, S \rangle) \wedge \bigwedge \langle p_x \to \neg \Diamond p_y | \neg (xSy) \rangle,$$

we get the well-known subframe formula $\alpha(\langle h, S \rangle) = \Box^{(1)} \Delta(\langle h, S \rangle) \to \neg p_r$, where r denotes a root of $\langle h, S \rangle$ (cf. [2]). The following axioms belong to Λ . (In the frames below 0 is intended to be the root r.)

$$\varphi_1 = \alpha(\langle \{0, 1, 2\}, \{(0, 1), (0, 2)\} \rangle)
\varphi_2 = \alpha(\langle \{0, 1, 2\}, \{(0, 1), (0, 2), (0, 0)\} \rangle)
\varphi_3 = \alpha(\langle \{0, 1\}, \{0, 1\} \times \{0, 1\} \rangle)
\varphi_4 = \alpha(\langle \{0, 1\}, \{(0, 1), (0, 0), (1, 1)\} \rangle)$$

 $\varphi_1 \wedge \varphi_2$ says that there are no two incomparable irreflexive points with a common ancestor. The meaning of $\varphi_3 \wedge \varphi_4$ is that there is no infinite strictly ascending chain, no cluster with more than one element and no reflexive point which sees a reflexive point. We now come to the axioms which force the incompleteness of Λ^+ .t. Define, for $i \in \omega$,

$$\alpha_{0} = \Box \bot; \ \alpha_{i+1} = \Box^{i+2} \bot \land \neg \Box^{i+1} \bot;$$

$$\beta_{i} = \Diamond \Diamond \alpha_{i} \land \neg \Diamond \alpha_{i+1};$$

$$\gamma_{0} = \neg \beta_{0} \land \Diamond \beta_{0}; \ \gamma_{i+1} = \neg \beta_{i+1} \land \Diamond \beta_{i+1} \land \neg \gamma_{i} \land \neg \Diamond \gamma_{i}.$$

In G_m the formulas α_i hold precisely in (i, 1), $i \le m$, the formulas β_i hold precisely in (i, 6), $i \le m$, and the formulas γ_i hold precisely in (i, 5), $i \le m$. So we have, for all $m \in \omega$,

$$d_m := dp_{3m+2}^{\geq} \wedge \gamma_0 \to \Box^{(1)} \bigwedge \langle \gamma_i \to \Diamond \gamma_{i+1} | i < m \rangle \in \Lambda.$$

For a monomodal formula ψ formulated in the language with \square , let ψ^+ and ψ^- denote the translation of ψ into the language with \square^+ and \square^- respectively. Put

$$\varphi = \lozenge^{-} \neg \alpha^{-}(\langle (\{0,1\}, \{0,1\} \times \{0,1\} \rangle) \land \\ \wedge \Box^{-}((p_{0} \lor p_{1}) \to \lozenge^{-} \gamma_{0}^{+} \land \lozenge^{+}(\lozenge^{+} \top \land \Box^{+} \lozenge^{+} \top))$$

Lemma 4 $\neg \varphi \notin \Lambda^+.t.$

Proof: Define a valuation β of \mathcal{G}^t so that $\beta(p_0)$, $\beta(p_1) \subseteq \omega \times \{3\}$ are disjoint and so that both sets are cofinal in $\omega \times \{3\}$ with respect to R^{-1} (i.e., $\forall x \in \beta(p_i) \exists y \in \beta(p_i)(yRx)$). Clearly $\langle \mathcal{G}^t, \beta, (0,1) \rangle \models \varphi$.

Lemma 5 $\neg \varphi$ holds in all Kripke-frames for Λ^+ .t.

Proof: Suppose there is a Kripke-frame $\mathcal{H} = \langle h, S^+, S^- \rangle$ for $\Lambda^+.t$ such that $\mathcal{M}, x \models \varphi$ for a model $\mathcal{M} = \langle \mathcal{H}, \beta \rangle$. By $\varphi_3 \in \Lambda$ and $\mathcal{M}, x \models \varphi$, there is an infinite S^- -chain $\langle y_i | i \in \omega \rangle$ with xS^-y_0 and $\mathcal{M}, y_i \models p_0 \vee p_1$, for $i \in \omega$. Furthermore, $\mathcal{M}, y_0 \models \Diamond^+(\Diamond^+ \top \wedge \Box^+ \Diamond^+ \top)$. We may assume, by $\varphi_3, \varphi_4 \in \Lambda$, that all $y_i, i \in \omega$, are irreflexive. There are points $z_i, i \in \omega$, with $z_iS^+y_i$ and $\mathcal{M}, z_i \models \gamma_0^+$.

Claim 6 There is a z_i , $i \in \omega$, of infinite S^+ -depth.

Assume there is no z_i of infinite depth. Then y_0 has finite depth, say $m \in \omega$. There is a z_i , $i \in \omega$, of depth $\geq 3m + 2$, since the depth of y_i is increasing. Hence there exists y with $z_i S^+ y$ and \mathcal{M} , $y \models \alpha_m^+$. y has depth m, y is irreflexive and y is incomparable with y_0 since \mathcal{M} , $y_0 \models \Diamond^+(\Diamond^+ \top \wedge \Box^+ \Diamond^+ \top)$. But this contradicts $\varphi_1 \wedge \varphi_2 \in \Lambda$.

Take a z_i , $i \in \omega$, of infinite depth. Then $\mathcal{M}, z_i \models (\Box^+)^{(1)} (\gamma_j \to \Diamond \gamma_{j+1})^+$, for all $j \in \omega$, since $D_m \in \Lambda$. \mathcal{H} contains an infinite strictly ascending S^+ -chain which contradicts to $\varphi_3 \in \Lambda$.

By Lemmas 4 and 5 the logic Λ^+ . *t* is incomplete and the Theorem is shown.

One can prove that Λ is not finitely axiomatizable. Hence the following remains open.

Problem 7 Is there a finitely axiomatizable complete logic whose minimal tense extension is incomplete?

Let us finally note another question about transfer from Λ to Λ^+ .t.

Problem 8 Does decidability transfer from Λ to Λ^+ .t?

Although we believe that there is a counterexample, the construction of such an example seems to be quite difficult. Again for all standard systems, decidability transfers, as follows from the results of Wolter [4] and [5].

Acknowledgments The author would like to thank two anonymous referees for a number of helpful remarks.

REFERENCES

- [1] Fine, K., "Logics containing K4, Part I," *The Journal of Symbolic Logic*, vol. 39 (1974), pp. 229–237. Zbl 0287.02010 MR 49:8814 2
- [2] Fine, K., "Logics containing K4, Part II," *The Journal of Symbolic Logic*, vol. 50 (1985), pp. 619–651. Zbl 0574.03008 0, 3, 0
- [3] Wolter, F., "The finite model property in tense logic," *The Journal of Symbolic Logic*, vol. 60 (1995), pp. 757–774. Zbl 0836.03015 MR 96j:03037 0, 0, 0
- [4] Wolter, F., "Completeness and decidability of tense logics closely related to logics above K4," forthcoming in *The Journal of Symbolic Logic*. Zbl 0893.03005 MR 98c:03054 0, 0
- [5] Wolter, F., "Tense Logic without tense operators," *Mathematical Logic Quarterly*, vol. 42 (1996), pp. 145–171. Zbl 0858.03019 MR 97c:03074 0
- [6] Zakharyaschev, M., "Canonical formulas for K4, Part I," The Journal of Symbolic Logic, vol. 57 (1992), pp. 377–402. Zbl 0774.03005 MR 94b:03040 3

Department of Information Science JAIST Tatsunokuchi Ishikawa, 923–12 Japan

email: wolter@jaist.ac.jp