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Rules and Arithmetics

ALBERT VISSER

Abstract This paper is concerned with thelogical structure of arithmetical
theories. We survey results concerning logics and admissible rules of construc-
tive arithmetical theories. We prove a new theorem: the admissible proposi-
tional rules of Heyting Arithmetic are the same as the admissible propositional
rules of Intuitionistic Propositional Logic. We provide some further insights
concerning predicate logical admissible rules for arithmetical theories.

1 Introduction Can we say anything interesting about the logical structure of con-
structive arithmetical theories? We might ask, for example, what the ‘logic’ of such
a theory is. A question with an even more informative answer is, “What are the ad-
missible rules of a given arithmetical theory?”

This paper is, in a sense, two papers in one. First, we survey results concerning
logics and admissible rules of arithmetical theories. Second, we fill some gaps in our
total picture.

1. We show that the propositional admissible rules of Heyting Arithmetic,HA, are
the same ones as those of Intuitionistic Propositional Logic,IPC, itself. This
characterization will follow from a general lemma.

2. In Subsection3.3we present a particularly simple proof that the predicate log-
ical admissible rules of a wide range of constructive theories are complete�0

2.

3. In the appendix we provide some Orey-Hájek-Friedman-style characterizations
of predicate logical admissibility for classical arithmetical theories.

The structure of the paper is as follows. In Section2, wereview what is known about
the ‘logics’ of constructive theories. Specifically, we will be interested in the case
where the logic of a theory is preciselyIPC. Some of the results discussed here will
be used as lemmas later in the paper. Section3will introduce the basics on admissible
rules of arithmetical theories. Section4 contains the proof of our result concerning
the admissible rules ofHA. Finally, in an appendix, we briefly consider what can be
said about the predicate logical admissible rules of classical arithmetical theories.
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1.1 Prerequisites The paper presupposes some knowledge of the Kripke seman-
tics for constructive theories. See, for example, Smoryński [25] or Troelstra and van
Dalen [28]. In AppendixA we employ some results concerning definable cuts, re-
stricted proof predicates and the like. A good reference for the material in the ap-
pendix is H́ajek and Pudĺak [10]. See also Visser [35] and[36].

2 Theories and logics Let T be any theory formulated in either intuitionistic pred-
icate logic or intuitionistic propositional logic. Let the language ofT be L T . For
LHA, the usual language of arithmetic with 0, successor, plus, and times, we reserve
the special nameR .

It is a natural question to ask ourselves: what are the schematic principles ‘valid’
in T? The answer to this question will depend on our notion of scheme. Do we mean
scheme in the language of propositional logic, in the language of predicate logic, in
amodal language as in provability logic?

SupposeT is a theory in classical logic. Then thepropositional schemes valid in
a consistent theoryT with classical logic are, trivially, precisely the classical tautolo-
gies. The question becomes much more interesting if we consider classical theories
and predicate logical schemes (see Yavorsky [42]), or if we enrich the propositional
language with a modal predicate forprovability (see Boolos [1] or Smorýnski [26]).

If we consider constructive theories, already the purely propositional case has
some interest. If a theory is ‘purely constructive’, one would surely expect the valid
propositional schemes to be precisely the theorems of intuitionistic propositional
logic IPC. This often turns out to be the case. However, the proofs are surprisingly
nontrivial.

In this section we will survey what is known about propositional and predicate
logics of arithmetical theories.

2.1 Propositional logics of theories Below I present the necessary definitions to
speak a bit more precisely about substitutions, propositional schemes, and the like.

Let P be acountable set of propositional variables. The languageL IPC,P is
the language ofIPC for the variablesP . We will denoteIPC with this language by
IPC(P ). By our earlier convention, we haveL IPC(P ) = L IPC,P . A P -scheme is sim-
ply a formula inL IPC,P . A scheme is ‘valid’ inT if all of its substitution instances
are T-provable. In most cases we will consider a finite setP . Wewill use �p, �q as the
notation for such finite sets.

Let L be any language of propositional or of predicate logic. AP -substitution
σ for L is a function fromP to the set of sentences ofL . The set ofP -substitutions
for L will be calledsubP ,L . In caseL = L T , we will also write subP ,T . We extend
σ ∈ subP ,L in the usual way toL IPC,P by making it commute with the propositional
connectives including� and⊥. We will use σ(ϕ) for ‘the extension ofσ applied to
ϕ’.

A P -logic � is a set ofL IPC,P -formulas that extends the set ofIPC(P )-
tautologies and is closed under modus ponens and underP -substitutions forL IPC,P .1

So forσ ∈ subP ,IPC(P ), wehaveϕ ∈ � =⇒ σ(ϕ) ∈ �. Here are some definitions.

Definition 2.1 Let ∅ �= S ⊆ subP ,T . Define

�P ,T (S) := {ϕ∈L IPC,P | ∀σ∈S T 	 σ(ϕ)}
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In caseS is obtained by restricting the range of the substitutions to a class of formulas
�, wewill, par abus de langage, write �P ,T (�) for �P ,T (S).

Definition 2.2 Let σ ∈ subP ,T . Omitting singleton brackets, we write

�P ,T (σ) := �P ,T ({σ})

We call �P ,T (σ) the exact P -theory of σ for T .

Definition 2.3 We will omit the set of substitutions, when we are consideringall
substitutions of the relevant kind

�P ,T := �P ,T (subP ,T ).

It is easy to see that�P ,T is aP -logic and that for anyP -logic�, we have�P ,� = �.
We will identify IPC(P ) with �P ,IPC. Note that�P ,T (S) need not generally be a
logic. It is easy to see that if|P | ≤ |Q |, then�P ,IPC(Q ) = IPC(P ). We show the
following.

Theorem 2.4 If |P | > |Q |, then �P ,IPC(Q ) � IPC(P ).

Proof: Suppose|P | > |Q |. Remember that we assumedP andQ to be countable.
SoQ must be finite. Take�p ⊆ P , with |Q | < | �p|. LetC be the set of all conjunctions
of formulas of the formp and¬p, where for anyp ∈ �p precisely one ofp, ¬p is a
conjunct. Takeϑ := ∨{¬γ | γ ∈ C }. Clearly,IPC(P ) � ϑ. Supposeσ ∈ subP ,IPC(Q ).
If we did haveIPC(Q ) � σ(ϑ), then there would be afinite rootedQ -modelK , with
rootb such thatb � σ(ϑ). For everyγ ∈ C , there would be a top nodek aboveb such
thatk � σ(γ). Thus, there must beat least 2| �p| top nodes with essentially different
forcing relation. Since,K is aQ -model there could beat most 2|Q | such nodes: a
contradiction. Soϑ ∈ �P ,IPC(Q ). �
Note also that ifT is any consistent classical theory, whether in propositional or in
predicate logic, we have�P ,T = CPC(P ). HereCPC is the classical propositional
calculus.

2.2 Predicate logics of theoriesLet L be a language of predicate logic. LetT be a
theory. AnL-scheme is simply a sentence inL . A scheme is ‘valid’ inT if all of its
interpretations are T-provable. An interpretationM assigns to a relation symbolR of
L formulas ofL T with designated variables corresponding to the argument places of
R. Weusually assume thatM (R) contains no other variables than those representing
the argument places. In caseL contains function symbols we treatf (x1, . . . , xn) = y
as a relation symbol.M sends an arbitrary formulaϕ of L to the result of replacing
all its relation symbolsR byM (R), changing the variables representing the argument
places into the variables following a given occurrence ofR in ϕ. In caseϕ contains
function symbols, we first apply the well-known procedure for reducing the nesting
degree of function symbols to 1 and then run the procedure we just described. In case
we eliminate function symbols, we demand that the interpreting theory verifies the
translations of the statements expressing the fact thatf (x1, . . . , xn) = y represents
the graph of a function. Thus being an interpretation becomes dependent not only on
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the interpreting language, but on the interpreting theory. We call the class of interpre-
tations ofL in T , intL,T .

We often do not want simple interpretations butrelative interpretations. A rel-
ative interpretation is like an interpretation with the following additional feature.
There is an associated special formulaδ(x) representing the domain of the interpreta-
tion. In relative interpretations we replace∀x . . . by ∀x(δ(x) → . . .) and we replace
∃x . . . by ∃x(δ(x) ∧ . . .). We demand that theinterpreting theory proves∃x δ(x).
Thus, whether something is a relative interpretation or not will depend on the inter-
preting theory even in the absence of function symbols. We call the class of relative
interpretations ofL in T , relintL,T .

For more details on interpretations, see, for example, Tarski [27] or Visser [35]
or [39]. Here are the relevant definitions.

Definition 2.5 Let ∅ �= S ⊆ relintL,T . Define

�rel
L,T (S) := {ϕ∈sentL | ∀M ∈S T 	 M (ϕ)}

In caseS is obtained by restricting the range of the substitutions to a class of formulas
�, wewill, par abus de langage, write �rel

L,T (�) for �rel
L,T (S).

Definition 2.6 Wewill omit the set of relative interpretations, when we are consid-
eringall interpretations of the relevant kind,�rel

L,T := �rel
L,T (relintP ,T ). It is easy to

see that the unrelativized interpretations can be viewed as a subclass of the relativized
interpretations. When we consider unrelativized interpretations, we simply drop the
superscriptrel. So,�L,T := �rel

L,T (intP ,T ).

It is clear that, when we viewP andL assignatures, our definitions for propositional
logic are simply special cases of the ones for predicate logic. Here are a few further
convenient notations.

Notation 2.7

1. M : T � ϕ :⇐⇒ T, M 	 ϕ :⇐⇒ T 	 M (ϕ),
2. T � ϕ :⇐⇒ ∃M ∈relintL,T T, M � ϕ.

We saythatϕ is relatively interpretable inT or thatT interpretsϕ.

Wenote in passing that Tarski’s notion ofweak interpretability is reducible to�rel
L,T .

A sentenceϕ of L is weakly interpretable inT if there is a relativeL, T-interpretation
M such thatT + M (ϕ) is consistent. We easily see thatϕ is weakly interpretable
in T if and only if �rel

L,T + ϕ is consistent. If we consider aclassical theoryT we
can regain�rel

L,T from theϕ that are weakly interpretable inT . The notion of weak
interpretability is important because of the following theorem. LetQ be Robinson’s
Arithmetic.

Theorem 2.8 (Tarski) If Q is weakly interpretable in T, that is, if �rel
R ,T +Q is con-

sistent, then T is undecidable.

Tarski uses the theorem in his proof of the undecidability of Group Theory (see [27]).
Note that it follows that for decidable theories, such as the theory of Abelean Groups,
we have�rel

R ,T 	 ¬Q. For results concerning the�L,T for classical theoriesT , the
reader is referred to Rybakov [24] and to Yavorsky [42]. See also AppendixA of the
present paper. Here are three of Yavorsky’s results.
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1. �L,PA = CQC(L ). HereCQC(L ) is classical predicate logic for the language
L .2

2. �L,GROUP+
class

= CQC(L ). HereGROUP+
class is the classical theory of groups

with one extra constant.
3. �L,Pre �= CQC(L ). HerePre is classical Presburger Arithmetic.

2.3 A brief history of de Jongh’s Theorem Wepresent a brief survey of the devel-
opment of our present knowledge of constructive arithmetical theories and classes of
substitutions that give us precisely constructive logic.

1969 De Jongh shows in an unpublished paper that�P ,HA = IPC(P ). Heuses
substitutions of formulas of a complicated form. In fact he proves a much
stronger result, viz., that the logic of relative interpretations inHA is In-
tuitionistic Predicate Logic, in other words,�rel

L,HA = IQC(L ). See the
extended abstract [3]. De Jongh’s argument uses an ingenious combina-
tion of Kripke models and realizability.

1973 Friedman in his paper [6] shows that�P ,HA(�2) = IPC(P ). In fact,
Friedman provides asingle substitutionσ mappingP to �2-sentences
such that�P ,HA(σ) = IPC(P ). Wewill say thatIPC is uniformly com-
plete for�2-substitutions inHA. Uniform Completeness tells us, in this
case, that the free Heyting Algebra on countably many generators can be
embedded in the Lindenbaum Algebra ofHA. Friedman employs slash-
theoretic methods.

1973 Smorýnski strengthens and extends de Jongh’s work in a number of re-
spects in his very readable paper [25]. To state his results we need a few
definitions. We writeD�1 for the set of disjunctions of�1-sentences,
Boole(	1) for Boolean combinations of	1-sentences.MP is Markov’s
Principle,RFNHA is the formalized uniform reflection principle forHA,
TI(≺) is the transfinite induction scheme for a primitive recursive well-
ordering≺. Wehave

�P ,T = �P ,T (	1) = �P ,T (D�1) = IPC(P ),

for the following theoriesT : HA, HA+RFN(HA), HA+TI(≺). We have
�P ,HA+MP(Boole(	1)) = IPC(P ). Smorýnski uses Kripke models
in combination with the G̈odel-Rosser-Mostowski-Kripke-Myhill The-
orem to prove his results.

1975 Leivant in his Ph.D. thesis [12] shows that the predicate logic of inter-
pretations of predicate logic inHA is precisely intuitionistic predicate
logic. Leivant’s method is proof theoretical. In fact, Leivant shows
that one can use as interpretation a fixed sequence of�2-predicates. So
Leivant proves that�L,HA(M ) = IQC(L ), for some�2-interpretation
M . Leivant’s results yield another proof of Friedman’s results described
above.

1976 De Jongh and Smoryński in their paper [4] show that� �p,HAS(	1) =
IPC( �p). They also show that there is aσ : P → �2, such that
�P ,HAS(σ) = IPC(P ).
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1981 Gavrilenko in [7] shows that� �p,HA+ECT0
(	1) = IPC( �p). HereECT0 is

Extended Church’s Thesis. Gavrilenko proves this result as a corollary
of the similar result of Smorýnski forHA.

1981 Visser in his Ph.D. thesis [32] provides an alternative proof of de Jongh’s
Theorem forHA, HA+DNS, HA+ECT0 for 	1-substitutions adapting
the method of Solovay’s proof of the arithmetical completeness of Löb’s
logic for substitutions inPA. HereDNS is the principle Double Nega-
tion shift. In fact, his proof extends to these theories with appropriate re-
flection principles or transfinite induction over primitive recursive well-
orderings added.

1985 In his [34], Visser provides an alternative proof of de Jongh’s uniform
completeness theorem employing a single	1-substitution. The proof
is verifiable inHA+Con(HA). (Note that de Jongh’s Theoremimplies
Con(HA), so the result is, in a sense, optimal.) The proof uses theNNIL-
algorithm, an algorithm that is used to characterize the admissible rules
for 	1-substitutions. See below.

1991 Van Oosten in his paper [31] provides a more perspicuous version of de
Jongh’s semantical proof of de Jongh’s Theorem for (nonrelativized) in-
terpretations of predicate logic. Van Oosten uses Beth models and real-
izability. See also [30].

1996 Using the methods developed by Visser in [33] and by de Jongh
and Visser in [5] one can prove uniform completeness with respect
to 	1-substitutions for HA+ECT0, HA+ECT0+RFN(HA+ECT0),
HA+TI(≺)+ECT0.

Open Question 2.9 Here are some open questions in this area.

What is the predicate logic ofHA+MP?
What is the predicate logic ofHA + ECT0?

We end this section by providing a necessary condition for arithmetical theories to
satisfy de Jongh’s Theorem.3 Consider a theoryT . SupposeN ∈ intR ,T . Suppose
we have

1. T, N 	 iEA, whereiEA is the intuitionistic version of Elementary Arithmetic,
also known asiI
0 + Exp;

2. T is locally essentially reflexive with respect toN . This means thatT proves
the full sentential reflection principle forIQC(L T ), where provability is
formalized ‘in N ’; in other words, for any sentenceϕ of L T , T 	
N (�IQC(L T )ϕ) → ϕ.

All extensions ofHA in R are locally essentially reflexive. LetQ be the single axiom
of (the intuitionistic variant of) Robinson’s Arithmetic.

Theorem 2.10 Let T be as above. Suppose �R ,T = IQC(R ). Then T is 	0
1-sound

with respect to N . Moreover, T is closed under the Primitive Recursive Markov’s
Rule with respect to N , that is, for any 	0

1-sentence σ, T, N 	 ¬¬σ =⇒ T, N 	 σ.
Our two claims together are, clearly, equivalent to the following principle: for any
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	0
1-sentence σ, T, N 	 ¬¬σ =⇒ N |= σ.

Proof: SupposeT, N 	 ¬¬σ. Then, T, N 	 ¬¬�IQC(R )(Q → σ), since iEA
proves	-completeness forQ. Consider anyK ∈ relintR ,T . Given the fact that we
just have finitely many function symbols inR , we only need a finite subtheory of
T to verify the fact thatK is an interpretation. Supposeϕ axiomatizes such a fi-
nite subtheory. We findT, N 	 ¬¬�IQC(L T )(ϕ → K (Q → σ)). SinceT is lo-
cally essentially reflexive with respect toN , we find T 	 ¬¬K (Q → σ). Hence,
T 	 K (Q → ¬¬σ). SinceK was arbitrary, we find(Q → ¬¬σ) ∈ �R ,T . So, by
our assumption,IQC(R ) 	 Q → ¬¬σ. SinceQ is classically true, we may conclude
thatN |= σ. �

2.4 Markov’s Principle and Church’s Thesis In this subsection, we briefly con-
sider cases, where the logics of a theory arenot precisely intuitionistic logic. We have
seen that�P ,HA+MP = �P ,HA+ECT0

= IPC(P ). Remarkably,�P ,HA+MP+ECT0
, for

|P | > 1, turns out to be a proper extension ofIPC(P ).
Consider the formulasχ andρ which are defined as follows.

1. χ := (¬p ∨ ¬q),
2. ρ := [(¬¬χ → χ) → (¬¬χ ∨ ¬χ)] → (¬¬χ ∨ ¬χ).

Clearly, ρ is IPC(p, q)-invalid. We user for Kleene realizability. In his classical
paper [23], Rose showed that∃e ∀σ∈subP ,HA N |= e r σ(ρ). Thus, Rose refuted a
conjecture of Kleene that a propositional formula isIPC-provable if all its arithmeti-
cal instances are (truly and classically) realizable. Note the remarkable fact that one
and the same realizer realizes all instances! Inspecting the proof one sees that only a
small part of classical logic is involved in the verification of realizability, Markov’s
Principle. See McCarthy [13] for a detailed analysis. Thus we obtain

∃e ∀σ∈subP ,HA HA + MP 	 e r σ(ρ).

Hence, a fortiori,ρ ∈ �{p,q},HA+MP+ECT0
.

Open Question 2.11 The precise characterization of any of the following sets is
an open problem.

1. �P ,HA+MP+ECT0
,

2. {ϕ∈L IPC,P | ∃e ∀σ∈subP ,HA HA 	 e r σ(ϕ)},
3. {ϕ∈L IPC,P | ∀σ∈subP ,HA ∃e N |= e r σ(ϕ)},
4. {ϕ∈L IPC,P | ∃e ∀σ∈subP ,HA N |= e r σ(ϕ)}.

One could well imagine that it would be possible to prove the sets (1) and (2) to be
equal without having a characterization. Similarly for (3) and (4).

The situation for substitutions in predicate logic is even more spectacular. In a series
of papers, [16], [17], [18], Plisko shows that the set of uniformly realizable principles
of predicate logic is complete�1

1. In other words he shows that, for an appropriate
L , {ϕ∈sentL | ∃e ∀K ∈ intL,Th(N) N |= e rK (ϕ)} is complete�1

1. ([19] provides
a related result for modified realizability.) In two subsequent papers [20] and [21],
Plisko shows that�L,HA+MP+ECT0

is complete�0
2.4
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2.5 Exactness and extension An exact theory is the theory of a single interpreta-
tion. If U = �P ,T (σ), or, analogously, for the predicate logical case,U = �L,T (M ),
one says thatσ or M is afaithful interpretation of U in T . For example, the Beltrami-
Poincaŕe interpretation of hyperbolic geometry in Euclidean geometry is faithful; the
usual interpretation ofPA in ZF is not.

We will show that exact theories inherit a salient property, viz. the extension
property, from their interpreting theories. To set the stage, we first introduce the idea
of E-preservation. Consider a classK of models (of whatever kind). LetR be a binary
relation onK. A class
 of formulas (with a semantics inK) is E-preserved (in K)
by R if, for all K ∈ K, wheneverK � 
, then,for some N with K R N , N � 
. In
a similar way we can defineA-preservation, by demanding that then,for all N with
K R N , N � 
.

Here is an example of a characterization of a class of formulas employingE-
preservation, a characterization of formula classes with the disjunction property, due
to de Jongh (see his [2]).

Theorem 2.12 (de Jongh) Let K be the class of (not necessarily rooted) Kripke P -
models. Define:

K ≺ N if and only if K is a generated (i.e., upward closed) submodel of N
and N is rooted.

Suppose 
 ⊆ L IPC,P . Then 
 has the disjunction property if and only if 
 is E-
preserved by ≺.

LetL be a language of either intuitionistic propositional logic or of intuitionistic pred-
icate logic. LetK be the class of KripkeL-models. We define

K � N if and only if N is rooted andK is the result of omitting the root of
N .

We say that
 ⊆ L has theextension property if and only if 
 is E-preserved by�.
Alternatively, we say that
 is extendible. So
 has the extension property if any
(nonrooted) model of
 can be extended with a new root preserving the validity of
.
Westart with a triviality.

Theorem 2.13 Every extendible theory has the disjunction property.

The theorem is immediate by Theorem2.12and the fact that� is a subrelation of≺.
The next theorem establishes a connection between exactness and extendibility.

Theorem 2.14 Let T be an extendible theory with language L T and let σ ∈ subP ,T .
Then, �P ,T (σ) has the extension property.

Proof: SayE := �P ,T (σ). Consider any nonrooted KripkeP -modelK . Suppose
thatK � E. Let� := Th(K ). Clearly,E ⊆ �. Considerψ ∈ L IPC,P \ �. We claim
thatσ(�) �	T σ(ψ).

Suppose thatσ(�) 	T σ(ψ). Then, for someθ ∈ �, T 	 σ(θ → ψ). Hence,
(θ → ψ) ∈ E. It follows that� 	 ψ, quod non.

Wecan find a nonrooted Kripke modelM of T such that

σ−1(Th(M )) := {ϕ∈L IPC,P | M � σ(ϕ)} = �.
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SinceT has the extension property, we can extendM to a new modelM + satisfying
T by adding a new bottomb. We extendK to K + with a new bottomc, stipulating
that c � p :⇐⇒ b � σ(p). We show thatc � ϕ :⇐⇒ b � σ(ϕ) by induction on
L IPC, �p.

The cases of atoms, conjunction, and disjunction are trivial. Supposec � ψ →
χ. It follows thatK � ψ → χ and, hence,(ψ → χ) ∈ �. Considerm ≥ b. Suppose
m � σ(ψ). In casem is in M , we have, by the fact thatM � σ(�), m � σ(ψ → χ)

and, hence,m � σ(χ). In casem = b, wehave, by the Induction Hypothesis,c � ψ.
So, by assumption,c � χ and, hence, again by the Induction Hypothesis,m = b �
σ(χ). The converse is similar. �

Considerσ ∈ sub �p,IPC(P ). DeJongh and Visser prove the following theorem (see [5]).

Theorem 2.15 � �p,IPC(P )(σ) is finitely axiomatizable.

The proof uses Pitts’ Uniform Interpolation Theorem. (See Pitts [15], Ghilardi
and Zawadowski [9], and Visser [38].) Par abus de langage, we call an axiom of
� �p,IPC(P )(σ): εσ. Note thatεσ is only determined up to provable equivalence. We
call a formulaε axiomatizing some� �p,IPC(P )(τ) a �p, P -exact formula. The set of
�p, P -exact formulas isexact �p,P .

Ghilardi proved that for substitutions inIPC we have a converse of Theo-
rem2.14(see his [8]).

Theorem 2.16 (Ghilardi) Suppose that ε ∈ L IPC, �p has the extension property.
Then, for some σ ∈ sub �p,IPC( �p), we have ε = εσ.

Note that Ghilardi’s Theorem, as stated here, implies that ifε ∈ L IPC,�q andε is �p, P -
exact, thenε is �q, �q-exact. Ghilardi’s Theorem will be used as a lemma in the char-
acterization of the admissible rules ofHA.

3 Admissible rules

3.1 Finitary admissible rules Let T be a theory and letS ⊆ subP ,T . A 〈P , T, S〉-
admissible rule is a pair ofL IPC,P -formulas〈ϕ,ψ〉 such that, for allσ ∈ S, T 	
σ(ϕ) =⇒ T 	 σ(ψ). We say that〈ϕ,ψ〉 is P , T-admissible if it is〈P , T, subP ,T〉-
admissible.

Definition 3.1 AP ,T (S) is the set of〈P , T, S〉-admissible rules.
AP ,T = AP ,T (subP ,T ).

Definition 3.2 ϕ ∼S
P ,T ψ :⇐⇒ 〈ϕ,ψ〉 ∈ AP ,T (S).

ϕ ∼P ,T ψ :⇐⇒ 〈ϕ,ψ〉 ∈ AP ,T .

Note that�P ,T (S) is completely determined byAP ,T (S), sinceϕ ∈ �P ,T (S) if and
only if 〈�, ϕ〉 ∈ AP ,T (S). Wedefine one more set of rules, theimplications of a the-
ory.

Definition 3.3 �� := {〈ϕ,ψ〉 | (ϕ → ψ) ∈ �}.
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It is well known that, for example,A{p,q,r},IPC(p,q,r) �= �IPC(p,q,r), since, for example,

¬p → (q ∨ r) ∼{p,q,r},IPC(p,q,r) (¬p → q) ∨ (¬p → r),

but¬p → (q ∨ r) �IPC(p,q,r) (¬p → q) ∨ (¬p → r).
Here is the simplest possible result on admissible rules.

Theorem 3.4 The implications of the logic of a theory T are admissible for T.
Moreover, every admissible rule of T is also admissible for the logic of T. To be pre-
cise, let � := �P ,T . We have �� ⊆ AP ,T ⊆ AP ,�.

Proof: The first inclusion is obvious. Suppose thatϕ ∼P ,T ψ. Weproveϕ ∼P ,� ψ.
Consider anyσ ∈ subP ,IPC(P ) and suppose� 	 σ(ϕ). It follows that, for allτ ∈
subP ,T , T 	 (τ ◦ σ)(ϕ). Ergo, for allτ ∈ subP ,T , T 	 (τ ◦ σ)(ψ). Wemay conclude
� 	 σ(ψ). �
In this paper we will show thatA �p,HA = A �p,IPC, where� �p,HA = IPC( �p). This shows
that the ‘upperbound’ in Theorem3.4 can be assumed. In [5], de Jongh and Visser
show thatA �p,HA∗ = �IPC( �p), where� �p,HA∗ = IPC( �p). HereHA∗ is the theoryHA +
{ψ → �HA∗ψ | ψ ∈ R }, the minimal extension ofHA that believes that what is true
is provable init. This theory is studied in [33], [34], [37] (a rewrite of [34]), and [5].
The result shows that the “lowerbound” in Theorem3.4can be assumed.

Weend this section by a brief survey of some theorems about admissible rules.

Theorem 3.5 (Rybakov) The admissible rules of IPC are decidable. In other
words, for any �p, �q, A �p,IPC(�q) is decidable.

For the proof we refer the reader to Rybakov [24].

Theorem 3.6 (Ghilardi) The embedding 	IPC( �p) ↪→ ∼ �p,IPC(�p) has a left adjoint,

say (.)#. So, ϕ# 	IPC( �p) ψ ⇐⇒ ϕ ∼ �p,IPC(�p) ψ. (A)# is the ‘projective approxima-
tion’ of A. (.)# is a disjunction of L IPC, �p-formulas with the extension property. (.)#

is computable.

Note that(.)# considered as an operation of the free Heyting algebra on generators�p
is an interior operation. This operation is fully determined by its fixed points. These
fixed points are precisely given by the disjunctions of formulas with the extension
property. Ghilardi’s Theorem provides a new proof of Rybakov’s Theorem3.5. For
the proof the reader is referred to Ghilardi [8].

In the next few theorems, we present some results on	1-substitutions overHA.
Why are	1-substitutions interesting? One motivation is the fact that they play an
important role in the study of the provability logic ofHA. The characterization of the
closed fragment ofHA in [34] and [37] essentially uses the results described below.
The material has some clear analogies to the results described above on substitutions
overIPC.

A NNIL(P )-formula is aP -formula with no nestings of implications to the left.
We take¬p to be an abbreviation of(p → ⊥). So (p → (q ∨ ¬q)) and¬p are
NNIL-formulas, and((p → q) → q) is not aNNIL-formula.

Theorem 3.7 (van Benthem, Visser) The NNIL(P )-formulas are precisely the
L(P )-formulas A-preserved under taking sub-Kripke models (modulo provable
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equivalence). Here a submodel is a full submodel given by an arbitrary subset of the
nodes.

For the proof we refer the reader to [34], [37], and Visser et al. [40]. Note that the the-
orem makes theNNIL-formulas the analogue of universal formulas in ordinary model
theory. For more on the analogy, see [40].

Theorem 3.8 (Visser) Let σ ∈ sub �p,	1
. Then, � �p,HA(σ) is finitely axiomatizable,

say by νσ. The νσ, for σ ∈ sub �p,	1
, are precisely the NNIL( �p)-formulas with the dis-

junction property.

So ‘NNIL-formula with the disjunction property’ is analogous to ‘formula with the
extension property’ in the case of substitutions overIPC. For the proof see [34]
and [37].

Theorem 3.9 (Visser) The embedding

	IPC( �p) ↪→ ∼	1

�p,HA

has a left adjoint, say (.)∗. So, ϕ∗ 	IPC( �p) ψ ⇐⇒ ϕ ∼	1

�p,HA ψ. (.)∗ is a NNIL( �p)-
formula. (.)∗ is computable.

(.)∗ is completely determined by its fixed points, which are precisely given by the
NNIL-formulas. For the proof see [34] and [37].

Finally, we remark that the theorem onHA∗, saying that the admissible rules for
arbitrary arithmetical substitutions overHA∗ are precisely the implications ofIPC,
also fits the pattern exhibited above; here the left adjoint simply is the identity and
the formula class isL IPC, �p.

theory substit. logic adm. rules adjoint form. class

IPC( �p) �p → L IPC, �p IPC( �p) A �p,IPC( �p) (.)# D(extens �p)
HA �p → R IPC( �p) A �p,IPC( �p) (.)# D(extens �p)
HA �p → 	1 IPC( �p) A �p,HA(	1) (.)∗ NNIL( �p)

HA+ECT0 �p → R IPC( �p) ? ? ?
HA+MP �p → R IPC( �p) ? ? ?
HA+MP+ECT0 �p → R ? ? ? ?
HA∗ �p → R IPC( �p) �IPC( �p) idIPC( �p) L IPC, �p
PA �p → R CPC( �p) �CPC( �p) idCPC( �p) L IPC, �p

3.2 Infinitary admissible rules In this subsection, we give an example to the effect
that theinfinitary propositional admissible rules ofIPC andHA differ.5 Let T be a
theory and letS ⊆ subP ,T . A 〈P , T, S〉-admissible infinitary rule is a pair〈
,ψ〉,
where
 ⊆ L IPC,P andψ ∈ L IPC,P , such that, for allσ ∈ S, T 	 σ(
) =⇒ T 	
σ(ψ). Hereσ(
) = {σ(γ) | γ ∈ 
}. We say that〈
,ψ〉 is P , T-admissible if it is
〈P , T, subP ,T〉-admissible.

Definition 3.10 A∞
P ,T (S) is the set of〈P , T, S〉-admissible infinitary rules.

A∞
P ,T = A∞

P ,T (subP ,T ).

Definition 3.11 
 ∼S,∞
P ,T ψ :⇐⇒ 〈
,ψ〉 ∈ A∞

P ,T (S).


 ∼∞
P ,T ψ :⇐⇒ 〈
,ψ〉 ∈ A∞

P ,T .
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Wecompare ∼∞
P ,T to validity for finite models. Suppose
 ⊆ L IPC, �p, ψ ∈ L IPC, �p.

Definition 3.12 
 |=fin
�p ψ :⇐⇒ for all finite Kripke �p-modelsK ,K � 
 =⇒ K �

ψ.

Theorem 3.13 
 |=fin
�p ψ =⇒ 
 ∼∞

�p,IPC( �p) ψ.

Proof: Suppose
 |=fin
�p ψ. Consider anyσ ∈ sub �p,IPC( �p) and supposeIPC( �p) 	

σ(
). We have to show, IPC( �p) 	 σ(ψ). By Theorem2.15, it is sufficient to show
εσ 	IPC( �p) ψ. Consider any finite Kripke�p-modelK and supposeK � εσ. Since,
by Theorem2.15, εσ 	 
, we find K � 
. By assumption,K � ψ. Since, for fi-
nite premise sets, we have Kripke completeness with finite models, we may conclude
εσ 	IPC( �p) ψ. Ergo, IPC( �p) 	 σ(ψ). �
Consider two propositional variablesp, q. Let

� := {χ → q | χ ∈ L IPC,p andIPC(p) � χ}.

It is easy to see that� |=fin
p,q q. Hence, by Theorem3.13, � ∼∞

�p,IPC( �p) q. We now
apply the following lemma due to de Jongh and Visser (see [5]).

Lemma 3.14 (de Jongh and Visser) There is an arithmetical sentence � with the
following property. Suppose that 
 ⊆ L IPC,P is recursively enumerable and has the
disjunction property. Then there is a σ ∈ subP ,	1 with 
 	IPC(P ) ϕ ⇐⇒ HA + � 	
σ(ϕ).

Clearly,� is recursive. Moreover, a simple Kripke model argument shows that�

has the disjunction property. Letσ be as given in Lemma3.14. Since� �IPC(p,q) q,
we haveHA + � 	 σ(�) andHA + � � σ(q). Considerτ with τ(p) = σ(p) and
τ(q) := (� → σ(q)). By elementary propositional reasoning, we findHA 	 τ(�)

andHA � τ(q).

3.3 Admissible rules in the predicate logical languageTo get our discussion off
the ground, we need to fix a basic arithmetical theory. In this section, we take as our
theoryiEA. iEA is the constructive version ofEA, elementary arithmetic also known
as I
0 + Exp. The theory consists of intuitionistic predicate logic, the usual univer-
sal axioms for successor, plus and times,
0-induction, and an axiom expressing the
totality of exponentiation.iEA is finitely axiomatizable. We will use ‘E’ to denote a
single axiom axiomatizingiEA.6

We present some results about admissible rules for arithmetical theories. Here
is an example of a principle that holdsfor any RE theory T , whether it contains any
arithmetic or not.

♣ E ∧ Con(T ) ∼rel
R ⊥.

In fact,♣ is just a reformulation of theSecond Incompleteness Theorem.
Weshow that for a wide class of constructive theoriesT with a modicum of arith-

metic we have that, for a suitableL , AL,T is complete�2. Consider an RE theoryT .
SupposeN is a relative interpretation ofiEA in T with domainν. We remind the
reader of Friedman’s amazing theorem that the disjunction property implies the exis-
tence property.
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Theorem 3.15 (Friedman) Let T be as described above. Suppose T has the dis-
junction property. Then, T has the N -numerical existence property, that is, for any
ϕ(x), with only x free, if T 	 ∃x(ν(x) ∧ ϕ(x)), then, for some natural number n,
T 	 ∃x( ν(x) ∧ N (x = n) ∧ ϕ(x) ). (We could also write T 	 ϕ(n), as long as we
keep in mind that we are dealing with the numeral according to N .)

Proof: The proof is, word for word, Friedman’s original proof, just keeping an
eye open to see whether everything can be done using justiEA. Note that we need
things like the provable decidability of theproof-predicate and the presence of the
	1-minimum principle. �
The business of the interpretation helps us to apply Friedman’s theorem, for example,
to a theory likeiZF in which the numerical language is only present via interpretation.
Since, the numerical existence property in its turn implies the disjunction property,
Friedman’s theorem tells us that the numerical existence property is ‘invariant’, that
is, independent of the choice of the interpretation ofiEA.

Here is an alternative formulation of Friedman’s theorem. Let us extendR to
a languageL by adding a unary predicate symbolP. Let N [ P := ϕ] extendN by
interpretingP by ϕ. Wedemand thatϕ has at mostx free. SupposeT has the disjunc-
tion property. Then, we have

T, N [ P := ϕ] 	 ∃x Px =⇒ ∃n ∈ ω T, N [ P := ϕ] 	 Pn.

We cannow prove our theorem.

Theorem 3.16 Let T be as described above. Suppose T has the disjunction prop-
erty. Then, A rel

L,T is complete �2.

Proof: Let e be an index of a partial recursive function. We show how to reduce the
problem of the totality ofλn.{e}n to A rel

L,T . Weclaim,

∀n {e}n ↓ ⇐⇒ (E ∧ ∃x Px ∼rel
L,T ∃x ( Px ∧ ∃y T(e, x, y) ).

HereT (u, v,w) stands for Kleene’sT-predicate. We verify our claim.

(⇐=) Assume the right-hand side of the claim. Consider any natural numbern.
Clearly,

T, N [ P := (x = n)] 	 E ∧ ∃x Px.

(Heren is theN -numeral.) Ergo, by assumption,

T, N [ P := (x = n)] 	 ∃x ( Px ∧ ∃y T (e, x, y) ).

In other words,T, N 	 ∃y T (e, n, y). SinceT is consistent and has the numerical
existence property,T satisfies	1-reflection. We may conclude that{e}n ↓.

(=⇒) Assume∀n {e}n ↓. Consider any relative interpretationM and suppose
T, M 	 E ∧ ∃x Px. By Friedman’s Theorem, for somen, T, M 	 Pn. By assump-
tion, {e}n ↓. Hence, by	1-completeness,T, M 	 ∃y T (e, n, y). We may conclude
T, M 	 ∃x ( Px ∧ ∃y T (e, x, y) ). �
Certainly not all arithmetical theories give rise to�2-complete sets of admissible
rules. For example,AL,PA is not complete�2. This is immediate from the charac-
terization ofAL,PA given in AppendixA.
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4 What extendability means for admissibility In this section we will show that the
admissible rules ofHA are the same as the admissible rules ofIPC. This result follows
from the main lemma of this section.

4.1 The main lemma

Lemma 4.1 Suppose T has the extension property and suppose � �p,T = IPC( �p).
Then, the �p-admissible rules of T are the same as those of IPC( �p). In other words,
we have A �p,T = A �p,IPC( �p).

We will prove the main lemma from two lemmas. These lemmas are stated and
proved in the next two subsubsections.

4.1.1 The disjunction property The lemma of this subsubsection tells us that cer-
tain restrictions of sets of formulas with the disjunction property inherit the disjunc-
tion property.

Lemma 4.2 Let 
 ⊆ L IPC,P be any deductively closed propositional theory with
the disjunction property. Let X be any adequate set, that is, let X be closed under
subformulas. 
X := 
 ∩ X. Then 
X has the disjunction property.

Proof: Suppose
X 	 ϕ1 ∨ ϕ2 and
X �	 ϕi for i = 1,2. For i = 1,2, letK i be a
P -model such thatK i � 
X andK i �� ϕi. We can construct a modelK 3 such that

 = Th(K 3). Let K be the disjoint union of theK i for i = 1,2,3. ClearlyK � 
X

andK �� ϕi, for i = 1,2. We construct a new modelK + by adding a new rootb under
theK . Putb � p :⇐⇒ p ∈ 
X . We show by induction onX: ψ ∈ 
X =⇒ b � ψ.
The cases of atoms and conjunction are trivial.

Suppose(ν ∨ ρ) ∈ 
X . Thenν ∈ 
 or ρ ∈ 
. Suppose, for example,ν ∈ 
.
Sinceν ∈ X, it follows thatν ∈ 
X . Hence, by the Induction Hypothesis,b � ν and
thus,b � ν ∨ ρ.

Suppose(ν → ρ) ∈ 
X . Consider any nodek and supposek � ν. If k ∈ K ,
we are done, sinceK � ν → ρ. If k = b, wehave, by persistence,K � ν and hence
K � ρ. By the Induction Hypothesisb � ρ.

Wefind b � 
X , b �� ϕ1 ∨ ϕ2: acontradiction. �

4.1.2 e-Compactness Weprove a kind of compactness result. We state the lemma
in the infinitary version, where in fact we will use only the finitary one.

Definition 4.3

1. LetextensP be the set ofL IPC,P -formulas with the extension property.

2. A set ofL IPC,P -formulas
 is e-compact if

 	 ϕ =⇒ ∃ε∈extensP 
 	 ε andε 	 ϕ.

3. In(�q) is the set ofL IPC,�q-formulas of which the nesting degree of implications
is smaller than or equal ton.

Theorem 4.4 
 has the extension property if and only if 
 is e-compact.
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Proof: Suppose
 has the extension property. We show that
 is e-compact. Con-
sider�q ⊆ P . Define
n(�q) := {γ∈In(�q) | 
 	 γ}. Clearly,
n(�q) is finitely axiomatiz-
able. Moreover, whenever
 	 ϕ there aren and�q ⊆ P such that
n(�q) 	 ϕ. Without
loss of generality we may restrict ourselves ton ≥ 1. So it is sufficient to show that

n(�q) has the extension property, forn ≥ 1.

Consider any nonrootedP -modelK with K � 
n(�q). Let

� := Th�q,n−1(K ) := Th(K ) ∩ In−1(�q).

Weshow that, forψ ∈ In−1(�q), 
,� 	 ψ =⇒ � 	 ψ, in other words, that
 ∪ � is
In−1(�q)-conservative over�.

Suppose
,� 	 ψ. Then, for someθ ∈ �, 
 	 (θ → ψ). We have, clearly,
that (θ → ψ) ∈ In(�q), and hence,(θ → ψ) ∈ 
n(�q). We find K � θ, sinceθ ∈ �,
andK � (θ → ψ), since(θ → ψ) ∈ 
n(�q). SoK � ψ. Moreover,ψ ∈ In−1(�q), so
ψ ∈ �.

Consider anyP -modelM such thatTh(M ) = dc(
 ∪ �). (Heredc stands for
deductive closure.) Note that

Th�q,n−1(K ) = � = Th�q,n−1(M ).

Let M ∗ be a downward extension ofM with a new bottomb such thatM ∗ � 
. We
extendK to K ∗ by adding a new bottomc, with c � p :⇐⇒ b � p.

It is easy to show by induction that

for anyψ ∈ In−1(�q), c � ψ :⇐⇒ b � ψ.

We show thatc � 
n(�q). 
 has the extension property and, hence, the disjunction
property. So, by Lemma4.2, 
n(�q) has the disjunction property. Our proof is by
induction onγ ∈ 
n(�q). The cases of atoms and conjunction are trivial. The case of
disjunction is immediate by the fact that
n(�q) has the disjunction property. Suppose
thatγ = (ν → ρ) ∈ 
n(�q). We want to show thatc � (ν → ρ). Clearlyb � (ν → ρ)

andν, ρ ∈ In−1(�q). Consider anyk ≥ c and supposek � ν. To showk � ρ: in case
k �= c, weare done by the fact thatk is in K andK � 
n(�q). Supposek = c. Then it
follows thatb � ν and hence,b � ρ and thus,c � ρ.

We prove the converse. Suppose
 is e-compact. It is our standing assumption that
P is countable. Say,P = {p1, p2, . . .}. Let �pi := {p1, . . . , pi}. Takeγ0 := � and let
γn+1 be the formula with the extension property such that

1. 
 	 γn+1,
2. γn+1 	 γn ∧

∧

n( �pn),

3. γn+1 is the first in a suitable enumeration of formulas satisfying (1), (2).

We prove by induction thatγn is defined and that
 	 γn. It is immediate that
 is
axiomatized by theγn. Consider anyP -modelK of 
. For eachn we can add a
new rootbn to K such thatbn � γn. Let Tree be the set of 0,1 sequencesα such that
α ∈ Tree if and only if, for infinitely manyn, for all i < length(α), bn � pi ⇐⇒ αi =
1. It is easy to see thatTree has an infinite pathπ. Add a new rootc to K , setting
c � pi ⇐⇒ πi = 1. It is immediate thatc � 
. �
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4.1.3 Proof of the main lemma SupposeT has the extension property and suppose
� �p,T = IPC( �p). We will show that the admissible rules ofT are the same as those
of IPC. In other words, we haveA �p,T = A �p,IPC( �p).

Proof: Theorem3.4 tells us thatA �p,T ⊆ A �p,IPC( �p). We prove the converse direc-
tion. Suppose thatϕ ∼ �p,IPC( �p) ψ and suppose, forσ ∈ sub �p,T , that T 	 σ(ϕ). It
follows that� �p,T (σ) 	 ϕ. SinceT has the extension property, we may conclude,
by Theorem2.14, that� �p,T (σ) has the extension property. Hence, by Lemma4.4,
there is anε ∈ extens �p with � �p,T (σ) 	 ε and ε 	 ϕ. By Theorem2.16, we can
find a τ ∈ sub �p,IPC( �p), such thatε = ετ. Ergo, IPC( �p) 	 τ(ϕ). By assumption,
IPC( �p) 	 τ(ψ). Hence,ετ 	 ψ and so,� �p,T (σ) 	 ψ. We may concludeT 	 σ(ψ).

�

Remark 4.5 There are a few alternative ways to set up the machinery leading to the
main lemma. If you think about the extension property, it is easy to see that the forcing
in the new bottom just depends on the atomic forcing in the new bottom and thetheory
of the original model. This shows that we can think of the extension property in a
purely syntactical way. Thus we could set up things using slash theoretic methods
rather than Kripke models. This alternative is very close to our present setup. My
choice for Kripke models is purely a matter of taste.

A second alternative approach is just in the other direction: rather less than more
syntactical. It is to use bounded bisimulations in the way Ghilardi uses them in [8].
This approach has the advantage of connecting to more theory. It is, perhaps in the
end, more beautiful and, again perhaps, more open to generalization. However, it
would take a bit more work to set it up.

4.2 Applications of the main lemma

4.2.1 Intended consequencesIt was our intention in proving the main lemma to
characterize the admissible rules ofHA. Here is the argument. Every Kripke Model
of HA is extendible byω preserving the validity ofHA in the model. Adding rootω is
calledSmoryński’s operation. So,HA has the extension property. We already know
thatHA satisfies de Jongh’s Theorem. By the main lemma, we may conclude that the
admissible rules ofHA are the admissible rules ofIPC.

Note that ifS ⊆ T ⊆ subP ,L , thenAP ,T (T ) ⊆ AP ,T (S). Since we have de
Jongh’s Theorem for	1-substitutions, it is clear that we should be able to restrict
the substitutions leading to the characterization of the admissible rules. Inspection of
the proof gives us:A �p,HA(Boole(	1)) = A �p,IPC( �p).

The use of Boolean combinations is essential here. It is easy to see that

A �p,HA(	1) strictly extendsA �p,IPC( �p), since¬¬p ∼	1

�p,HA p (Markov’s Rule), butnot

¬¬p ∼ p,IPC p (substitute(p ∨ ¬p) for p).
The same considerations show that the admissible rules ofHA+RFN(HA),

HA+TI(≺), andHA+DNS are the same as those ofIPC. Since�{p,q},HA+MP+ECT0

strictly extendsIPC(p, q), clearly, the admissible rules ofHA + MP + ECT0 are not
those ofIPC(p, q).
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Open Question 4.6

What are the admissible rules ofHA + ECT0?
What are the admissible rules ofHA + MP?

4.2.2 Random applications In this subsubsection we provide a few more or less
randomly chosen examples: the theory of groups and the theory of fields. For infor-
mation about these theories, see, for example, van Dalen and Troelstra [29].

The basic theory of apartnessAPP is given by the following axioms.

ID The usual axioms for identity
AP1 ¬x # y ⇐⇒ x = y
AP2 x # y → y # x
AP3 x # y → (x # z ∨ y # z)

Note thatAP2 follows from the other axioms. If the language has ann-ary function
symbol f , we will often insist that the corresponding function isstrictly extensional:

SE( f ) f (x1, . . . , xn) # f (x′
1, . . . , x′

n) → ∨n
i=1 xi # x′

i

The constructive theory of groups with apartnessGROUPap is formulated in the lan-
guage with symbols= , # , · , −1 , e. Its axioms are the apartness axioms plus the usual
universal axioms of group theory and finally, two axioms expressing the strict exten-
sionality of · and−1.

We show that�P ,GROUPap
= IPC(P ). Consider any formulaϕ ∈ L IPC,P such

that IPC(P ) � ϕ. Suppose that the propositional variables ofϕ are among�p =
{p0, . . . , pn−1}. Let K be a rooted�p-countermodel toϕ.

WeconvertK to a modelK ′ for GROUPap. First,K ′ has the same ordering as
K . Let π be an injective mapping ofn = {0, . . . , n − 1} to the prime numbers. Let
Zi be the additive group of the integers moduloi. Z1 is the trivial group. Define a
mappingν : K × n → ω as follows.

ν(k, i) :=
{

π(i) if k � pi

1 otherwise.

Weassign to the nodek the group
∏n−1

i=0 Zν(k,i). Westipulate that in a given node two
elements are apart whenever they differ. The further details are obvious.

Definition 4.7 σ(pi) := ∃x (xπ(i) = 1 ∧
∧π(i)−1

j=1 x j # 1)

It is easy to see thatk �K ψ ⇐⇒ k �K ′ σ(ψ). Ergo,K ′ � σ(ϕ).
GROUPap has the extension property, since we can always add the trivial group

as root preservingGROUPap. Wemay conclude thatA �p,GROUPap
= A �p,IPC( �p).

The weak constructive theory of fieldsFIELD− has a language with the follow-
ing symbols:= , # , · , + , − , 0, 1. FIELD− has as axioms the apartness axioms, the
usual universal axioms of the theory of commutative rings, axioms expressing the
strong extensionality of+ and · , plus the following axioms.

INTEGRAL x # 0 ∧ y # 0=⇒ x · y # 0
INVERSE x # 0→ ∃y x · y = 1

The full theory of fieldsFIELD is obtained by adding the following axiom toFIELD−.
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NONTRIV 0 # 1

Note that inFIELD the axiom integral becomes derivable from the other axioms. Note
also thatFIELD does not have the disjunction property, since, for example, 3 # 0∨
3 # 1is derivable. We obtainFIELDchar=0, the theory of fields of characteristic 0, by
adding the following axioms toFIELD−.

CHAR=0 0 # n+1, wheren+1 :=
n+1︷ ︸︸ ︷

1+ · · · + 1

Note that inFIELDchar=0 we can derive of any two different elements ofQ that they
are apart. We can easily prove de Jongh’s Theorem forFIELDchar=0. We simply
proceed as in the case of groups, only now we assign to the nodek the structure
Q({√ν(k, i) | i ∈ n}). Wetakeσ(pi) := (∃x x2 = π(i) ). Note that we automatically
obtain de Jongh’s Theorem forFIELD− andFIELD, too.

FIELD− has the extension property. We can always addZ as root, preserv-
ing FIELD−. Here we arrange it so that no two different elements ofZ are apart
at the root.FIELD does not have the extension property.FIELDchar=0, on the other
hand, does have the extension property. We can always addQ as a root, preserving
FIELDchar=0. Here we stipulate that whenever two rationals are different then they
are apart at the root. We may conclude thatA �p,FIELD− = A �p,FIELDchar=0

= A �p,IPC( �p).

Open Question 4.8 CharacterizeA �p,FIELD.

Appendix

A The predicate logical admissible rules ofPA In this appendix we provide char-
acterizations for predicate logical admissibility in arithmetical theories in the style
of the Orey-H́ajek and the Friedman characterizations for interpretability. The ap-
pendix uses some machinery not presupposed in the rest of the paper. See, for exam-
ple, [10], [35], and [36].

Let Q be Robinson’s Arithmetic. We work with a slightly stronger theoryQ+ in
which the methodology of definable cuts works smoothly.Q+ is Q plus the axioms
expressing that the usual ordering on the natural numbers is a linear ordering. It is
well known thatQ interpretsQ+. Wewill call T arithmetical or an arithmetic if Q+

is interpretable inT .7 Wefix some notations and introduce some conventions.

Notation A.1

1. R is the arithmetical language, with 0, S,+ , · .
2. We write
 for the formalization of cut-free or tableaux provability. See, for

example, Wilkie and Paris [41] for a description of tableaux provability. We
write ∇ for cut-free or tableaux consistency, so∇ is ¬
¬.

3. � stands for ordinary provability and� := ¬�¬, in other words,� means
ordinary consistency.

4. �n stands for provability with a proof in which all (nonlogical) axioms used
have G̈odel numbers smaller thann and in which only formulas occur of com-
plexity smaller thann. �n := ¬�n¬.

5. Unless in those cases where it is stipulated otherwise, our theories are RE.
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In our first few theorems, we connect admissibility for substitutions in an arbitrary
language with admissibility for substitutions in the arithmetical language.

Theorem A.2 Let T be any classical theory. T could be complete �1
1, T could have

just a propositional language with only 0-ary predicate symbols, or T could be even
inconsistent! We have

ϕ ∼rel
L,T ψ =⇒ (Q+ ∧ ∇CQC(L )ϕ) ∼rel

R ,T 
CQC(L )(ϕ → ψ).

Proof: Assume the antecedent of the theorem. Consider anyN in relintL,T and sup-
poseT, N 	 Q+ ∧ ∇CQC(L )ϕ. In the theoryQ+ ∧ ∇CQC(L )ϕ, we can construct an
interpretationK , such that

1. Q+ ∧ ∇CQC(L )ϕ,K 	 ϕ,
2. Q+ ∧ ∇CQC(L )(ϕ ∧ ¬ψ),K 	 ϕ ∧ ¬ψ.

One uses the formalized model-construction for tableaux in combination with the
methodology of shortening cuts, developed by Solovay, Pudlák, and Wilkie and Paris.
A detailed verification of the construction can be found in Kalsbeek [11].8 One uses
the definable cuts to compensate for the lack of induction. The disjunctive effect
can be obtained, for example, by constructing two interpretationsK 1 andK 2, cor-
responding to (1) respective to (2) first, and taking, for example,

K (P) := ( (K 1(P) ∧ 
CQC(L )¬(ϕ ∧ ¬ψ)) ∨ (K 2(P) ∧ ∇CQC(L )(ϕ ∧ ¬ψ)) ).

Taking M := N ◦ K , we find T, M 	 ϕ. Hence, by assumption,T, M 	 ψ. But
then,T, N 	 ¬(Q+ ∧ ∇CQC(L )(ϕ ∧ ¬ψ)). Since, by assumption,T, N 	 Q+, we
may conclude:T, N 	 
CQC(L )(ϕ → ψ).9 �
A theoryT is sequential if there is an interpretationN of Q+ for which we have a
good theory sequences of all objects of the theory inT and where we can find elements
of the sequences by projecting using theN -numbers (see [10]). The relevant feature
of sequential theories here is the possibility of constructing partial truth-predicates in
such theories. This allows us to prove things like cut-free consistency of finite sub-
theory on a definable cut.

Theorem A.3 Let T be a classical, sequential theory. Then,

(Q+ ∧ ∇CQC(L )ϕ) ∼rel
R ,T 
CQC(L )(ϕ → ψ) =⇒ ϕ ∼rel

L,T ψ.

Proof: Suppose thatN provides the numbers involved in the sequentiality ofT . As-
sume the antecedent of the theorem. Suppose thatT,K 	 ϕ, for someK ∈ relintL,T .
Since our theory is sequential, we can produce a definableN -cut,I , such that

1. T 	 N (I (
CPC(L )¬ϕ) ) → K (¬ϕ),
2. T 	 N (I (
CPC(L )(ϕ → ψ)) ) → K (ϕ → ψ).

The proof of this fact employs the construction of a partial truth predicate and a vari-
ant of the standard proof of the reflection principle, using the transition to a definable
cut to compensate for the lack of induction. (See, for details, [10].) Let M := N ◦ I .
We have T, M 	 Q+. FromT,K 	 ϕ and (1), we find thatT, M 	 Q+ ∧ ∇CQC(L )ϕ.
Ergo, by assumption,T, M 	 
CQC(L )(ϕ → ψ). By (2) and the definition ofM , we
getT,K 	 ϕ → ψ. Wemay conclude thatT,K 	 ψ. �
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Combining TheoremsA.2 andA.3, westate the following.

Theorem A.4 Let T be a classical, sequential theory. Then,

ϕ ∼rel
L,T ψ ⇐⇒ (Q+ ∧ ∇CQC(L )ϕ) ∼rel

R ,T 
CQC(L )(ϕ → ψ).

Let arithT := {M ∈relintR | T, M 	 Q+}. The characterization of the predicate logic
of T provided by TheoremA.4 is as follows.

Corollary A.5 Let T be a classical, sequential theory. We have

1. ψ ∈ �L,T ⇐⇒ Q+ ∼rel
R ,T 
IPC(L )ψ ⇐⇒ �R ,T (arithT ) 	 
IPC(L )ψ.

2. T �L ϕ ⇐⇒ T �R (Q+ ∧ ∇CQC(L )ϕ).

Proof: (1) is immediate. We prove (2). In caseT is inconsistent, we are immedi-

ately done. SupposeT is consistent. ThenT �L ϕ ⇐⇒ ¬ (ϕ ∼rel
L,T ⊥). The desired

result is now immediate. �
A theoryT is weakly 	1-sound, if, for all 	1-sentencesσ, Q+ ∼rel

R ,T σ =⇒ N |= σ,
in other words, of�R ,T (arithT ) ∩ sent	1 ⊆ Th(N). Note that a weakly	1-sound
theory is automatically an arithmetic. A theoryT is	1, N -sound, for N ∈ relintR ,T ,
if T, N 	 Q+ and, for allσ ∈ sent	1, T, N 	 σ =⇒ N |= σ. Finally, T is strongly
	1-sound, if T is 	1, N -sound, for someN .

Theorem A.6 Let T be a sequential theory that is weakly 	1-sound. Then,

ϕ ∼rel
L,T ψ ⇐⇒ ( T �L ϕ =⇒ CQC(L ) 	 ϕ → ψ )

Proof: Suppose (a)ϕ ∼rel
L,T ψ andT �L ϕ. By CorollaryA.5, we canfind anN ∈

relintR ,T , such that (b)T, N 	 Q+ ∧ ∇CQC(L )ϕ. By weak	1-soundness, it is suf-
ficient to show that, for everyM ∈ arithT , T, M 	 
L,T (ϕ → ψ). Consider any
M ∈ arithT . We can find definable cutsI andJ of respectiveN andM that are
T-provably isomorphic. (See Pudlák [22] or [10] or [36].) By downward persis-
tence of�1-sentences, we findT, N ◦ I 	 Q+ ∧ ∇CQCLϕ. By isomorphism, we
obtain T, M ◦ J 	 Q+ ∧ ∇CQCLϕ. Applying TheoremA.4 to (a) and (b), we get
T, M ◦ J 	 
L,T (ϕ → ψ). By upward persistence of	1-sentences, we findT, M 	

L,T (ϕ → ψ). The converse is trivial. �
An alternative formulation of our theorem isAL,T = (INTc

L,T × sentL ) ∪ ICQC(L ).
HereINTc

L,T = sentL \ INTL,T .

Corollary A.7 Let T be a sequential theory that is weakly 	1-sound. Then,
�L,T = CQC(L ).

Proof: Obvious. �
Corollary 5.3 of [36] tells us that a consistent finitely axiomatized sequential theory
T is weakly	1-sound. From Theorem 5.9 of [36], we can even show that such a
T is strongly	1-sound. The result is somewhat delicate in that the theorem may be
verifiable inT itself: for someM , N ∈ arithT , and for allσ ∈ sent	1,

T, M 	 (�T� ∧ �T N (σ)) → σ.
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Familiar G̈odelean results do not yield a contradiction, but only the observation that
M andN cannot be the same. The above results lead us immediately to the following
corollary.

Corollary A.8 Every consistent finitely axiomatized sequential theory T satisfies

ϕ ∼rel
L,T ψ ⇐⇒ ( T �L ϕ =⇒ CQC(L ) 	 ϕ → ψ ).

Proof: If T is inconsistent, we are immediately done. IfT is consistent, we may
apply the results quoted above. �
Note that for the case of finitely axiomatized theories(INTc

L,T × sentL ) ∪ ICQC(L )

becomes the union of a�1-set with a	1-set. Examples of theories to which the corol-
lary may be applied areGB, ACA0, I	n, I
0 + Exp, Q+. To each of these theories
we may add finitely many axioms without invalidating the result—as long as we pre-
serve consistency.

The situation for theories satisfying full induction is rather different.

Theorem A.9 Suppose there is an N with domain ν, such that T, N 	 Q+ and
such that T proves full induction with respect to the whole language for the N -
numbers. So T proves

[ ∃x (ν(x) ∧ N (x = 0) ∧ ϕ(x)) ∧
∀x ((ν(x) ∧ ϕ(x)) → ∃y (ν(y) ∧ N (Sx = y) ∧ ϕ(y))) ] → ∀x (ν(x) → ϕ(x)).

Then we have

ϕ ∼rel
L,T ψ ⇐⇒ ( T, N 	 �CQC(L )ϕ =⇒ T, N 	 �CQC(L )(ϕ → ψ) ).

Proof: (=⇒) Assume the left-hand side of the theorem. SupposeT, N 	
�CQC(L )ϕ. If we have full induction, we can proveSupexp, the axiom stating the
that the superexponentiation function is total. If we have superexponentiation, we
can prove cut-elimination. Hence,� will be provably equivalent to∇. Wemay ap-
ply TheoremA.4 to obtainT, N 	 
CQC(L )(ϕ → ψ). Hence, a fortiori,T, N 	
�CQC(L )(ϕ → ψ).

(⇐=) Assume the right-hand side of the theorem. Consider any arithmetical
interpretationK . SupposeT,K 	 ∇CQC(L )ϕ. SinceN satisfies full induction, the
N -numbers will be verifiably an initial segment of theK -numbers. By downward
persistence of�1-sentences, it follows thatT, N 	 ∇CQC(L )ϕ. Hence,
T, N 	 �CQC(L )ϕ. By assumption, we getT, N 	 �CQC(L )(ϕ → ψ). Hence,
T, N 	 
CQC(L )(ϕ → ψ). By upward persistence of	1-sentences, we findT,K 	

CQC(L )(ϕ → ψ). Wemay apply TheoremA.4, toobtain the desired conclusion.�
Note that the present theorem makesAL,T aunion of a�1-set and a	1-set. Examples
of theories to which the theorem can be applied arePA andZF. Note that we cannot

drop the ‘T 	 . . .’ i n the conclusion, since, for example,Q+ ∼rel
PA+�PA⊥ �PA⊥ and

even�R ,PA+�PA⊥ 	 Q+ → �PA⊥.

Corollary A.10 Suppose there is an N with domain ν, such that T, N 	 Q+ and
such that T proves full induction with respect to the whole language for the N -
numbers. Then
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1. ψ ∈ �L,T ⇐⇒ T, N 	 �CQC(L )ψ,
2. T �L ϕ ⇐⇒ T, N 	 �L,CQC(L )ϕ.

Wecan strengthen the above result by considering reflexive and (locally) essentially
reflexive theories. Consider a theoryT and anN ∈ arithT .

Definition A.11

1. T is N -reflexive, if for alln ∈ ω, T, N 	 �T,n�.
2. T is locally essentiallyN -reflexive, if for all n ∈ ω and for allϕ ∈ sentL T ,

T 	 N (�T,nϕ) → ϕ.

Theorem A.12 Suppose T is locally essentially N -reflexive. We have

ϕ ∼rel
L,T ψ ⇐⇒ ∃n∈ω ( T, N 	 �CQC(L ),nϕ =⇒ T, N 	 �CQC(L ),n(ϕ → ψ) ).

Proof: (=⇒) This part of the proof is fully analogous to the proof of TheoremA.2.

(⇐=) Assume the right-hand side of the theorem. Letn be the promised number.
Suppose thatK is a relativeL, T-interpretation such thatT,K 	 ϕ. It follows that,
for somek, wehaveT, N 	 �T,kK (ϕ).

Reason inT, N . Suppose�CQC(L ),n¬ϕ. Then certainly for an appropriate stan-
dard numberm, �T,mK (¬ϕ). Takingq := max(k, m), wefind�T,q⊥. Quod non, by
N -reflexivity. We may conclude:�CQC(L ),nϕ.

Leaving T, N , we seethat T, N 	 �CQC(L )ϕ. By our assumption, we find
T, N 	 �CQC(L ),n(ϕ → ψ). Hence, for somer, we haveT, N 	 �T,rK (ϕ → ψ).
Combining this withT, N 	 �T,k(K (ϕ)), we find thatT, N 	 �T,sK (ψ), where
s = max(n, r). By reflection, we obtainT 	 K (ψ). �
TheoremA.12 substantially extends TheoremA.9, sincelocal essential reflective-
ness is much weaker than full induction. Our theorems still give no information about
Primitive Recursive Arithmetic,PRA. PRA is reflexive and	1-sound with respect
to the identity interpretation. The following theorem does the trick.

Theorem A.13 Suppose T is N -reflexive and 	1, N -sound. Then we have

ϕ ∼rel
L,T ψ :⇐⇒ ∃n∈ω ( T, N 	 �CQC(L )ϕ =⇒ CQC(L ) 	 ϕ → ψ ).

Proof: The proof is a trivial variation of the proof of TheoremA.12. �
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NOTES

1. I feel that this usage oflogic is slightly perverse. The correct notion of logic should
obviously explicitly contain the machinery for obtaining theorems. The current usage
should be viewed as a convenient way of speakingin the present context.



138 RULES AND ARITHMETICS

2. In AppendixA we will prove a result that immediately implies this fact.

3. The argument is inspired by Gödel’s observation that the completeness theorem for or-
dinary models of predicate logic constructively implies Markov’s Principle.

4. Both qua content and qua methodology Plisko’s result is similar to Vardanyan’s result
that the predicate provability logic ofPA is complete�0

2. See [1] for an exposition and
further references.

5. The example is an adaptation of Example 2.2 of [5].

6. I am sure that we can do better and work with a suitably large finite fragment ofi I
0 +
�1, the constructive version of Wilkie and Paris’sI
0 + �1 [41].

7. Alternatively, we could demand that an appropriate weak set theory is interpretable. See
Montagna and Mancini [14].

8. Another way to obtain the same result is as follows. First we prove that, for a suitable
definable cutI , Q+ ∧ ∇CQC(L )χ,I 	 �CQC(L ),nχ. This uses the fact that cut-elimination
for ann-proof is only multi-exponential. Then we construct a relative interpretationO,
such thatQ+ ∧ �CQC(L ),nχ,O 	 χ. Weobtain thisO by the ordinary formalized Henkin
construction applied to formulas of complexity belown. See [35]. TakeK := I ◦ O.

9. We work with a version of tableaux provability in which the transformation from a
tableaux proof of¬(ϕ ∧ ¬ψ) to a tableaux proof of(ϕ → ψ) is easy, perhaps even sim-
ply definitional.
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Legacy, edited by P. H́ajek, Springer, Berlin, 1996.Zbl 0854.03026 MR 98g:03026
2.5

[39] Visser, A., “An overview of interpretability logic,” pp. 307–59 inAdvances in Modal
Logic, vol. 1, CSLI Lecture Notes, no. 87, edited by M. Kracht, M. de Rijke, H. Wans-
ing, and M. Zakharyaschev, CSLI, Stanford, 1998.Zbl 0915.03020 MR 1 688 529 2.2

[40] Visser, A., J. van Benthem, D. de Jongh, and G. Renardel de Lavalette, “NNIL, a study
in intuitionistic propositional logic,” pp. 289–326 inModal Logic and Process Algebra,
a Bisimulation Perspective, CSLI Lecture Notes, no. 53, edited by A. Ponse, M. de Rij-
ke, and Y. Venema, CSLI, Stanford, 1995.MR 97m:03019 3.1, 3.1

[41] Wilkie, A., and J. B. Paris, “On the scheme of induction for bounded arithmetic formu-
las,” Annals of Pure and Applied Logic, vol. 35 (1987), pp. 261–302.2, A

[42] Yavorsky, R. E., “Logical schemes for first-order theories,”Springer LNCS (Yaroslavl
’97 volume), vol. 1234, (1997), pp. 410–18.Zbl 0888.03018 MR 98k:03016 2, 2.2

http://www.emis.de/cgi-bin/MATH-item?0596.03001
http://www.ams.org/mathscinet-getitem?mr=88d:03001
http://www.emis.de/cgi-bin/MATH-item?0053.00401
http://www.ams.org/mathscinet-getitem?mr= 15,384h
http://www.emis.de/cgi-bin/MATH-item?0653.03040
http://www.ams.org/mathscinet-getitem?mr= 90e:03002a
http://www.emis.de/cgi-bin/MATH-item?0661.03047
http://www.ams.org/mathscinet-getitem?mr=90e:03002b
http://www.emis.de/cgi-bin/MATH-item? 0781.03049
http://www.ams.org/mathscinet-getitem?mr=93b:03107
http://www.emis.de/cgi-bin/MATH-item?0505.03026
http://www.ams.org/mathscinet-getitem?mr=84h:03130
http://www.emis.de/cgi-bin/MATH-item?0744.03023
http://www.ams.org/mathscinet-getitem?mr=93f:03009
http://www.emis.de/cgi-bin/MATH-item?0795.03080
http://www.ams.org/mathscinet-getitem?mr=94c:03073
http://www.emis.de/cgi-bin/MATH-item?0854.03026
http://www.ams.org/mathscinet-getitem?mr=98g:03026 
http://www.emis.de/cgi-bin/MATH-item?0915.03020
http://www.ams.org/mathscinet-getitem?mr=1 688 529
http://www.ams.org/mathscinet-getitem?mr=97m:03019
http://www.emis.de/cgi-bin/MATH-item?0888.03018
http://www.ams.org/mathscinet-getitem?mr=98k:03016


ALBERT VISSER 141

Department of Philosophy
Utrecht University
Heidelberglaan 8
3584 CS Utrecht
THE NETHERLANDS
email: albert.visser@phil.uu.nl

mailto: albert.visser@phil.uu.nl

