116

Notre Dame Journal of Formal Logic
Volume 40, Number 1, Winter 1999

Rules and Arithmetics

ALBERT VISSER

Abstract This paper is concerned with thegical structure of arithmetical
theories. We survey results concerning logics and admissible rules of construc-
tive arithmetical theories. We prove a new theorem: the admissible proposi-
tional rules of Heyting Arithmetic are the same as the admissible propositional
rules of Intuitionistic Propositional Logic. We provide some further insights
concerning predicate logical admissible rules for arithmetical theories.

1 Introduction Can we say anything interesting about the logical structure of con-
structive arithmetical theories? We might ask, for example, what the ‘logic’ of such
atheory is. A question with an even more informative answer is, “What are the ad-
missible rules of a given arithmetical theory?”

This paper is, in a sense, two papers in one. First, we survey results concerning
logics and admissible rules of arithmetical theories. Second, we fill some gaps in our
total picture.

1. We show that the propositional admissible rules of Heyting Arithmid#ic are
the same ones as those of Intuitionistic Propositional LA&C, itself. This
characterization will follow from a general lemma.

2. In Subsectiol®.3lwe present a particularly simple proof that the predicate log-
ical admissible rules of a wide range of constructive theories are conm)gete

3. Inthe appendix we provide some Oregjek-Friedman-style characterizations
of predicate logical admissibility for classical arithmetical theories.

The structure of the paper is as follows. In Sed@bwe review what is known about
the ‘logics’ of constructive theories. Specifically, we will be interested in the case
where the logic of a theory is precisdRC. Some of the results discussed here will
be used as lemmas later in the paper. Seflwill introduce the basics on admissible
rules of arithmetical theories. Sectigicontains the proof of our result concerning
the admissible rules dflA. Finally, in an appendix, we briefly consider what can be
said about the predicate logical admissible rules of classical arithmetical theories.
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1.1 Prerequisites The paper presupposes some knowledge of the Kripke seman-
tics for constructive theories. See, for example, Smsky|[25] or Troelstra and van
Dalen g]. In Appendix/Alwe employ some results concerning definable cuts, re-
stricted proof predicates and the like. A good reference for the material in the ap-
pendix is Hajek and Pudik [IJ). See also Vissel35] and[3§].

2 Theories and logics Let T be any theory formulated in either intuitionistic pred-
icate logic or intuitionistic propositional logic. Let the languageTobe Lt. For

Lua, the usual language of arithmetic with 0, successor, plus, and times, we reserve
the special name& .

Itis a natural question to ask ourselves: what are the schematic principles ‘valid’
in T? The answer to this question will depend on our notion of scheme. Do we mean
scheme in the language of propositional logic, in the language of predicate logic, in
amodal language as in provability logic?

Supposd is atheory in classical logic. Then theopositional schemesvalid in
a wnsistent theory with classical logic are, trivially, precisely the classical tautolo-
gies. The question becomes much more interesting if we consider classical theories
and predicate logical schemes (see Yavor@)[ or if we enrich the propositional
language with a modal predicate famovability (see Boolos[] or Smonyski [26]).

If we consider constructive theories, already the purely propositional case has
some interest. If a theory is ‘purely constructive’, one would surely expect the valid
propositional schemes to be precisely the theorems of intuitionistic propositional
logic IPC. This often turns out to be the case. However, the proofs are surprisingly
nontrivial.

In this section we will survey what is known about propositional and predicate
logics of arithmetical theories.

2.1 Propositional logics of theories Below | present the necessary definitions to
speak a bit more precisely about substitutions, propositional schemes, and the like.
Let 7 be acountable set of propositional variables. The languaggc » is
the language ofPC for the variablegP. We will denotelPC with this language by
IPC(?P). By our earlier convention, we hav@pcp) = Lipc.p. A P-scheme is sim-
ply a formula inLjpc . A scheme is ‘valid’ inT if all of its substitution instances
are T-provable. In most cases we will consider a finite €&tWe will use p, g as the
notation for such finite sets.
Let £ be any language of propositional or of predicate logicPAubstitution
o for L is a function fromP to the set of sentences af The set ofP-substitutions
for £ will be calledsuby ;. In caseL = L1, we will also write subp t. We extend
o € subp  in the usual way tapc » by making it commute with the propositional
connectives including and_L. We will use o (¢) for ‘the extension ob applied to

(8

A P-logic A is a set of Lipc p-formulas that extends the set tRC(P)-
tautologies and is closed under modus ponens and @hdabstitutions fotlpc p.t
So foro € subp jpc(p), Wehavep e A = o(¢) € A. Here are some definitions.

Definition 2.1  Let@ # § C subgp 1. Define
Ap 7(S) '={peLipcp | VoS T F o(9)}
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In caseSis obtained by restricting the range of the substitutions to a class of formulas
©, wewill, par abus de langage, write Ap 7(®) for Ap 1(S).

Definition 2.2  Leto € subp 1. Omitting singleton brackets, we write

Ap1(0) = Ap1({0})
We cdl Ap 1(0) the exact P-theory of o for T.

Definition 2.3  We will omit the set of substitutions, when we are considerig
substitutions of the relevant kind

Ap 1= Ap1(subp 1).

Itis easy to see that » 1 is aP-logic and that for anyP-logic A, we haveA» 5 = A.
We will identify IPC(P) with Ap pc. Note thatAp 1(S5) need not generally be a
logic. Itis easy to see that |fP| < |Q|, thenAp pcq) = IPC(P). We show the
following.

Theorem 2.4 If P > |Q], then A_’P,IPC(Q) 2 IPC(P).

Proof: Supposé?P| > |Q |. Remember that we assum@&hndQ to be countable.
SoQ must be finite. Takg € P, with |Q | < | p|. Let C be the set of all conjunctions
of formulas of the formp and—p, where for anyp € p precisely one of, —=pis a
conjunct. Take? :=\/{—y | y € C}. Clearly,IPC(P) ¥ ©. Suppose € subp pc(q)-

If we did havelPC(Q) ¥ o(¥), then there would befinite rootedQ -model X, with
rootb such thab ¥ o (). For everyy € C, there would be a top nodeaboveb such
thatk I o(y). Thus, there must bat least 2/P| top nodes with essentially different
forcing relation. SinceX is aQ -model there could bat most 212! such nodes: a
contradiction. S@ € Ap pc(q)- O

Note also that ifT is any consistent classical theory, whether in propositional or in
predicate logic, we havap 1 = CPC(P). HereCPC is the classical propositional
calculus.

2.2 Predicate logics of theoriesLet £ be a language of predicate logic. lebe a
theory. AnL-scheme is simply a sentence/n A scheme is ‘valid’ inT if all of its
interpretationsare T-provable. AninterpretationM assigns to a relation symbBlof

L formulas of Lt with designated variables corresponding to the argument places of
R. Weusually assume th&¥ (R) contains no other variables than those representing
the argument places. In cagecontains function symbols we treé{x;, ..., X)) =¥y

as a relation symbolM sends an arbitrary formulaof £ to the result of replacing

allits relation symbol&Rk by M (R), changing the variables representing the argument
places into the variables following a given occurrencdRaf ¢. In casep contains
function symbols, we first apply the well-known procedure for reducing the nesting
degree of function symbols to 1 and then run the procedure we just described. In case
we eliminate function symbols, we demand that the interpreting theory verifies the
translations of the statements expressing the facttiat, . .., x,) = y represents

the graph of a function. Thus being an interpretation becomes dependent not only on
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the interpreting language, but on the interpreting theory. We call the class of interpre-
tations of £Lin T, int, 7.

We often do not want simple interpretations lbaiative interpretations. A rel-
ative interpretation is like an interpretation with the following additional feature.
There is an associated special formiil®) representing the domain of the interpreta-
tion. In relative interpretations we replaeg ... by Vx(8(x) — ...) and we replace
ax ... by IX(E(X) A ...). We demand that thénterpreting theory proves3x §(x).
Thus, whether something is a relative interpretation or not will depend on the inter-
preting theory even in the absence of function symbols. We call the class of relative
interpretations ofL in T, relint 1.

For more details on interpretations, see, for example, Td2SKidr Visser
or [39]. Here are the relevant definitions.

Definition 2.5 Let@ # S C relint, 1. Define
AR (S) = {pesent, | YMeS T M(p)}

In caseSis obtained by restricting the range of the substitutions to a class of formulas
®, wewill, par abus delangage, write A?'(©) for A1 (S).

Definition 2.6~ Wewill omit the set of relative interpretations, when we are consid-
eringall interpretations of the relevant kindAf"T = AffT(relintp,T). Itiseasy to

see that the unrelativized interpretations can be viewed as a subclass of the relativized
interpretations. When we consider unrelativized interpretations, we simply drop the
superscriptel. So,A . 1 := A'f'¢(intp 7).

Itis clear that, when we vieW’ and £ assignatures, our definitions for propositional
logic are simply special cases of the ones for predicate logic. Here are a few further
convenient notations.

Notation 2.7

1L.M: T = T Mo = TF M),
2. T ¢ & IMerelint,r T, M > .
We saythatg is relatively interpretable iff or thatT interpretsp.

We note in passing that Tarski’s notion weak interpretability is reducible toAf]T.
A sentencep of L is weakly interpretable iff if there is a relativel, T-interpretation
M such thatT + M (¢) is consistent. We easily see thats weakly interpretable
in T if and only if A?'; + ¢ is consistent. If we considerdassical theory T we
can regainA'f; from theg that are weakly interpretable if. The notion of weak
interpretability is important because of the following theorem. Qdie Robinson’s
Arithmetic.

Theorem 2.8 (Tarski) If QisweaklyinterpretableinT, thatis, if A;E"T + Qiscon-
sistent, then T isundecidable.

Tarski uses the theorem in his proof of the undecidability of Group Theory#gBe [
Note that it follows that for decidable theories, such as the theory of Abelean Groups,
we haveA' + F—=Q. For results concerning th& . 1 for classical theorie§, the
reader is referred to Rybakd24] and to YavorskylfZ] See also Append[&lof the
present paper. Here are three of Yavorsky’s results.
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. Az pa = CQC(L). HereCQC(L) is classical predicate logic for the language

L2
A croupr = CQC(L). HereGROU P .. is the classical theory of groups

class

with one extra constant.
. Agpre # CQC(L). HerePre is classical Presburger Arithmetic.

2.3 Abrief history of de Jongh’s Theorem We present a brief survey of the devel-
opment of our present knowledge of constructive arithmetical theories and classes of
substitutions that give us precisely constructive logic.

1969

1973

1973

1975

1976

De Jongh shows in an unpublished paper thai o = IPC(P). Heuses
substitutions of formulas of a complicated form. In fact he proves a much
stronger result, viz., that the logic of relative interpretationidfis In-
tuitionistic Predicate Logic, in other worda,?',, = IQC(£L). See the
extended abstradB]. De Jongh’s argument uses an ingenious combina-
tion of Kripke models and realizability.

Friedman in his papef6] shows thatA » ya(I1z) = IPC(P). In fact,
Friedman provides aingle substitutiono mapping?® to IT,-sentences
such thatA » ya (o) = IPC(P). We will say thatIPC is uniformly com-
plete forII,-substitutions irHA. Uniform Completeness tells us, in this
case, that the free Heyting Algebra on countably many generators can be
embedded in the Lindenbaum AlgebrattA. Friedman employs slash-
theoretic methods.

Smonyhski strengthens and extends de Jongh's work in a number of re-
spects in his very readable pad@H]|| To state his results we need a few
definitions. We writeDIT4 for the set of disjunctions ofl;-sentences,
Boole(Z;) for Boolean combinations df{-sentencesMP is Markov'’s
Principle,RFNya is the formalized uniform reflection principle fétA,
TI(=<) is the transfinite induction scheme for a primitive recursive well-
ordering<. We have

Ap1=Ap7(21) = Ap1(DIIy) = IPC(P),

for the following theoriesl: HA, HA+RFN(HA), HA+TI(<). We have
Ap parmp(Boole(21)) = IPC(P). Smonynski uses Kripke models
in combination with the @del-Rosser-Mostowski-Kripke-Myhill The-
orem to prove his results.

Leivant in his Ph.D. thesi§IP] shows that the predicate logic of inter-
pretations of predicate logic iHA is precisely intuitionistic predicate
logic. Leivant’s method is proof theoretical. In fact, Leivant shows
that one can use as interpretation a fixed sequentk-gfredicates. So
Leivant proves that\ ; ya (M) = IQC(L), for somell,-interpretation
M. Leivant's results yield another proof of Friedman'’s results described
above.

De Jongh and Smongki in their paperld]] show thatA 5.HAS (Z1) =
IPC(p). They also show that there is@: P — I, such that
Ap Has(o) = IPC(P).
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1981 Gavrilenko in[[7] shows thaiA B.HA+ECT,(Z1) = IPC(P). HereECTyis
Extended Church’s Thesis. Gavrilenko proves this result as a corollary
of the similar result of Smonyski for HA.

1981 Visser in his Ph.D. thesi&p] provides an alternative proof of de Jongh'’s
Theorem forHA, HA+DNS, HA+ECT, for X;-substitutions adapting
the method of Solovay'’s proof of the arithmetical completenes$bfd.
logic for substitutions irPA. Here DNS is the principle Double Nega-
tion shift. In fact, his proof extends to these theories with appropriate re-
flection principles or transfinite induction over primitive recursive well-
orderings added.

1985 In his [34], Visser provides an alternative proof of de Jongh’s uniform
completeness theorem employing a singlgsubstitution. The proof
is verifiable inHA+Con(HA). (Note that de Jongh’s Theoremmplies
Con(HA), sotheresultis, in a sense, optimal.) The proof use\iNé_-
algorithm, an algorithm that is used to characterize the admissible rules
for X;-substitutions. See below.

1991 Van Oosten in his papeB[l provides a more perspicuous version of de
Jongh’s semantical proof of de Jongh’s Theorem for (nonrelativized) in-
terpretations of predicate logic. Van Oosten uses Beth models and real-
izability. See alsd30).

1996 Using the methods developed by Visser [B3][ and by de Jongh
and Visser in[f] one can prove uniform completeness with respect
to X;-substitutions for HA+ECTy, HA+ECT+RFN(HA+ECT),
HA+TI(<)+ECTy.

Open Question 29  Here are some open questions in this area.

What is the predicate logic ?1{A+MP?
What is the predicate logic ¢{A + ECTy?

We end this section by providing a necessary condition for arithmetical theories to
satisfy de Jongh’s TheoretnConsider a theorf. Suppose\ e intg T. Suppose
we have

1. T, AL - iEA, whereiEA is the intuitionistic version of Elementary Arithmetic,
also known asl Ag + Exp;

2. Tislocally essentially reflexive with respect ta\. This means that proves
the full sentential reflection principle folQC(Lt), where provability is
formalized ‘in A”’; in other words, for any sentence of L1, T
N(@qezn9) = ¢

All extensions oHA in R are locally essentially reflexive. L&t be the single axiom
of (the intuitionistic variant of) Robinson’s Arithmetic.

Theorem 2.10 Let T beasabove. Suppose Ag 1 = IQC(R). Then T is £9-sound
with respect to A\'. Moreover, T is closed under the Primitive Recursive Markov's
Rule with respect to A, that is, for any %9-sentence o, T, A - ——0 = T, A F- 0.
Our two claims together are, clearly, equivalent to the following principle: for any
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x9-sentence o, T, A - ——0 = N = 0.

Proof:  SupposeT, AL - —=—o. Then, T, Al - =—=0Oqc(%)(Q — o), sinceiEA
provesx-completeness foR. Consider anyX € relintg 1. Given the fact that we
just have finitely many function symbols i, we only need a finite subtheory of
T to verify the fact thatX is an interpretation. Suppogeaxiomatizes such a fi-
nite subtheory. We find’, Al - =—=0iqc(zr) (¢ — K(Q — 0)). SinceT is lo-
cally essentially reflexive with respect td(, wefind T - ==X (Q — o). Hence,
TF X(Q — ——o). SinceX was arbitrary, we findQ — ——o) € Ag 1. So, by
our assumptionQC(R) - Q — ——a. SinceQ is classically true, we may conclude
thatN = o. O

2.4 Markov’s Principle and Church’s Thesis In this subsection, we briefly con-
sider cases, where the logics of a theoryrantgorecisely intuitionistic logic. We have
seen that\p yaymp = Ap HarECT, = IPC(P). Remarkably,Ap yaimpieCT,, fO
|P| > 1, turns out to be a proper extensionBC(P).

Consider the formulag and p which are defined as follows.

1. x:=(=pv—0q),

2. p=[(==x—=>x) = (==xv=x)] = (==x v —=x).
Clearly, p is IPC(p, g)-invalid. We user for Kleene realizability. In his classical
paper 23], Rose showed thate VYoesubp ya N = ero(p). Thus, Rose refuted a
conjecture of Kleene that a propositional formuléR€-provable if all its arithmeti-
cal instances are (truly and classically) realizable. Note the remarkable fact that one
and the same realizer realizes all instances! Inspecting the proof one sees that only a
small part of classical logic is involved in the verification of realizability, Markov’s
Principle. See McCarthyif] for a detailed analysis. Thus we obtain

JdeVoesubp ya HA+MP = ero(p).

Hence, a fOftiOfip € A{p’q}’HAJ’_MP_'_ECTO.

Open Question 211  The precise characterization of any of the following sets is
an open problem.

1. Ap HA+MP+ECT,

2. {peLipc p | I&Voesubp yo HA - ero(e)},
3. {peLipc,p | Voesubp ya IEN = ero(p)},
4, {(pGL“:)C,fp | HEVO'GSLIbr.p,HA N Eero(p)}.

One could well imagine that it would be possible to prove the sets (1) and (2) to be
equal without having a characterization. Similarly for (3) and (4).

The situation for substitutions in predicate logic is even more spectacular. In a series
of papers[16], [, [1g], Plisko shows that the set of uniformly realizable principles

of predicate logic is completd}. In other words he shows that, for an appropriate

L, {pesent, | 3e VK € int,thay) N = er K(g)} is completelll. ([L9 provides
arelated result for modified realizability.) In two subsequent paf&isdnd 4],

Plisko shows that\ ; a1 mp-ecT, iS completel19.4
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2.5 Exactness and extension An exact theory is the theory of a single interpreta-
tion. If U = Ap 1(0), or, analogously, for the predicate logical cade= A  t(M),

one says that or M is afaithful interpretation of U in T. For example, the Beltrami-
Poincaginterpretation of hyperbolic geometry in Euclidean geometry is faithful; the
usual interpretation d?PA in ZF is not.

We will show that exact theories inherit a salient property, viz. the extension
property, from their interpreting theories. To set the stage, we first introduce the idea
of E-preservation. Consider a cld&of models (of whatever kind). L& be a binary
relation onK. A classI’ of formulas (with a semantics IK) is E-preserved (in K)
by Rif, for all X € K, wheneverX I- T, then,for some N\ with X RA_, AL IFT. In
a dmilar way we can definé-preservation, by demanding that théor, all A with
KRN, A IFT.

Here is an example of a characterization of a class of formulas empl&ying
preservation, a characterization of formula classes with the disjunction property, due
to de Jongh (see hig]).

Theorem 2.12 (de Jongh) Let K bethe class of (not necessarily rooted) Kripke P-
models. Define:

K < N ifand only if K isa generated (i.e., upward closed) submodel of A’
and 9\ isrooted.

Suppose I' € Lipc.». Then I' has the digunction property if and only if I' is E-
preserved by <.

Let £ be alanguage of either intuitionistic propositional logic or of intuitionistic pred-
icate logic. LetK be the class of Kripke&£-models. We define

K < N if and only if A\ is rooted andX is the result of omitting the root of
N.

We say thatl” € L has theextension property if and only if I is E-preserved by.
Alternatively, we say thal” is extendible. Sd" has the extension property if any
(nonrooted) model df" can be extended with a new root preserving the validity.of
We start with a triviality.

Theorem 2.13  Every extendible theory has the disjunction property.

The theorem is immediate by TheorBniZhnd the fact that is a subrelation ok.
The next theorem establishes a connection between exactness and extendibility.

Theorem 2.14 Let T bean extendibletheory with language L1 andlet o € subgp 7.
Then, Ap 1(0) hasthe extension property.

Proof: SayZ := A (o). Consider any nonrooted Kripk€-model X . Suppose
thatX I- £. Let® := Th(X). Clearly,E € ©. Considery € Lipc » \ ©. We daim
thato (®) /1 o (V).

Suppose that (®) 1 o(¥). Then, forsom& € ©, T - o(0 — ). Hence,
(6 — ¥) € E. It follows that® + v, quod non.

We can find a nonrooted Kripke mod@( of T such that

o H(Th(M)) := {peLipc.o | M IF o(p)} = ©.
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SinceT has the extension property, we can extédo a new modef  satisfying
T by adding a new bottorh. We extendX to K * with a new botton, stipulating
thatc IF p:<= b IF o(p). We show thatc IF ¢ ;<= b IF o(¢) by induction on
Lipc p-

The cases of atoms, conjunction, and disjunction are trivial. Suppbsg —
x. It follows thatX I+ ¢ — x and, hence(y» — x) € ®. Considemrm > b. Suppose
mli- o (). Incasemis in M, we have, by the fact thad/ I- o(®), mi- o(y — )
and, hencemlk o(x). In casem = b, we have, by the Induction Hypothesis}- .
So, by assumption, I x and, hence, again by the Induction Hypothesisz b I-
o(x). The converse is similar. O

Considew € subg |pc (). DeJongh and Visser prove the following theorem (&e|

Theorem 215 A 1pc(p) (o) isfinitely axiomatizable.

The proof uses Pitts’ Uniform Interpolation Theorem. (See Plifd, [Ghilardi
and Zawadowskid], and Visser[gg.) Par abus de langage, we call an axiom of

A pc(p)(0): &5 Note thate, is only determined up to provable equivalence. We
call a formulas axiomatizing some\  |pc(p) (7) a P, P-exact formula. The set of

P, P-exact formulas igxact 5.7

Ghilardi proved that for substitutions iiPC we have a converse of Theo-
remP.14(see his[g]).

Theorem 2.16 (Ghilardi) ~Suppose that ¢ € Ljpc 5 has the extension property.
Then, for some o € subj pc (), Wehave e = &.

Note that Ghilardi’'s Theorem, as stated here, implies tha&ifpc 5 ande is p, P-
exact, there is g, g-exact. Ghilardi's Theorem will be used as a lemma in the char-
acterization of the admissible ruleslgA.

3 Admissible rules

3.1 Finitary admissible rules Let T be a theory and le§ C subp 1. A (P, T, S)-
admissible rule is a pair ofpc p-formulas (g, ¥) such that, for allb € 5, T +
o(p) = T F o(y¥). We say that(e, ¥) is P, T-admissible if it is(P, T, subp 1)-
admissible.

Definition 3.1 Ap 1(S) is the set of P, T, S)-admissible rules.
Ap 1 = Ap 7(subp 7).

Definition 3.2 ¢ Fp 19 = (9, ¥) € Ap 1(S).
o1V = (@, V) € Ap 7.
Note thatA » 1(S) is completely determined by 1 (), sincep € Ap 1(S) if and

only if (T, ¢) € Ap 1(5). We define one more set of rules, thraplications of a the-
ory.

Definition 3.3 J4 :={{p, ¥) | (9 = ¥) € A}.
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Itis well known that, for examplefp q.r}.1PC(p,q.r) 7 SIPC(p,a.r)» SiNCE, for example,
—p—=>(@vr) Mpagrpcipagn CRP—=> Qv (mp—T),

but—=p— (@vr)¥ipcipgr (ZP—=> Qv (=p—T).
Here is the simplest possible result on admissible rules.

Theorem 3.4 The implications of the logic of a theory T are admissible for T.
Moreover, every admissiblerule of T isalso admissible for the logic of T. To be pre-
cise,let A := Ap 1. Wehave Iy C Ap 1 C Ap 4.

Proof:  The firstinclusion is obvious. Suppose that-» . Weproveg ~qp 5 ¥.
Consider any € subgp pc(py and suppose\ - o(p). It follows that, for allr €
subp 1, TH (to0o)(¢). EMo, for allt € subp 1, T F (t00) (). Wemay conclude
A+ o(y). O

In this paper we will show thalls ;5 = Ap jpc, WhereA 5 ya = IPC(P). This shows
that the ‘upperbound’ in Theoref4lcan be assumed. IB] de Jongh and Visser
show thatdg 1y« = Sipc(p), WhereAg - = IPC(P). HereHA™ is the theoryHA +
{Y = Opya=¥ | ¥ € R}, the minimal extension dflA that believes that what is true
is provable irit. This theory is studied i3, [B4], [BZ (arewrite of Z4]), and [F].
The result shows that the “lowerbound” in TheotBrikan be assumed.
We end this section by a brief survey of some theorems about admissible rules.

Theorem 3.5 (Rybakov) The admissible rules of IPC are decidable. In other
words, for any B, G, Ap pc g IS decidable.

For the proof we refer the reader to Rybakav]|

Theorem 3.6 (Ghilardi) Theembedding-pc 5 <= P p5ipc(p) hasaleft adjoint,
say (). 80, 9" Fipepy ¥ <= ¢ Mgipce) ¥ (A isthe *projective approxima-
tion’ of A. (.)* isadisunction of L|PC’5-formuIaswith the extension property. (.)*
is computable.

Note that(.)* considered as an operation of the free Heyting algebra on genepators
is an interior operation. This operation is fully determined by its fixed points. These
fixed points are precisely given by the disjunctions of formulas with the extension
property. Ghilardi’s Theorem provides a new proof of Rybakov’s Thed&einFor
the proof the reader is referred to Ghilafg].[

In the next few theorems, we present some resulfs paubstitutions oveHA.
Why are X;-substitutions interesting? One motivation is the fact that they play an
important role in the study of the provability logic BA. The characterization of the
closed fragment ofiA in and [B7] essentially uses the results described below.
The material has some clear analogies to the results described above on substitutions
over|PC.

A NNIL(P)-formula is aP-formula with no nestings of implications to the left.
We take —p to be an abbreviation ofp — L). So(p — (qv —@)) and—p are
NNIL-formulas, and (p — g) — @) is not aNNIL-formula.

Theorem 3.7 (van Benthem, Visser) The NNIL(?P)-formulas are precisely the
L(P)-formulas A-preserved under taking sub-Kripke models (modulo provable
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equivalence). Here a submodel isa full submodel given by an arbitrary subset of the
nodes.

For the proof we refer the reader &4, [[37), and Visser et all4Q]. Note that the the-
orem makes thBINIL-formulas the analogue of universal formulas in ordinary model
theory. For more on the analogy, sE€]

Theorem 3.8 (Visser) Leto € subg .. Then, A (o) isfinitely axiomatizable,
say by v,. The v, for o € subj; 5, are precisely the NNIL (B)-formulas with the dis-
junction property.

So ‘NNIL-formula with the disjunction property’ is analogous to ‘formula with the
extension property’ in the case of substitutions oNRE. For the proof sed34]
and 7).

Theorem 3.9 (Visser) The embedding

¥
Fipcip = B,HA

has aleft adjoint, say (.)*. S0, ¢* Fipcgp) ¥ <= ¢ M5hua ¥ ()% isaNNIL(P)-
formula. (.)* is computable.

(.)* is completely determined by its fixed points, which are precisely given by the
NNIL-formulas. For the proof seB4] and 7],

Finally, we remark that the theorem bid\*, saying that the admissible rules for
arbitrary arithmetical substitutions ovEIA* are precisely the implications ¢PC,
also fits the pattern exhibited above; here the left adjoint simply is the identity and
the formula class i< p¢ 3.

| theory | substit. | logic | adm. rules| adjoint | form. class]
IPC(P) P— Lipcs || IPCP) | Asipcep) ()" [ D(extensy)
HA p— R IPC(P) | Apipcp) Bk D (extens5)
HA p—> 31 IPC(P) | Apna(Z1) )" NNIL(p)
HA+ECT, P R IPC(P) ? ? ?
HA+MP p— R IPC(P) ? ? ?
HA+MP+ECTy | p— R ? ? ? ?
HA* p— R IPC(P) Sipc(p) idipc(p) Lipc s
PA p— R CPC(P) | Scpcep) idcpe(p) Lipc 5

3.2 Infinitary admissible rules In this subsection, we give an example to the effect
that theinfinitary propositional admissible rules ¢?C andHA differ.> Let T be a
theory and letS C subp 1. A (P, T, S)-admissible infinitary rule is a paifl", ¥),
whereI"’ C Lipc.p andy € Lipc o, such that, forallo € §, T+ o(I') = T F
o(y). Hereo(I') = {o(y) | y € T'}. We say that{T", ) is P, T-admissible if it is
(P, T, subp 1)-admissible.

Definition 3.10  42°;(S) is the set of P, T, S)-admissible infinitary rules.
Ap’t = A1 (sube 7).

Definition 311 T 3T ¥ 1= (T, ) € A3(S).
I o= (T, 9) € A%
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We compare kvf,ffT to validity for finite models. Suppose € Lipc 5, ¥ € Lipc -

Definition 3.12 T I:fri)” ¥ 1< for all finite Kripke p-modelsX, X IF I = X I-
.

Theorem 313 T "y = T ~gipcp -

Proof: Suppose’ |=fFi)” . Consider anyr € subg pc(5, and suppos¢PC(p) -

o(I"). We have 6 show, IPC(P) F o(v). By Theoreni2 13 it is aufficient to show

¢ Fipc(p) V- Consider any finite Kripkgd-model X and suppos& I .. Since,

by Theoren2.15 ¢, + I', wefind X IF I". By assumptionX I v. Since, for fi-

nite premise sets, we have Kripke completeness with finite models, we may conclude
&0 Fipcp) V- EMO,IPC(P) Fo(¥). O

Consider two propositional variablgs g. Let
® :={x—q| x € Lipc,p andIPC(p) ¥ x}.

It is easy to see thad =", . Hence, by TheoreBI3 © r 3 pc (5 0. We now
apply the following lemma due to de Jongh and Visser (&Be |

Lemma 3.14 (de Jongh and Visser) There is an arithmetical sentence U with the
following property. Supposethat A € Lipc o isrecursively enumerable and has the
digunction property. Then thereisa o € subp », With A Fipc(p) ¢ <= HA+ T
().

Clearly, ® is recursive. Moreover, a simple Kripke model argument shows@hat
has the disjunction property. Letbe as given in Lemm&TI4 Since® ¥ pc(p.q) G
we haveHA + U + ¢(®) andHA + U ¥ o(q). Considert with t(p) = o(p) and
7(q) .= (U — o(q)). By elementary propositional reasoning, we fiH& - 7(®)
andHA ¥ 7(q).

3.3 Admissible rules in the predicate logical languagélo get our discussion off
the ground, we need to fix a basic arithmetical theory. In this section, we take as our
theoryiEA. iEA is the constructive version &A, ementary arithmetic also known
aslAg + Exp. The theory consists of intuitionistic predicate logic, the usual univer-
sal axioms for successor, plus and tima&gsinduction, and an axiom expressing the
totality of exponentiationiEA is finitely axiomatizable. We will useE’ to denote a
single axiom axiomatizingeA.®

We present some results about admissible rules for arithmetical theories. Here
is an example of a principle that holéts any RE theory T, whether it contains any
arithmetic or not.

rel

& EACon(T) g L.

In fact, & is just a reformulation of th&cond Incompl eteness Theorem.

Weshow that for a wide class of constructive theofiagith a modicum of arith-
metic we have that, for a suitable 4, 1 is completel,. Consider an RE theory.
Suppose\ is a relative interpretation aEA in T with domainv. We remind the
reader of Friedman’s amazing theorem that the disjunction property implies the exis-
tence property.
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Theorem 3.15 (Friedman) Let T be as described above. Suppose T has the dis-
junction property. Then, T has the A/-numerical existence property, that is, for any
o(X), with only x free, if T - Ix(v(x) » (X)), then, for some natural number n,
TEF3Ix(v(X) A N(X=n) » ¢(X)). (We could also write T - ¢(n), as long as we
keep in mind that we are dealing with the numeral according to 4\(.)

Proof: The proof is, word for word, Friedman’s original proof, just keeping an
eye open to see whether everything can be done usinggastNote that we need
things like the provable decidability of thgroof-predicate and the presence of the
>1-minimum principle. O
The business of the interpretation helps us to apply Friedman’s theorem, for example,
to atheory likeZF in which the numerical language is only present via interpretation.
Since, the numerical existence property in its turn implies the disjunction property,
Friedman’s theorem tells us that the numerical existence property is ‘invariant’, that
is, independent of the choice of the interpretation=as.

Here is an alternative formulation of Friedman’s theorem. Let us exfernd
a languageL by adding a unary predicate syml®l Let A[[P := ¢] extend\ by
interpretingP by ¢. Wedemand thap has at mosxk free. Suppos@& has the disjunc-
tion property. Then, we have

T AN[P:=¢]lFIXxPx=3ncow T, N[P:=¢] - Pn.
We cannow prove our theorem.
Theorem 3.16 Let T be as described above. Suppose T has the disjunction prop-
erty. Then, A%} is complete IT.

Proof: Letebe anindex of a partial recursive function. We show how to reduce the
problem of the totality of.n.{e}n to ,‘ZlE'T. We claim,

vn{eln| <= (EAIxPx~51Ix(PxA3yT(e X.y)).

HereT(u, v, w) stands for Kleene’'J-predicate. We verify our claim.

(<) Assume the right-hand side of the claim. Consider any natural number
Clearly,
T, A[P:= (x=m] + E A 3xPx.

(Heren is the Al-numeral.) Ergo, by assumption,
T, N[P:=(X=m]F3X(PxA3yT(&Xxy)).

In other words,T, Al - 3y T(e, n, y). SinceT is consistent and has the numerical
existence propertyl satisfiesz,-reflection. We may conclude thégin |.

(=) AssumeVvn {e}n |. Consider any relative interpretatioh and suppose
T, M + E A~ 3x Px. By Friedman’s Theorem, for sonre T, M ~ Pn. By assump-
tion, {e}n |. Hence, byxi-completenessl, M 3y T(e, n, y). We may conclude
T, MEIX(PxAIyT(e X Y)). O

Certainly not all arithmetical theories give rise fp-complete sets of admissible
rules. For exampled, pa is not completdlI,. This is immediate from the charac-
terization of4, pa given in AppendiXal
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4 What extendability means for admissibility In this section we will show that the
admissible rules dflA are the same as the admissible rule®d. This result follows
from the main lemma of this section.

4.1 The main lemma

Lemma4.l Suppose T has the extension property and suppose A 1 = IPC( P).
Then, the p-admissible rules of T are the same as those of IPC([5). In other words,

We will prove the main lemma from two lemmas. These lemmas are stated and
proved in the next two subsubsections.

4.1.1 The disjunction property The lemma of this subsubsection tells us that cer-
tain restrictions of sets of formulas with the disjunction property inherit the disjunc-
tion property.

Lemma4.2 Let A C Lipc o beany deductively closed propositional theory with
the digjunction property. Let X be any adequate set, that is, let X be closed under
subformulas. Ax := A N X. Then Ax has the disunction property.

Proof: SupposeAx - g1 v ¢ andAx H ¢ fori =1,2. Fori = 1, 2, letX; be a
P-model such thaf; I+ Ax and X Iff ¢i. We can construct a modeK’s such that
A = Th(X3). Let K be the disjoint union of th& fori = 1, 2, 3. ClearlyX IF Ax
andX Iy ¢i, fori =1, 2. We construct a new mod&{ ™ by adding a new rodt under
the K. Putb I p:<= p e Ax. We show by induction onX: ¢ € Ax = b IF ..
The cases of atoms and conjunction are trivial.

Supposdv v p) € Ax. Thenv € A or p € A. Suppose, for example, e A.
Sincev € X, it follows thatv € Ax. Hence, by the Induction Hypothests|- v and
thus,bIF v v p.

Supposgv — p) € Ax. Consider any nod& and supposé& IF v. If k € K,
we are done, sinc& IF v — p. If k= b, we have, by persistenc& I v and hence
X IF p. By the Induction Hypothesis I- p.

Wefind b I Ax, b ¥ ¢1 v ¢2: acontradiction. O

4.1.2 e-Compactness We prove a kind of compactness result. We state the lemma
in the infinitary version, where in fact we will use only the finitary one.

Definition 4.3

1. Letextensp be the set off|pc p-formulas with the extension property.

2. Aset of Lipc p-formulasr is e-compact if
'@ = Jecextensp 'k ¢ ande - ¢.

3. 1n(q) is the set ofLp¢ g-formulas of which the nesting degree of implications
is smaller than or equal ta

Theorem 4.4 T hasthe extension property if and only if T" is e-compact.
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Proof: Supposd” has the extension property. We show thds e-compact. Con-
siderg C P. DefineT'n(G) := {y<ln(G) | T F y}. Clearly,I'n(§) is finitely axiomatiz-
able. Moreover, whenevér- ¢ there aren andd C P such thatl'n(q) - ¢. Without
loss of generality we may restrict ourselvesiter 1. So it is sufficient to show that
I'h(G) has the extension property, for> 1.

Consider any nonrootefi-model K with K I+ T'n(G). Let

® .= Thq,n_l(?() = Th(X) N Ih-1(0).

We show that, fory € 1,_1(G), ', ® - ¢ = O I v, in other words, thal' U © is
In—1(G)-conservative ove®.

Supposd’, ® + . Then, for som& € ©, " - (6 — ). We have, clearly,
that (& — ¥) € In(q), and hence(8 — ¥) € I'h(G). Wefind K I 6, sinced € O,
andX I- (0 — ), since(®@ — ) € I'n(G). SoXK I- . Moreover,yr € In_1(q), SO
Ve 0.

Consider anyP-modelM such thafTh(M) = dc(I" U ©). (Heredc stands for
deductive closure.) Note that

Th(j,nfl(K) =0= Thq’,nfl(M)-

Let M* be a downward extension 6ff with a new bottonb such thatV* I- I". We
extendX to K* by adding a new bottormy with ¢ IF p:<= b - p.
It is easy to show by induction that

foranyy € 1h_1(q), clk ¥ < bl .

We show thate I T'h(G). T has the extension property and, hence, the disjunction
property. So, by LemmE.2] I'n(G) has the disjunction property. Our proof is by
induction ony € I'n(G). The cases of atoms and conjunction are trivial. The case of
disjunction is immediate by the fact thgg(q) has the disjunction property. Suppose
thaty = (v — p) € I'n(4). We want to show that I- (v — p). Clearlyb I- (v — p)
andv, p € 1,_1(G). Consider ank > ¢ and suppos& I v. To showk I- p: in case

k # ¢, we are done by the fact thatis in K andX I+ I'(G). Supposé& = ¢. Then it
follows thatb I v and henceb I+ p and thusg I p.

We prove the converse. SuppoBds e-compact. It is our standing assumption that
Pis countable. SayP = {py, P2, ...}. LetBi :={ps,..., pi}. Takeyp := T and let
vne1 be the formula with the extension property such that

1. T+ Yn+1s

2. Ynyrbvna /\Fn(ﬁn)»
3. yny1is the firstin a suitable enumeration of formulas satisfying (1), (2).

We prove by induction thay;, is defined and thall F y,. It isimmediate thal is
axiomatized by the,,. Consider anyP-model K of I". For eachn we can add a
new rootby, to K such thab,, I- y,. Let Tree be the set of 0,1 sequenaesuch that
a € Treeif and only if, for infinitely manyn, for all i < length(a), bp IF pj < «j =
1. Itis easy to see thdree has an infinite patlr. Add a new root to %, setting
clF pj <= m; = 1. Itis immediate that I T". O
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4.1.3 Proof of the mainlemma Supposd has the extension property and suppose
Apt= IPC(pP). We will show that the admissible rules df are the same as those
of IPC. In other words, we havél; 1 = A5 ipc(p)-

Proof: Theoreni3.4ltells us thatds + € A5 pc(p)- We prove the converse direc-
tion. Suppose thap 5 pc(5) ¥ and suppose, fos € subg 1, that T = o (g). It
follows that A (o) - ¢. SinceT has the extension property, we may conclude,
by Theore that A5 1 (o) has the extension property. Hence, by Lentnd
there is ane € extens; with A5 (o) - ¢ ande - ¢. By Theorem2.16 we can
find at € subj pc(p), such thate = ¢;. Ergo, IPC(P) + t(¢). By assumption,
IPC(P) - t(¥). Hences, - ¥ and SOA 1(0) . Wemay concluderl = o ().

[l

Remark 4.5 There are afew alternative ways to set up the machinery leading to the
main lemma. If you think about the extension property, it is easy to see that the forcing
in the new bottom just depends on the atomic forcing in the new bottom atitbtng

of the original model. This shows that we can think of the extension property in a
purely syntactical way. Thus we could set up things using slash theoretic methods
rather than Kripke models. This alternative is very close to our present setup. My
choice for Kripke models is purely a matter of taste.

A second alternative approach is just in the other direction: rather less than more
syntactical. It is to use bounded bisimulations in the way Ghilardi uses theg in [
This approach has the advantage of connecting to more theory. It is, perhaps in the
end, more beautiful and, again perhaps, more open to generalization. However, it
would take a bit more work to set it up.

4.2 Applications of the main lemma

4.2.1 Intended consequenceslit was our intention in proving the main lemma to
characterize the admissible rulestdh. Here is the argument. Every Kripke Model

of HA is extendible by» preserving the validity dfiA in the model. Adding roab is
calledSmorynski’s operation. So,HA has the extension property. We already know
thatHA satisfies de Jongh’s Theorem. By the main lemma, we may conclude that the
admissible rules oflA are the admissible rules &?C.

Note that if § € 7 C subp », thenAp +(7) C Ap 1(S). Since we have de
Jongh’s Theorem fok;-substitutions, it is clear that we should be able to restrict
the substitutions leading to the characterization of the admissible rules. Inspection of
the proof gives UsAg ya (Boole(21)) = Ay 1pcp)-

The use of Boolean combinations is essential here. It is easy to see that
A ya(21) strictly extends? pc (), Snce——p ng’lHA p (Markov's Rule), buinot

——pP M p,ipc P (substitute(p v —p) for p).

The same considerations show that the admissible rulgsAsfRFN(HA),
HA+TI(<), andHA+DNS are the same as thosel®IC. SinceAp q; HA+MP+ECT,
strictly extenddPC(p, q), clearly, the admissible rules 6fA + MP + ECT, are not
those oflPC(p, q).
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Open Question 4.6

What are the admissible rulesldA + ECT?
What are the admissible rulesldfA + MP?

4.2.2 Random applications In this subsubsection we provide a few more or less
randomly chosen examples: the theory of groups and the theory of fields. For infor-
mation about these theories, see, for example, van Dalen and Trtra [

The basic theory of apartne8®P is given by the following axioms.

ID The usual axioms for identity
APl —X#y<=Xx=Yy

AP2 x#y— y#X

AP3 x#y—> (X#zvy#2)

Note thatAP2 follows from the other axioms. If the language hasaary function
symbol f, we will often insist that the corresponding functionsisictly extensional:

SE(f) f(X, ... %) # FOK, ..., %) — Vil X #X

The constructive theory of groups with apartn@®OUP,, is formulated in the lan-
guage with symbols:, #, -, 71, e. Its axioms are the apartness axioms plus the usual
universal axioms of group theory and finally, two axioms expressing the strict exten-
sionality of - and—1.

We show thatA ¢ group,, = IPC(P). Consider any formulg € Lipc » such
that IPC(P) ¥ ¢. Suppose that the propositional variablesgoire amongp =
{Po, ..., Pn_1}. Let X be a rootedd-countermodel te.

We convertX to a modelX’ for GROUP,,. First, X’ has the same ordering as
X. Let 7 be an injective mapping of = {0, ..., n — 1} to the prime numbers. Let
Z; be the additive group of the integers modulaZ; is the trivial group. Define a
mappingv : K x n — w as follows.

[ w) Kl
v(k.D) = { 1 otherwise.

We assign to the nodethe group]_[i”:_ol Z,«.iy- Westipulate that in a given node two
elements are apart whenever they differ. The further details are obvious.

Definition 47  o(pi) = 3IXx (XD =14 /\’j’j;‘lxi #1)

It is easy to see thdtlF4 <= Kl o(¥). Ergo, X' ¥ o ().

GROUP,, has the extension property, since we can always add the trivial group
as root preservinGROUP,,. We may conclude thafl; group,, = Ap.ipc(p)-

The weak constructive theory of fiel#$ELD ™~ has a language with the follow-
ing symbols:=, #,-,+, —, 0, 1. FIELD™ has as axioms the apartness axioms, the
usual universal axioms of the theory of commutative rings, axioms expressing the
strong extensionality of- and -, plus the following axioms.

INTEGRAL x#0Ay#0=— x-y#0
INVERSE X#0—>3Jy x-y=1

The full theory of fieldsFIELD is obtained by adding the following axiom EGELD .
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NONTRIV ~ 0#1

Note thatinFIELD the axiom integral becomes derivable from the other axioms. Note
also thatFIELD does not have the disjunction property, since, for example, 3 # 0
3 # lis derivable. We obtaiRIELD.,,—0, the theory of fields of characteristic 0, by
adding the following axioms teIELD .

n+1

—_——
CHAR=0 O#n+1,wheren+1:=1+4..-+1

Note that inFIELD,,,—0 We can derive of any two different elements(@that they
are apart. We can easily prove de Jongh’s TheorentfetD . —0. We Smply
proceed as in the case of groups, only how we assign to the ke structure
QUK 1) |i € n}). Wetakeo(p;) := (3x x? = 7(i) ). Note that we automatically
obtain de Jongh’s Theorem f6tELD~ andFIELD, too.

FIELD™ has the extension property. We can always #@dds root, preserv-
ing FIELD™. Here we arrange it so that no two different element& aire apart
at the root.FIELD does not have the extension propef{ELD,,,—g, On the other
hand, does have the extension property. We can alway&)aaiia root, preserving
FIELD.nar—o. Here we stipulate that whenever two rationals are different then they
are apart at the root. We may conclude tA3t e, p- = A rieLp,,,_, = A5.1PC(p)-

Open Question 4.8  Characterized; gig p-
Appendix

A The predicate logical admissible rules ##A In this appendix we provide char-
acterizations for predicate logical admissibility in arithmetical theories in the style
of the Orey-Hajek and the Friedman characterizations for interpretability. The ap-
pendix uses some machinery not presupposed in the rest of the paper. See, for exam-
ple, [0], [B3], and [B8).

Let Q be Robinson’s Arithmetic. We work with a slightly stronger the@ryin
which the methodology of definable cuts works smoothly. is Q plus the axioms
expressing that the usual ordering on the natural numbers is a linear ordering. It is
well known thatQ interpretsQ™. We will call T arithmetical or an arithmetic if Q
is interpretable ifT.” We fix some notations and introduce some conventions.

Notation A.1

1. R is the arithmetical language, with 8, +, -.

2. We write A for the formalization of cut-free or tableaux provability. See, for
example, Wilkie and Parif[l] for a description of tableaux provability. We
write V for cut-free or tableaux consistency, §as —A—.

3. O stands for ordinary provability an¢t := —O—, in other words,& means
ordinary consistency.

4. O, stands for provability with a proof in which all (nonlogical) axioms used
have del numbers smaller thanand in which only formulas occur of com-
plexity smaller tham. <p = —0Op—.

5. Unless in those cases where it is stipulated otherwise, our theories are RE.
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In our first few theorems, we connect admissibility for substitutions in an arbitrary
language with admissibility for substitutions in the arithmetical language.

Theorem A.2 Let T beanyclassical theory. T could becomplete I, T could have
just a propositional language with only O-ary predicate symbols, or T could be even
inconsistent! We have

| |
oMo = (Q" A Veqen®) f“rng Acqco) (9 = V).

Proof: Assume the antecedent of the theorem. Considefdnyrelint . t and sup-

poseT, AL QF A Veqer)e- Inthe theoryQt A Veqe(r)¢, We @n construct an

interpretationk’, such that

1. QA Veqewne. K F o,
2. Q" A Veqe (@ r =y, K- a -

One uses the formalized model-construction for tableaux in combination with the
methodology of shortening cuts, developed by Solovay,&#ydind Wilkie and Paris.

A detailed verification of the construction can be found in Kalsbék§ One uses

the definable cuts to compensate for the lack of induction. The disjunctive effect
can be obtained, for example, by constructing two interpretationand X, cor
responding to (1) respective to (2) first, and taking, for example,

K(P) 1= ((Ka(P) n Acqcny= (@~ =¥) v (K2(P) A Veqer) (9 2 ~¥)) ).
Taking M = N o K, wefind T, M - ¢. Hence, by assumptiof,, M + . But
then, T, AL F =(Q" A Veqer) (¢ ~ —¥)). Since, by assumptiorT,, AL - QT, we
may concludeT, AL+ Acqc (@ — ¥).° O

A theoryT is sequential if there is an interpretatiof\| of Q* for which we have a
good theory sequences of all objects of the theoflydmd where we can find elements

of the sequences by projecting using tifenumbers (sedll]). The relevant feature

of sequential theories here is the possibility of constructing partial truth-predicates in
such theories. This allows us to prove things like cut-free consistency of finite sub-
theory on a definable cut.

Theorem A.3 Let T beaclassical, sequential theory. Then,

| [
Q" A Veqew®) M1 Acqe) (9 = ¥) = ¢ LT

Proof: Suppose thal( provides the numbers involved in the sequentiality oAs-

sume the antecedent of the theorem. Supposd&it#t- ¢, for someX € relint, 7.

Since our theory is sequential, we can produce a defin&btaut, I, such that

1. TEN(I(Acpcny—9)) = K(—9),
2. TEAN(I(Acpcir)(@ = ¥))) = Ko — ¥).

The proof of this fact employs the construction of a partial truth predicate and a vari-
ant of the standard proof of the reflection principle, using the transition to a definable
cut to compensate for the lack of induction. (See, for detdild,f Let M := N o I.
We hare T, M + Q*. FromT, X I ¢ and (1), we find thal, M - Q" » Vcqce o) -
Ergo, by assumptioril, M = Acqcr) (¢ — ¥). By (2) and the definition o/, we
getT, X + ¢ — . We may conclude that, X + . O
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Combining Theorené.2landA.3] we state the following.
Theorem A.4 Let T beaclassical, sequential theory. Then,

rel

|
o b1 ¥ <= Q' A Veqen9) f”r;{,T Acqcin) (@ — V).

Letaritht := {Merelintg | T, M - Q*}. The characterization of the predicate logic
of T provided by Theorerd.4lis as follows.

Corollary A.5 Let T beaclassical, sequential theory. We have

[ .
L yeArt & QMg 1Apcip¥ <= Ag r(arith) = Apc) v
2. Topp= Trg (QF A Veqen)®)-

Proof: (1) is immediate. We prove (2). In ca3eis inconsistent, we are immedi-

rel

ately done. SupposEis consistent. Theil >, ¢ <= — (¢ 1 1). The desired
result is now immediate. O

A theoryT is weakly ¥;-sound, if, for all £;-sentences, Q" rv;eil,T 0= N o,
in other words, ofA ¢ t(aritht) N senty, € Th(N). Note that a weakly:-sound
theory is automatically an arithmetic. A thedfys 21, A\-sound, for A € relintg T,
if T, A+ Qt and, for allo € senty,, T, AL+ 0 = N = 0. Finally, T is strongly
>1-sound, if T is 21, A-sound, for some\/.

Theorem A.6 Let T be a sequential theory that is weakly 31-sound. Then,

rel

e1¥ = (Too= CQULHFo— V)

Proof: Suppose (ap kvf}T v andT >, . By CorollarylA.5] we canfind an e
relintg o, such that (b)T, AL+ Qt A Vcqce(r)¢- By weak Z;-soundness, it is suf-
ficient to show that, for evergM € aritht, T, M = A, 1(¢ — ). Consider any
M e aritht. We aan find definable cutg and 7 of respective\l and M that are
T-provably isomorphic. (See Puk or or [36].) By downward persis-
tence ofI1;-sentences, we find, Ao I = Q" A Vcqcre. By isomorphism, we
obtain T, M o 7+ Q* A Vcqcre. Applying TheorenfA.4lto (a) and (b), we get
T, Mo+ A 1(p — ). By upward persistence af;-sentences, we fin@, M ~
A, 1(p — ¥). The converse is trivial. O

An alternative formulation of our theorem &, 1 = (INT"L,T x senty) U Icqc(r)-
HereINTZ ¢ =sent, \ INT. 7.

Corollary A.7 Let T be a sequential theory that is weakly Xi-sound. Then,
Ar1=CQC(L).

Proof: Obvious. O
Corollary 5.3 of Bg] tells us that a consistent finitely axiomatized sequential theory
T is weakly £;-sound. From Theorem 5.9 d&, we can even show that such a

T is stronglyXi-sound. The result is somewhat delicate in that the theorem may be
verifiable inT itself: for someM, A\ € aritht, and for allo € senty,,

T, M+ (O1T A DT:']\[(O')) — 0.
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Familiar Gddelean results do not yield a contradiction, but only the observation that
M and\ cannot be the same. The above results lead us immediately to the following
corollary.

Corollary A.8 Every consistent finitely axiomatized sequential theory T satisfies

[
o TV = (Terp=>CQC(L) o — ¥).
Proof: If T is inconsistent, we are immediately done.Tlfis consistent, we may
apply the results quoted above. O

Note that for the case of finitely axiomatized theor{dﬂTCL’T x sentz) U Icqc(s)
becomes the union offd;-set with aX,-set. Examples of theories to which the corol-
lary may be applied ar€B, ACAy, | =, | Ag + Exp, QT. To each of these theories
we may add finitely many axioms without invalidating the result—as long as we pre-
serve consistency.

The situation for theories satisfying full induction is rather different.

Theorem A.9  Suppose there is an A with domain v, such that T, A’ = Q" and
such that T proves full induction with respect to the whole language for the A\-
numbers. So T proves

[3X (W(X) A N(X=0) 7 (X)) A
VX ((0(X) A @(X)) = 3y (0(Y) A N(SX=Y) A 9(Y))] = VX (1(X) = @(X)).

Then we have

o MY == (T.AF Ocqew = T.AF Ocqein (@ — ¥)).
Proof: (=) Assume the left-hand side of the theorem. Supp®sé(
Ocqerye- If we have full induction, we can provBupexp, the axiom stating the
that the superexponentiation function is total. If we have superexponentiation, we
can prove cut-elimination. Hencé, will be provably equivalent t&/. We may ap-
ply TheoremA4]to obtainT, Al - Acqc(z) (¢ — ¥). Hence, a fortiori,T, A -
Heac (@ = ¥).

(<) Assume the right-hand side of the theorem. Consider any arithmetical
interpretationX’. SupposeT, X - Vcqcen) - Since\ satisfies full induction, the
AN -numbers will be verifiably an initial segment of tlié-numbers. By downward
persistence ofIl;-sentences, it follows thafl, A| = Vcqc) e Hence,
T. N+ Ocqerye- By assumption, we geT, AL - Ocqcr) (9 — ¥). Hence,
T. A+ Acqcr) (9 — ). By upward persistence &;-sentences, we fin@l, X -
Acqc(z) (@ = ). Wemay apply Theoref.4]to obtain the desired conclusion]
Note that the present theorem mal&st aunion of all;-set and &-set. Examples
of theories to which the theorem can be appliedR&eandZF. Note that we cannot
drop the T I ..." in the conclusion, since, for exampl@; kv,rf)\mPAl OpaL and
evenAg patop,t - QT — Opal.

Corollary A.10 Suppose thereisan A\’ with domain v, suchthat T, A - Q™ and
such that T proves full induction with respect to the whole language for the A\/-
numbers. Then
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1 yeArt & T, N FOcqcw)¥,
2. ToLo—= T, NF CLcqewn)e

We can strengthen the above result by considering reflexive and (locally) essentially
reflexive theories. Consider a thedFyand an/\( € aritht.

Definition A.11

1. Tis N\-reflexive, if foralln € w, T, N\ = O1nT.
2. T is locally essentially)\(-reflexive, if for alln €  and for allg € sent,.,
T N(DT,n(P) - Q-

Theorem A.12 Suppose T islocally essentially A/ -reflexive. We have

rel

oY = Incw (T, N F Ocqewyne = T, N'F Ocqcw).n(@ = ¥)).

Proof: (==) This partofthe proofis fully analogous to the proof of Theoeil

(<) Assume the right-hand side of the theorem. hdie the promised number.
Suppose thak is a relativeL, T-interpretation such tha, K + ¢. It follows that,
for somek, we haveT, AL F O1 K (¢).

Reason inT, \'. Supposélcqc(s).n—¢. Then certainly for an appropriate stan-
dard numbem, Ot &K (—¢). Takingq := max(k, m), wefind Ot qL. Quod non, by
N -reflexivity. We may concludecqcr).ng-

Leaving T, A/, we seethat T, A - $cqce(rye- By our assumption, we find
T, ALF Ocqcr).n(¢ = ¥). Hence, for some, we haveT, AL - O1 K (¢ — ¥).
Combining this withT, A = O1 (K (¢)), we find thatT, Al - Ot K (¥), where
s=max(n, r). By reflection, we obtail - K (v). O

TheorenA.12]substantially extends Theordfm9] sincelocal essential reflective-
ness is much weaker than full induction. Our theorems still give no information about
Primitive Recursive Arithmetid?RA. PRA is reflexive andx;-sound with respect

to the identity interpretation. The following theorem does the trick.

Theorem A.13  Suppose T is A -reflexive and =1, A -sound. Then we have

rel

® r\JL,T 1// = Elnea)(T, 9\[ = QcQC(L)gO — CQC(L) = @ —> l[/)
Proof: The proof is a trivial variation of the proof of Theord¢iml?2] O
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NOTES

1. | feel that this usage dbgic is slightly perverse. The correct notion of logic should
obviously explicitly contain the machinery for obtaining theorems. The current usage
should be viewed as a convenient way of spealkiritpe present context.
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2. In AppendifAlwe will prove a result that immediately implies this fact.

3. The argument is inspired byd@el's observation that the completeness theorem for or-
dinary models of predicate logic constructively implies Markov’s Principle.

4. Both qua content and qua methodology Plisko’s result is similar to Vardanyan’s result
that the predicate provability logic & is completel1d. Seel[] for an exposition and
further references.

5. The example is an adaptation of Example 2.45f [

6. | am sure that we can do better and work with a suitably large finite fragméha g+
Q1, the constructive version of Wilkie and Pari$'a, + Q1 [21].

7. Alternatively, we could demand that an appropriate weak set theory is interpretable. See
Montagna and Mancinf].

8. Another way to obtain the same result is as follows. First we prove that, for a suitable
definable cutl, Q™ A Vcqco) x. I+ <Ccqecr).nx- This uses the fact that cut-elimination
for ann-proof is only multi-exponential. Then we construct a relative interpretadion
such thaQ*t A Ocqeir).nx, O F x. Weobtain thisO by the ordinary formalized Henkin
construction applied to formulas of complexity belowSee [B5] TakeX := I o O.

9. We work with a version of tableaux provability in which the transformation from a
tableaux proof of=(p A =) to a tableaux proof ofp — ) is easy, perhaps even sim-
ply definitional.
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