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Connection Structures: Grzegorczyk’s and
Whitehead’s Definitions of Point

LOREDANA BIACINO and GIANGIACOMO GERLA

Abstract Whitehead, in his famous book Process and Reality, proposed a
definition of point assuming the concepts of “region” and “connection relation”
as primitive. Several years after and independently Grzegorczyk, in a brief but
very interesting paper, proposed another definition of point in a system in which
the inclusion relation and the relation of being separated were assumed as prim-
itive. In this paper we compare their definitions and we show that, under rather
natural assumptions, they coincide.

1 Introduction When facing the literature on the axiomatic foundation of geome-
try, we notice surprisingly that, although the primitive relations and the axioms may
vary, there is a primitive term that remains in all cases the same: the point. On the
other hand, since it is evident that nature does not provide objects without dimensions
(a property that geometry ascribes to points), it should be of some interest conceiving
axiomatic systems in which the concept of point is defined from primitive terms more
easily interpretable in nature (information about the attempts in this direction can be
found in Gerla [6]).

Now, an interesting possibility is to consider as primitive the regions, the inclu-
sion between regions, and the “connection relation,” that is, the relation between two
regions that overlap or have at least a common boundary point. Structures of such
a type, which we call connection structures, were first examined by Laguna [4] in
1922 . Successively, in 1929 Whitehead [8] put the connection relation on the basis
of a very extensive analysis of the abstraction process leading to the concepts of point,
line and surface. Whitehead listed a very large sequence of properties which a con-
nection relation has to verify—In Chapter 2 Whitehead exposed 31 assumptions!—
but no attempt was made to frame his analysis into a mathematical theory. In partic-
ular, no attempt was made to reduce his system of assumptions and definitions to a
logical minimum. A first step in this direction was made in Gerla and Tortora [5]; a
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rather different version of Whitehead’s system was proposed by Clarke [2] and [3]
and criticized by Biacino and Gerla [1].

Independently from Whitehead’s work, Grzegorczyk [7] assumed as primitive
the inclusion relation and the relation of being separated. Like Whitehead, the pur-
pose of Grzegorczyk is “to make more precise the well-known conviction that geom-
etry may be built without speaking about points.” Indeed, by a very simple system of
axioms he was able to obtain a representation theorem relating his “topology without
points” with the classical topology theory. Now, as a matter of fact, if we substitute
the relation of being separated by its negation, it becomes clear that Grzegorczyk’s
work is very close to Whitehead’s ideas and therefore that it furnishes a very power-
ful mathematical treatment of connection structures.

In this note we confine ourselves to rewrite in a more manageable manner the
system of axioms of Grzegorczyk and to compare the definitions of point given by
Whitehead and Grzegorczyk respectively.

2 Preliminaries We begin by considering Grzegorczyk’s axiom system for the ge-
ometry without points. Grzegorczyk [7] assumed as primitive a set R whose ele-
ments are called spatial bodies, the inclusion relation and the relation of being sep-
arated. However, in order to emphasize the similarity with the analysis proposed by
Whitehead [8], we prefer to assume the negation of the relation of being separated,
which we call connection relation. We will rewrite Grzegorczyk’s axioms in accor-
dance with such a choice. So, we consider structures (R ,≤, C), which we call con-
nection structures, such that ≤ and C are binary relations in R satisfying the axioms

G0 (R ,≤) is a mereological field;

G1 xCx for every x ∈ R ;
G2 xCy ⇒ yCx for every x, y ∈ R ;
G3 x ≤ y ⇒ C(x) ⊆ C(y);

where

• a mereological field is the structure obtained from a complete Boolean algebra
B by deleting the zero-element, i.e., R = B − {0};

• C(z) = {x ∈ R | zCx} for every z ∈ R .

We call regions the elements of R , inclusion relation the relation ≤, and connection
relation the relation C. As an immediate consequence of G1 and G3, we have that
every region is connected with the unity 1 of R . In the following we say that a region
x overlaps a region y and write xO y if a region z exists such that z ≤ x and z ≤ y (i.e.,
x ∧ y �= 0). Also, we set O(z) = {x ∈ R | zOx}.
Proposition 2.1 For every pair of regions x, y

1. xCy, y ≤ z ⇒ xCz;
2. x ≤ y ⇒ xCy;
3. xO y ⇒ xCy.

Proof: (1) is a consequence of G3, and (2) follows from G1 and (1). To prove (3)
assume that xO y and therefore that z ∈ R exists such that z ≤ x and z ≤ y. As a
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consequence, since C(z) ⊆ C(x), we have zCx and, by G2, xCz. Since C(z) ⊆ C(y),

this implies xCy. �
Proposition 2.1.3 says that C contains the relation O . Let B be any complete Boolean
algebra and set R = {x ∈ B | x �= 0} then a “minimal” connection structure in R is
obtained by setting C equal to the overlapping relation O . A “maximal” connection
structure is obtained by setting C equal to the relation R × R , i.e., the relation sat-
isfied by any pair (x, y) of regions.

Definition 2.2 We say that x is nontangentially enclosed in y and we write x �
y if C(x) ⊆ O(y).

The following proposition gives a simple characterization of the relation � .

Proposition 2.3 For every pair of regions x and y, with y �= 1,

x � y ⇐⇒ x �C − y.

Proof: Let x � y, then C(x) ⊆ O(y) and therefore, since −y does not overlap y,−y
does not belong to C(x), that is x �C − y. Conversely, assume that x �C − y then x �Cz
for every z ≤ −y. So, if z is connected with x, we have z �= −y and therefore z ∧ y �= 0.

Thus C(x) ⊆ O(y) that is, x � y. �

Proposition 2.4 The following statements hold for every x, y, z, v ∈ R ,

1. x � y ⇐⇒ −y � −x (provided that x �= 1 and y �= 1),

2. x � y ⇒ x ≤ y,
3. x � y and y ≤ z ⇒ x � z,
4. x ≤ y and y � z ⇒ x � z,
5. x � u and u � y ⇒ x � y,
6. x � 1.

Proof: To prove (1) notice that by Proposition 2.3,

x � y ⇐⇒ x �C − y ⇐⇒ −y �Cx ⇐⇒ −y � −x.

Implication (2) is obvious in the case y = 1, otherwise, from −y �Cx, we have that
−y does not overlap x and therefore x ≤ y. (3) follows from Proposition 2.1.1. To
prove (4) assume that x ≤ y and y � z, then −x ≥ −y and −y 
 −z. Consequently,
by (3), −x 
 −z and therefore x � z. Finally, (5) is a consequence of (3) and (2),
and (6) follows from the equality O(1) = R .

The converse of (2) is false, in general. As an example, if C = R × R then
since, C(x) = R , for every x ∈ R , we have that x � y only if y = 1. As a matter of
fact, as Proposition 2.3 shows, only if C coincides with the overlapping relation then
� is equal to ≤ . From (6) it follows that 1� 1 and therefore that � is not a “strict”
order. �

Remark 2.5 Perhaps it is worth noting that we can assume as primitive the non-
tangential inclusion instead of the connection relation. Indeed, assume that R is a
mereological field, then Proposition 2.4 says that the nontangential inclusion satis-
fies the properties
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A1 x � y ⇐⇒ −y � −x (provided that x �= 1 and y �= 1)

A2 x � y ⇒ x ≤ y

A3 x � y and y ≤ z ⇒ x � z.

Conversely, let � be a binary relation in a mereological field R satisfying A1, A2,

and A3. Then we can define a relation C by setting xCy provided that y = 1 or x �
−y. It is easily proven that (R ,≤, C) is a connection structure. Indeed, by definition,
we have that 1C1 while, in the case x �= 1, since by A2 we have that x �� −x, it is
xCx. To prove G2, assume that xCy, then if x = 1 it is immediate that yCx. If x �= 1
and y = 1 then y �� −x since otherwise by A2 we have −x = 1 and therefore x = 0.

So, we can conclude that yCx. If x �= 1 and y �= 1 then by A1,

xCy ⇒ x �� −y ⇒ y �� −x ⇒ yCx.

Finally to prove G3, assume that x ≤ y and that zCx. We have to prove that zCy.
Now, in the case x = 1, since it is also y = 1, we have that zCy. In the case x �= 1
and y = 1 it is immediate that zCy. In the case x �= 1 and y �= 1 we have that z �� −x
and therefore since −y ≤ −x by A3 it is also z �� −y and therefore zCy.

Now, denote by �′ the relation of nontangential inclusion associated with the
structure defined above. Then if y �= 1 we have

x �′ y ⇐⇒ x �C − y ⇐⇒ x � y.

In the case y = 1, we have that x �′ 1 but it is possible that x � 1 does not hold.
As an example, let � be the empty relation, i.e., no pair of regions x and y satisfies
x � y. Then A1, A2 and A3 are trivially satisfied but, while x �′ 1 we have that
x �� 1. (Notice that the associated relation C defines the maximal model in R .) So,
if we want �′ to coincide with � we have to add the axiom

A4 x � 1.

3 The definition of point in Grzegorczyk By following Grzegorczyk, we say that
a set p of regions is a representative of a point if:

A. p is without minimum and totally ordered with respect to �;
B. given two regions u and v, uOx and vOx for every x ∈ p implies uCv.

A point is a filter P generated by a representative of a point p, i.e., P = {y ∈ R |y ≥ x
for a suitable x ∈ p}. A point P belongs (is adherent) to a region r provided that r is
an element of P (r overlaps with all the elements of P). If p represents the point P
and z ∈ p, then the “cut” {x ∈ p|x ≤ z} represents P too. Consequently, if P belongs
to the region r we may represent P by a chain of regions all contained in r. We denote
by P the set of points and by P(x) the set of points belonging to the region x.

Proposition 3.1 Let z, z′ be regions, z �= 1 and z′ �= 1, and P a point. Then the
following statements hold.

1. P �∈ z ⇐⇒ P is adherent to −z;

2. P adherent to z and z � z′ ⇒ P ∈ z′.
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Proof: (1) P �∈ z ⇐⇒ ∀x ∈ P(x �≤ z) ⇐⇒ ∀x ∈ P(x ∧−z �= 0) ⇐⇒ P is adher-
ent to −z. (2) Suppose P adherent to z, z � z′ and P �∈ z′. Then by (1) P is adherent
to −z′ so, by (B), we have −z′Cz. This is an absurdity since z � z′ is equivalent to
−z′ �Cz. �

The following two axioms concern the existence of points:

G4 every region has a point;

G5 xCy ⇒ a point P exists such that P is adherent to x and y.

Observe that (B) entails that if there is a point adherent to both regions x and y, then
x is connected with y. Axiom G5 claims that the converse implication holds, too.
Also, notice that, since a representative of a point is an infinite class of regions, the
existence of a point entails that R is infinite. Consequently, each minimal connection
structure in a finite mereological field is a model of G0−G3 in which neither G4 nor
G5 is satisfied. This shows that these axioms are independent from G0−G3.

Remark 3.2 Axioms G4 and G5 enable us to prove that, as a matter of fact, the im-
plication in G3 is an equivalence. Indeed, suppose C(x) ⊆ C(y) but x �≤ y. Then x ∧
−y �= 0 and, by Axiom G4,∃P ∈ x ∧−y. So ∃r ∈ P such that r � x ∧−y ≤ −y and,
by Proposition 2.3, r �Cy. On the other hand r ∈ C(x) and, since C(x) ⊆ C(y), rCy, an
absurdity. This means that, by following Whitehead, it should be possible to assume
as primitive only the connection relation and to define the order relation by setting
x ≤ y provided that C(x) ⊆ C(y).

Grzegorczyk proves two basic theorems. Although these theorems are not used in
this paper, we will enunciate them for their intrinsic interest. In fact, they state that
the pointless theory of the connection structures is, in a sense, equivalent to the point-
based theory of topological spaces. Recall that a subset x of a topological space is
called (open) regular provided that x = ◦

x . The first theorem shows how to obtain a
connection structure by starting from a topological space.

Theorem 3.3 Let T be a Hausdorff topology on the set S, R the class of the
nonempty regular elements of T and put, for every x, y ∈ R, xCy if x̄ ∩ ȳ �= ∅. Then
(R,⊆, C) is a connection structure in which x � y means x̄ ⊆ y. Moreover, if every
point is the intersection of a strictly decreasing (with respect to �) family of open
sets, then (R,⊆, C) satisfies G4−G5, too.

In any connection structure we have that 1 � 1. Now, in the structure (R,⊆, C) de-
fined above, a region x �= 1 exists such that x � x if and only if the topology T is not
connected. Indeed, recall that T is not connected if and only if a coplen set x (a set
that is both open and closed) exists different from ∅ and S. Moreover, it is immediate
that every coplen set x is a regular set such that x̄ ⊆ x and that every regular set x such
that x̄ ⊆ x is a coplen. Notice also that if P is an element of S then by hypothesis a
representative of a point p exists such that P coincides with the intersection ∩p. In
other words, every element of S is associated with a point in the sense of Grzegor-
czyk. The converse implication is not true, in general, since if T is not compact and
p is a representative of point, then ∩p can be empty or not.

The second theorem shows that every connection structure can be obtained by
starting from a suitable topological space.
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Theorem 3.4 Assume that (R,≤, C) is a connection structure satisfying G4−G5

and let T be the topology on P generated by {P(x) | x ∈ R}, then

1. {P(x)|x ∈ R} is the class of the nonempty regular elements of T ;
2. x ≤ y ⇐⇒ P(x) ⊆ P(y); x � y ⇐⇒ P(x) ⊆ P(y);
3. xCy ⇐⇒ P(x) ∩ P(y) �= ∅; P is adherent to x ⇐⇒ P ∈ P(x).

4 Some consequences of Grzegorczyk’s system In the following proposition we
give some immediate consequences of axioms G4 and G5 that will be useful in the
sequel.

Proposition 4.1 The following statements hold.

1. xC(z ∨ z′) ⇐⇒ xCz or xCz′.
2. x � z, y � z′ ⇒ x ∧ y � z ∧ z′, x ∨ y � z ∨ z′.

Proof: At first we will prove that

z � z′ ⇒ ∀x(x ∈ C(z) ⇒ x ∧ z′ ∈ C(z)).

Indeed, let x ∈ C(z), then by G5 there exists a point P adherent to z and x. So for
every region r in P, rOz and rOx. Since P is adherent to z and z � z′, from Propo-
sition 3.1.2 it follows that P ∈ z′. Then we may represent P by a chain p of regions
contained in z′. Since r ∧ x �= 0 for every r ∈ p, we have also r ∧ x ∧ z′ �= 0 for every
r ∈ p and therefore P is adherent to z ∧ z′. Since P is adherent to z also, by (B) we
have that x ∧ z′ ∈ C(z).

(1) Assume that xC(z ∨ z′) and that x �Cz, x �Cz′. Then x � −z and x� −z′, that is
C(x) ⊆ O(−z) and C(x) ⊆ O(−z′). Let y ∈ C(x), then by the above proven impli-
cation we have that y ∧ −z ∈ C(x). Since C(x) ⊆ O(−z′) it is y ∧ −z ∧ −z′ �= 0.

Thus, for every y ∈ C(x), we have that y ∧ −(z ∨ z′) �= 0, that is yO − (z ∨ z′). This
means that x � −(z ∨ z′) and so x �C(z ∨ z′) despite the hypothesis.

(2) Let x � z and y � z′, then, by Proposition 2.3, x �C − z and y �C − z′ and so
x ∧ y �C − z and x ∧ y �C − z′. By (1) x ∧ y �C − z ∨ −z′ that is x ∧ y �C − (z ∧ z’) and
this means that x ∧ y � z ∧ z′. In a similar way one proves that x ∨ y � z ∨ z′. �
The following proposition shows an interesting property of the regions that was em-
phasized by Whitehead. In particular, from this property it follows that no region is
an atom, i.e., that the Boolean algebra under consideration is not atomic.

Proposition 4.2 Every region contains two subregions that are not connected.

Proof: Let r be a region, then by G4 a point P exists belonging to r and if p repre-
sents P then x ∈ p exists such that x � r. Since p is without minimum there is x′ ∈ p
such that x′ � x, and x′ �= x. So x − x′ is a region. By G4 a point P′ exists belonging
to x − x′ and, if p′ represents P′, then y ∈ p′ exists such that y � x − x′ = x ∧ (−x′).
Therefore y �C − (x − x′) that is y �C(−x ∨ x′). Thus, y �Cx′ so y and x′ are two sub-
regions of r that are not connected. �
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5 The definition of point in Whitehead Whitehead [8] defined a connection struc-
ture as a pair (R , C) where R is a set whose elements are called regions and C is a
binary relation in R , the connection relation. The basic subject of Whitehead’s book
is the abstractive process enabling us to define points, lines and areas by starting from
the primitive concepts of region and connection relation. The properties assigned to
the connection structure look different from the ones listed in Grzegorczyk’s system.
For example, the inclusion relation is not primitive, but is defined by the equivalence

x ≤ y ⇐⇒ C(x) ⊆ C(y).

Also, the class of regions does not constitute a mereological field. Indeed, while the
idea of region in Grzegorczyk is related to the whole class of the regular open subsets,
Whitehead seems to confine his attention only to the connected subsets. On the other
hand, the class of connected subsets is not closed with respect to the unions. However,
since the differences are not substantial (see for example the remark in Section 3), we
will refer to Grzegorczyk’s system of axioms, just comparing, in such a frame, the
definitions of point proposed by Whitehead and Grzegorczyk.

Whitehead defined an abstractive set as a class α of regions such that

(j) α is totally ordered with respect to �;
(jj) there is no region included in every element of α.

An abstractive set α covers an abstractive set β, in brief α � β, if for every x ∈ α

there exists y ∈ β such that x ≥ y. The covering relation is a preorder and therefore
it defines an equivalence relation ≡ in the following way.

α ≡ β ⇐⇒ α � β and β � α.

Given an abstractive process α, we denote by [α] the related complete class of equiv-
alence. Whitehead calls such a class a geometrical element. The covering relation
induces an order relation on the set of geometrical elements. A point is a geometrical
element minimal with respect to such a relation. We call a W-representative of point
every abstractive set α such that [α] is a point. Then a W-representative of point is a
class α of regions such that (j), (jj) are satisfied and the following holds

(jjj) α′ � α ⇒ α′ ≡ α for every abstractive set α′.

The term G-representative will be used to denote a representative of point as defined
by Grzegorczyk. We will compare the two concepts above and study under what hy-
potheses they coincide. To this purpose, we associate every abstractive set α with the
filter Fα = {x ∈ R | ∃y ∈ α : x ≥ y} generated by α. It is immediate that

α � β ⇐⇒ Fα ⊆ Fβ

and therefore that
α ≡ β ⇐⇒ Fα = Fβ.

As a consequence the correspondence associating a geometrical element [α] with the
filter Fα is injective and we may define the geometrical elements as the filters gener-
ated by suitable abstractive sets. In particular, we may define the points as the filters
that are maximal in the class of the filters generated by the abstractive sets.



438 LOREDANA BIACINO and GIANGIACOMO GERLA

Theorem 5.1 If p is a G-representative then p is a W-representative and therefore
the points as defined by Grzegorczyk are also points in the sense of Whitehead.

Proof: Assume that p is a G-representative; then Condition (j) is satisfied, obvi-
ously. In order to prove (jj) we notice that, if a region r exists such that r ≤ x for
every x ∈ p then, by G4 and Proposition 4.2, r admits two subregions u and v that are
not connected. The fact that uOx and vOx for every x ∈ p contradicts (B).

We now prove (jjj). Let q be an abstractive set such that q � p that is

∀z ∈ p∃w ∈ q : z ≥ w. (1)

We will prove that q ≡ p, that is ∀x ∈ q∃y ∈ p : x ≥ y. Suppose that this is not the
case, then ∃x ∈ q : ∀y ∈ p we have x �≥ y, that is yO − x. This means that p is adherent
to −x. Now, by (jj) we have that x is not contained in every element of q, that is x′ ∈ q
exists such that x is not contained in x′ and, since q is totally ordered with respect to
�, x′ � x. Then, by Proposition 2.4.1, −x′ 
 −x and, by Proposition 4.1.2, p ∈
−x′. Therefore, a region z ∈ p exists such that z ≤ −x′. We claim that, for every
w ∈ q, z �≥ w, indeed otherwise from z ≥ w we have that −x′ ≥ w with x′ ∈ q and
w ∈ q. Now, either x′ � w or w � x′. Both these inequalities are incompatible with
−x′ ≥ w. This contradicts Equation 1. �
To establish a converse of the previous proposition we have to consider the following
axiom we call the normality axiom.

(G6) For every x and y such that x � y, a region z exists such that x � z � y.

Such an axiom is satisfied by a very large class of connection structures as the fol-
lowing proposition shows.

Proposition 5.2 The connection structure associated with a Hausdorff topology T
satisfies G6 if T is normal. In particular the connection structure associated with a
Euclidean space satisfies G6.

Proof: Recall that a Hausdorff space T is normal if whenever we consider two dis-
joint closed subsets C1 and C2 an open set A exists such that A ⊇ C1 and Ā is dis-
joint from C2. Let X and Y be regular sets such that X̄ ⊆ Y; then X̄ is disjoint from
(S − Y ) and therefore an open set A exists such that A ⊇ X̄ and Ā ∩ (S − Y ) = ∅,

that is Ā ⊆ Y. Set Z = ◦
A , then Z is a regular set containing A and therefore X̄, i.e.,

Z 
 X. Also, since Z ⊆ Ā, we have that Z̄ ⊆ Ā and therefore, since Ā ⊆ Y, Z̄ ⊆ Y,

i.e.,Z � Y. �

Theorem 5.3 If (R,C) satisfies G6 then if a sequence is a W-representative then it
is a G-representative, too.

Proof: Let p = (pi)i∈N be a W-representative. To prove that p is a G-representative
it is enough to prove that, given u, v ∈ R

uO pi and vO pi for every i ∈ N ⇒ uCv.

Assume, by absurdity, that u and v exist such that uO pi and vO pi for every i ∈ N but
u �Cv. Then u � −v and by G6 a sequence (ui)i∈N exists, decreasing with respect



CONNECTION STRUCTURES 439

to � such that u1 = −v and ∧{ui|i ∈ N} ≥ u. Observe that for every i, j ∈ N, ui ∧
pi �= 0 and ui ∧ pi �≥ p j, since p jOv and ui ∧ pi ≤ −v. Now, by Proposition 4.1.2,
(ui ∧ pi)i∈N is a sequence decreasing with respect to � and, since ui ∧ pi ≤ pi, no
region exists contained in all the regions ui ∧ pi. Thus the sequence p is not minimal
and this contradicts the hypothesis. �
Although Theorem 5.1 holds for every G-representative, the just proved theorem
holds for W-representatives that are expressible by sequences. We do not know if this
result holds in any case. However, since our task is to give a pointless foundation of
Euclidean geometry rather than a pointless foundation of the topological spaces, we
are not too much interested in this question. Indeed, it is possible to define directly
a representative of a point as a suitable sequence (rather than a class) of regions, in
accordance with the fact that our intuition of the abstraction activity leading to the
concept of point is a step-by-step process. In this way, a new theory is obtained since
the meaning of axioms G4 and G5 is modified. Nevertheless, it is immediate that the
connection structure associated with the Euclidean space (and with every topological
space satisfying the first axiom of enumerability) satisfies this theory and therefore it
furnishes a good basis for a pointless foundation of the Euclidean geometry. In such
a theory, Theorems 5.1 and 5.3 show that Grzegorczyk’s and Whitehead’s definitions
of point coincide.
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