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NONSTANDARD MODELS AND KRIPKE’S PROOF OF
THE GÖDEL THEOREM

HILARY PUTNAM

Abstract This lecture, given at Beijing University in 1984, presents a remark-
able (previously unpublished) proof of the Gödel Incompleteness Theorem due
to Kripke. Today we know purely algebraic techniques that can be used to give
direct proofs of the existence of nonstandard models in a style with which or-
dinary mathematicians feel perfectly comfortable—techniques that do not even
require knowledge of the Completeness Theorem or even require that logic it-
self be axiomatized. Kripke used these techniques to establish incompleteness
by means that could, in principle, have been understood by nineteenth-century
mathematicians. The proof exhibits a statement of number theory—one which
is not at all “self referring”—and constructs two models, in one of which it is
true and in the other of which it is false, thereby establishing “undecidability”
(independence).

Our subject will be elementary number theory, that is, the theory of the nonnegative
integers as formalized in standard (first-order) quantificational logic. As primitives
we will simply take the primitive recursive predicates. (Alternatively, we could have
just taken + and · , or any other set of basic predicates or functions from which all the
primitive recursive predicates can be defined.) As axioms we will take the standard
first-order version of the Peano Axioms.

One of the surprising facts which was not noticed by nineteenth-century mathe-
maticians, but which was observed after Gödel proved the completeness of first-order
logic in 1930, is the fact that Peano Arithmetic has nonstandard models. By a non-
standard model is meant a model in which, in addition to the integers 0, 1, 2, . . . there
are also (viewed from the outside) “Infinite integers”. I say “viewed from the outside”
because within Peano Arithmetic itself there is no way to single out these nonstan-
dard elements or even to say they exist: It is only in the set-theoretic mathematical
language in which we prove the existence of the nonstandard model that we can say
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that there are “foreign elements” in the model, elements other than the “real” natural
numbers.

These models exist not only for elementary number theory but for mathematics as
a whole (as represented by, say, Zermelo-Fraenkel set theory). In the metalanguage in
which we talk about such a model we can distinguish between “finite” and “infinite”
real numbers, even though within the object language it is a theorem that “all real
numbers are finite”. And there are reciprocals of infinite real numbers in the model,
that is, infinitesmals. Robinson showed, in fact, that by using such models one can
carry out Leibniz’s dream of a true calculus of infinitesmals, and the resulting branch
of mathematics, which has been called Nonstandard Analysis, already has significant
applications in many areas—to the theory of Lie groups, to the study of Brownian
motion, to Lebesgue integration, and so on. What gives the subject its power is that,
because the “infinite numbers” all belong to a model for the standard (finite) integers
and real numbers, a model within which they are not distinguished by any predicate
of the language from the standard numbers, we are guaranteed from the start that they
will obey all the laws that standard numbers obey.

Strangely enough, it is only in recent years that various workers, the most famous
being Paris and Harrington, have begun to use the existence of nonstandard models
to give independence proofs in number-theory itself (see [1]). The very existence of
independent (or “undecidable”) propositions of elementary number theory was proved
by Gödel in 1934 by syntactic, not model theoretic, means. The proposition proved
independent by Paris and Harrington is a statement of graph theory (a strengthened
version of Ramsey’s Theorem). What I shall show you is a simplified successor
to the Paris and Harrington theorem, a successor which proves the independence
of something resembling Gödel’s undecidable proposition by purely model theoretic
means.

Because this theorem does not aim at establishing the independence of a statement
which is nearly as complicated as the proposition Paris and Harrington wished to prove
independent, the proof is much simpler than theirs. Also, because the independence
proof is semantic rather than syntactic, we do not need to arithmetize the property
“x is a proof of y”, as Gödel did for his proof. We do not need the famous predicate
Bew(x) (x is the Gödel number of a theorem), or the famous self-referring sentence
which is true if and only if its own Gödel number is not the Gödel number of a
theorem. In short, I am going to show you a different proof of the Gödel theorem,
not just a different version of Gödel’s proof.

As the title of this paper indicates, the honor of inventing this proof belongs to
Kripke. He has not published it yet, in part because he is still investigating what
can be done using the “bounded ultrapower construction” which appears in the most
constructive version of the proof. The version I am going to show you is a quicker
and less constructive version that is also due to Kripke.

I mentioned at the beginning of this paper that the existence of nonstandard models
was first observed as a corollary to Gödel’s 1930 work on the completeness of first-
order logic. But today we know techniques which are purely algebraic rather than
logical—the techniques of ultrapower construction—which can be used to give direct
proofs of the existence of nonstandard models in a style with which mathematicians
who are not trained logicians feel perfectly comfortable. In fact, these techniques
do not even require knowledge of the Gödel Completeness Theorem, or even require
that logic itself be axiomatized. In short, the proof I am about to show you is one that



KRIPKE’S PROOF 55

establishes independence by means that could, in principle, have been understood by
nineteenth-century mathematicians. We will exhibit a statement of number theory—
one which is not at all “self referring”—and construct two models, in one of which
it is true and in the other of which it is false, thereby establishing “undecidability”
(independence).

Consider a finite monotone-increasing series s of natural numbers, say 182, 267,

349, 518, . . . , 3987654345. And consider a formula A of number theory, say
(x)(Ey)Rxy (with primitive recursive R). (In what follows I shall identify the series
s with its Kleene Gödel number where convenient.) I shall say s fulfills A if the
second player (the “defending player”) has a winning strategy in the game I shall
describe.

1. The Game G

The game is played as follows. The first player (the “attacking player”) picks a number
less than the length of the given sequence s, say 3. The sequence s is examined to
determine the third place in the sequence (to determine “(s)2”, in the Kleene notation,
since the members of a sequence with Gödel number s are (s)0, (s)1, (s)2, . . . in this
notation). The same player (the attacker) now picks a number less than this number
(less than 349, in the case of this example). Let us suppose he picks 17. We assume the
number picked by the first player was less than the length of the sequence (otherwise
the first player has lost). If so, the second player (the “defending player”) gets to look
at the next number in the sequence (at (s)3 or 518, in the case of the example). He
must pick a number less than this number (less than (s)n+1, if the first player picked
the place (s)n). Let us suppose he picks 56. We now evaluate the statement R(17, 56)

(the statement R(n, m), where n is the number picked by the first player and m is
the number picked by the second player). Since R is primitive recursive, this can be
done effectively. If the statement is true the defending player has won; if false the
attacking player has won.

The statement that a sequence s fulfils this statement A (that there is a winning
strategy for the defending player) can itself be written out in number theory,as follows:

(I) (i ≤ length(s) − 1)(n ≤ (s)i−1)(Em ≤ (s)i )Rnm

Similarly, if we are given a statement A with four, or six, or however many alternating
quantifiers in the prefix, we can define “s fulfills A” to mean that there is a winning
strategy for the defending player in a game which is played very much like the game G:
a game in which the attacking player gets to choose a new place in the sequence, each
time it is his turn to play. The attacking player must also choose a number less than
(s)i−1 where (s)i−1 is the number in the position he chose in the sequence. (N.B. The
number in the i th position is called ‘(s)i−1’ and not ‘(s)i ’ because Kleene—whose
notation I am employing—calls the first position ‘(s)0’ and not ‘(s)1’.) Each time he
plays, the attacking player has to choose a place which is to the right of the place in the
sequence he chose before (unless it is his first turn to play) and not the last place in the
sequence (unless he has no legal alternative, in which case he loses), and the defending
player must then pick a number less than (s)i (less than the number in the next place in
the sequence). The game ends when as many numbers have been chosen as there are
quantifiers in the prefix of the formula. (We assume all formulas are prenex, and that
quantifiers alternate universal, existential, universal, existential, . . ..) The numbers
chosen are then substituted for the variables in the matrix of the formula A in order
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(first number chosen for x1, second number chosen for x2, and so on, where x1 is
the variable in the first argument place, x2 the variable in the second argument place,
and so on). The resulting primitive recursive statement is evaluated and, as before,
the defending player wins if the statement is true and the first (attacking) player wins
if the statement is false. Once again, for any fixed formula A we can easily express
the statement that s fulfills A arithmetically (primitive recursively in s). And for any
fixed recursively enumerable sequence of formulas A1, A2 . . ., the statement that s
fulfills An can be expressed as a primitive recursive relation between s and n, say
Fulfills(s, An). Note that we can also speak (by an obvious extension) of an ordinary
infinite monotone increasing sequence “fulfilling” a formula (this means that if one
picks any number less than a given number in the sequence to be the value of the first
universal quantifier, it is always possible to pick a number less than the next place to
the right in the sequence to be a value for the succeeding existential quantifier, so that,
no matter what number less than the number in an arbitrarily selected place still farther
to the right in the sequence one picks for the next universal quantifier . . ., it is possible
to pick a number less than the number in the place in the sequence immediately to the
right of the last “universal quantifier place” chosen for the last existential quantifier
so that the statement A comes out true). And note that a statement which is fulfilled
by an infinite monotone increasing sequence is true. (Since the restriction that one
must pick numbers as values for the universal quantifiers which are bounded by the
numbers in the sequence is, in effect, no restriction on the “attacking player” at all—
the numbers in the sequence get arbitrarily large, so he can pick any number he wants
by going out far enough in the sequence!)

Henceforth, we shall confine attention to sequences with the following two prop-
erties (call them good sequences):

1. The first number in the sequence is larger than the length of the sequence.
2. Each number in the sequence after the first is larger than the square of the

number before. (This is to ensure that the sum and product of numbers ≤ (s)i

are ≤ (s)i+1.)

Finally (this is the last of the preliminaries!) let P1, P2, P3, . . . be the axioms of
Peano Arithmetic.

We will say that a statement is n-fulfillable if there is a good sequence of length n
which fulfills the statement. The following is the statement which we shall show to
be independent of Peano Arithmetic:

(II) For every n and every m, the conjunction of the first m axioms of Peano
Arithmetic is n-fulfillable.

or (this is easily seen to be equivalent)

(III) For every n, the conjunction of the first n axioms is n-fulfillable.

What does this actually say? Well, if for “n-fulfillable” we substitute “fulfilled by an
increasing infinite sequence”, (III) is the statement that Peano Arithmetic (or whatever
consistent extension we take P to be) is true. Of course, truth is not expressible in P
itself. So (III) is a kind of weak substitute for the statement that Peano Arithmetic is a
true theory. In fact, “n-fulfillable” is a 61 property, so the above is only a 52 sentence.
What it says, however, is that Peano Arithmetic has a weak kind of correctness. From
here on I shall only outline Kripke’s proof; the details are not hard to verify.



KRIPKE’S PROOF 57

First of all, we observe that if a formula A is true, then so is the statement that,
for every n, A is n-fulfillable. This is true because we can take any number we
please larger than n for (s)0 and then choose a number which is larger than the
maximum values assumed by the “Skolem functions” corresponding to the existential
quantifiers in A (as the arguments of those functions range through numbers ≤ (s)i ),
and also larger than the square of (s)i , to be (s)i+1, where i = 0, 1, . . . , n − 1.
This choice guarantees that a suitable value for the next existential quantifier in the
formula can always be found without going more than one place to the right of the place
chosen by the “attacking” player when he picked a number for the preceding universal
quantifier. Moreover, for any fixed formula A, this argument can be formalized in
Peano Arithmetic, that is,

(IV) It is a theorem of P that if A, then A is n-fulfillable. (For n = 1, 2, 3, . . .).

Obviously, since it is a theorem of P that if Pi then Pi is n-fulfillable, and Pi is itself
an axiom of P, then (for each i, n) it is a theorem of P that Pi is n-fulfillable. So if
P is 62-sound (if all 62-statements implied by P are true), then it is not a theorem
of P that there exists an n such that the conjunction of P1, P2, . . . up to Pn is not
n-fulfilled. In other words, the negation of (III) is not provable in P unless P fails
to be 62-sound (N.B. 62-soundness—truth of all 62-statements implied by P—is
weaker than Gödel’s hypothesis of “omega consistency”.)

Our problem is to show by model theoretic means that (III) (which is a true state-
ment if P is 61-sound, since for each n, the conjunction of P1, P2, . . . , up to Pn

is n-fulfillable is a 61-consequence of the conjunction (P1 & P2 & · · · & Pn), and
hence of P) is not a theorem of P. This means we must construct a model in which
(III) is false. Obviously the standard model will not do since (III) is true in the
standard model. So we must construct a nonstandard model!

We know (by the ultrapower technique) how to construct nonstandard models. So
let us construct one—construct any nonstandard model, say M . In M the statement
‘The conjunction of P1, P2, . . . , Pn is n-fulfillable’ is true for the “standard” numbers
n = 0, 1, 2, 3, . . . because for each of these numbers the statement is a theorem and
M is a model. But a statement expressible in the language of P cannot be true of the
finite numbers in M and false of all the infinite ones! (For, by a theorem of P, there
is a least number of which the statement is not true, if there are any numbers at all of
which it is not true. But there cannot be a least infinite integer in M , because if k is
an infinite integer in M so is k − 1.) So there must be at least one infinite integer in
M of which this statement is also true—an infinite N such that in M the conjunction
of the first N-axioms of P is N-fulfillable. Hence there must be a “Gödel number” S
(also an infinite integer, as we shall see), which is the Gödel number of a “sequence”
(in the sense of the model M) of length N which fulfills PN .

Consider the ordinary infinite sequence (this is not an object of the model M , but
what model theorists call an “external” object) (S)0, (S)1, (S)2, . . . (The members of
this sequence are all infinite integers from the model M , since S is a “good” sequence
and so even (S)0 is larger than the infinite integer N .). Since S fulfills P1, P2, . . .,
it is easy to verify that this “external” sequence also fulfills these statements, that
is, this external sequence fulfills each axiom of P. Now let H be the submodel of
M which contains all the members of M which are smaller than a member of the
external sequence. The external sequence is “good”, so H is closed under “+” and
“ · ”, and the external sequence we constructed is cofinal with H . But each axiom of



58 HILARY PUTNAM

P is fulfilled by an ω-sequence which is cofinal with the structure H , and this means
that each axiom of P is true in H ! (The argument that a formula which is fulfilled by
an ω-sequence which is cofinal with the integers is true in the integers carries over to
any structure!) So M is actually a model of P.

Now, let us assume that we carried out this construction choosing as S the smallest
Gödel number of a sequence of length N which N-fulfills PN . S, considered as
an “infinite integer”, will be larger than every number in the sequence S (the Gödel
number of a sequence in the Kleene system is always larger than every number in
the sequence), and, by the construction of H , every number in H is smaller than
some number in S. So S itself (considered as an “integer”) is not in H . Is there any
Gödel number of a sequence of length N which N-fulfills PN in H ? The answer is
“No”. For the statement X N-fulfills PN is a 61 statement, and 61 statements “persist
upward”: if they are true in a substructure, they are true in the bigger structure. So
if this statement were true in H , then it would also be true (of the very same X)
in the original structure M . But then X would be a Gödel number smaller than S
with the property of S (being the Gödel number of a sequence of length N which
. . . )—contrary to the choice of S as the smallest integer with the property. So H
contains no Gödel number which is a “witness” to the statement “There is an X which
N-fulfills PN ”, that is, this statement is not true in H . Hence (III) is not true in H .
We have succeeded in producing a model in which (III) is false!

One last remark: if P is any consistent finitely axiomatizable extension of Peano
Arithmetic, then if A is the conjunction of the axioms of P, A implies (n)(A is n-
fulfillable) is a theorem of Peano Arithmetic, and hence (n)(A is n-fulfillable) is a
theorem of A. So, if we let TA be the theory each of whose axioms P1, P2, . . . is
just A, the statement (n)(Pn is n-fulfillable) is just (up to logical equivalence) (n)(A
is n-fulfillable), and this is a theorem of TA. But we just showed this is undecidable
in a consistent recursively enumerable extension of Peano Arithmetic; hence Peano
Arithmetic has no consistent finitely axiomatizable extensions.
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