Parry Syllogisms

FRED JOHNSON

Abstract

Parry discusses an extension of Aristotle's syllogistic that uses four nontraditional quantifiers. We show that his conjectured decision procedure for validity for the extended syllogistic is correct even if syllogisms have more than two premises. And we axiomatize this extension of the syllogistic.

1 Background and motivation Parry 2] discusses an extension of the syllogistic in which sentences are formed by using the quantifiers $\alpha, \iota, \eta, \omega$ in addition to the traditional quantifiers A, E, I, O. If a and b are terms and Q is a quantifier then $Q a b$ is a sentence. A sentence $Q a b$ is an affirmative sentence if Q is A, I, α, or ι; otherwise, it is a negative sentence. Our discussion of sentences $Q a b$ will be restricted to those in which $a \neq b$. As is customary $A a b, E a b, I a b$, and $O a b$ are read as 'All a are b', 'No a are b', 'Some a are b', and 'Some a are not b', respectively. $\alpha a b, \iota a b, \eta a b$, and $\omega a b$ may be read as 'There is exactly one a and all a are b, and there is exactly one b and all b are a ', 'There is exactly one b and all b are a ', 'It is not true that $\iota a b$ ', and 'It is not true that $\alpha a b$ ', respectively. (So $\eta a b$ and $\omega a b$ may be read as disjunctive sentences. $)^{1}$ Parry conjectures a decision procedure for validity for this extension of the traditional syllogistic, given that syllogisms have no more than two premises. We show that his decision procedure is correct even if syllogisms have more than two premises. And we axiomatize the Parry syllogistic and thus Aristotle's syllogistic as well. ${ }^{2}$

2 Preliminaries

Definition 2.1 $c d(A a b)$ (the contradictory of $A a b)=O a b ; c d(I a b)=E a b$, $c d(\alpha a b)=\omega a b ; c d(\iota a b)=\eta a b ;$ and $c d(c d(x))=x$.

Definition 2.2 A pair $\langle W, v\rangle$ is a model if and only if W is a nonempty set and v a function that maps terms into nonempty subsets of W and maps sentences into $\{t, f\}$ where:

```
(i) \(v(A a b)=t \quad\) iff \(\quad v(a) \subseteq v(b)\);
(ii) \(v(I a b)=t\) iff \(v(a) \cap v(b) \neq \varnothing\);
(iii) \(v(\iota a b)=t\) iff \(v(b)\) has exactly one member and \(v(A b a)=t\);
(iv) \(v(\alpha a b)=t\) iff \(v(\iota a b)=t\) and \(v(\iota b a)=t\); and
(v) \(v(x)=t\) iff \(v(c d(x))=f\).
```

A set X of sentences is consistent if and only if there is a model $\langle W, v\rangle$ such that v assigns t to every member of X; otherwise X is inconsistent. $X \models x$ if and only if $X \cup\{c d(x)\}$ (or $X, c d(x)$ for short) is inconsistent.

Definition 2.3 Sentence x is a superordinate of sentence y if and only if $\langle x, y\rangle$ has one of the following forms: $\langle x, x\rangle ;\langle\alpha a b, \alpha b a(\iota[a b], A[a b], I[a b])\rangle$ (where $Q[a b]$ is $Q a b$ or $Q b a) ;\langle\iota a b, A b a(I[a b])\rangle ;\langle A a b, I[a b]\rangle ;$ or $\langle I a b, I b a\rangle ;$ or $c d(y)$ is a superordinate of $c d(x)$ in virtue of one of the above forms. x is a subordinate of y if and only if y is a superordinate of x.

The following proofs use this fact: if x is a superordinate of y (or y is a subordinate of x) then $x \models y$ (which is short for $\{x\} \models y$).

3 Decision procedure for validity Distribution is defined by the following table:

	a	b
$E a b, \alpha a b$	d	d
$A a b, \eta a b$	d	
$O a b, \iota a b$		d
$I a b, \omega a b$		

So, for example, a is distributed in $E a b$ and b is undistributed in $\omega a b$. The following proofs use this fact: if x is a superordinate of y and term a is distributed in y then a is distributed in x.

Definition 3.1 A set C of sentences is a chain if and only if it has form $Q_{1}\left[a_{1} a_{2}\right]$, $\ldots, Q_{n-1}\left[a_{n-1} a_{n}\right], Q_{n}\left[a_{n} a_{1}\right]$, where each term a_{i} occurs exactly twice and no term occurs twice in a sentence.

Theorem 3.2 A chain C is inconsistent if and only if:
(i) exactly one negative sentence occurs in C;
(ii) every term is distributed at least once in C; and
(iii) if η occurs in C so does α or . 3

Proof: (Only if)
Case 1: (i) is not satisfied.
Subcase 1: No negative sentence occurs in C. Construct chain C^{\prime} by replacing every affirmative quantifier in C with $\alpha . C^{\prime}$ is consistent given model $\langle\{1\}, v\rangle$, where v assigns $\{1\}$ to every term. So C is consistent since $\alpha a b \models Q a b$ if Q is affirmative.

Subcase 2: More than one negative sentence occurs in C.

Definition 3.3 A set X of sentences has form $\alpha\left[a_{1}-a_{n}\right]$ if and only if either $X=\varnothing$ and $a_{1}=a_{n}$ or X has form $\alpha\left[a_{1} a_{2}\right], \ldots, \alpha\left[a_{n-1} a_{n}\right]$. A set X of sentences has form $\alpha a_{1}-a_{n}$ if and only if either $X=\varnothing$ and $a_{1}=a_{n}$ or X has form $\alpha a_{1} a_{2}, \ldots, \alpha a_{n-1} a_{n}$.
Construct chain C^{\prime} with form $\alpha\left[a_{1}-a_{2}\right], E a_{2} a_{3}, \ldots, \alpha\left[a_{n-1} a_{n}\right], E a_{n} a_{1}$, where each sentence in C is a subordinate of a sentence in C^{\prime} and each sentence in C^{\prime} is a superordinate of a sentence in $C . C^{\prime}$ is consistent given model $\langle\{1,2,3\}, v\rangle$, where $v(x)=\{1\}$ if x is a_{2} or x is a term in a member of $\alpha\left[a_{1}-a_{2}\right] ; v(x)=\{2\}$ if x is $a_{2 n}$ or x is a term in a member of $\alpha\left[a_{2 n}-a_{2 n-1}\right]$, where n is even and $n>2$; and $v(x)=\{3\}$ if x is any other term. So C is consistent.

So, for example, Eab, Acb, $\eta c d$, Ide, Oef, $\alpha f g, \omega g h$, tha is consistent since Eab, $\alpha, E c d, \alpha d e$, Eef, $\alpha f g$, Egh, $\alpha h a$ is consistent given model $\langle\{1,2,3\}, v\rangle$ such that $v(b)=\{1\}, v(c)=\{1\}, v(d)=\{2\}, v(e)=\{2\}, v(f)=\{3\}, v(g)=\{3\}, v(h)=\{2\}$, and $v(a)=\{2\}$.

Case 2: (i) is satisfied, but (ii) is not.
Subcase 1: A term a is undistributed in two affirmative sentences in chain C. Construct chain C^{\prime} with form $E d e, \alpha[e-b], ~ a a b, t a c, \alpha[c-d]$, where each sentence in C is a subordinate of a sentence in C^{\prime} and each sentence in C^{\prime} is a superordinate of a sentence in $C . C^{\prime}$ is consistent given $\langle\{1,2\}, v\rangle$, where $v(x)=\{1\}$ if $x=e$ or $x=b$ or x is a term in $\alpha[e-b], v(x)=\{2\}$ if $x=c$ or $x=d$ or x is a term in $\alpha[c-d]$, and $v(x)=\{1,2\}$ if x is any other term. So C is consistent.

Subcase 2: A term a is undistributed in an affirmative sentence and a negative sentence. Construct chain C^{\prime} with form $\alpha[c-b], a b, O a c$, where each sentence in C is a subordinate of a sentence in C^{\prime} and each sentence in C^{\prime} is a superordinate of a sentence in $C . C^{\prime}$ is consistent given $\langle\{1,2\}, v\rangle$, where $v(a)=\{1,2\}$ and for every term x other than $a, v(x)=\{1\}$. So C is consistent.

Case 3: (i) and (ii) are satisfied, but (iii) is not. Then C has form $\eta a b, A b-a$. So C is consistent given $\langle\{1,2\}, v\rangle$, where for every term $x, v(x)=\{1,2\}$.
(If) We show that every chain that satisfies conditions (i) to (iii) is "reducible" to a chain with two members that satisfies these conditions. Then we rely on the inconsistency of these two-membered chains.

Definition 3.4 A chain x, y, X is 1-reducible to a set z, X if and only if $x, y \models z$.
So, for example, chain $E a b, \iota b c, \iota a c$ is 1-reducible to $E a c, l a c$.
Lemma 3.5 If a chain C with $n(n \geq 3)$ sentences satisfies conditions (i) to (iii) then it is 1 -reducible to a chain with $n-1$ sentences that satisfies conditions (i) to (iii).

Proof: Assume the antecedent where $C=Q_{1} a b, Q_{2}[b c], X$. There are exactly four cases to consider since exactly one negative sentence occurs in C.
Case 1: $\quad Q_{1}=E$.
Subcase 1: c is distributed. Then $Q[b c]$ is a superordinate of $A c b$. Since Eab, $A c b \models E a c, C$ is 1-reducible to Eac, $X\left(C^{\prime}\right)$. C^{\prime} obviously satisfies conditions (i) and
(iii). Condition (ii) is satisfied since any every term that occurs in C^{\prime} that is distributed in C is also distributed in C^{\prime}.

Subcase 2: $\quad c$ is undistributed. Then $Q[b c]$ is a superordinate of $I b c . E a b, I b c \models$ Oca.

Case 2: $\quad Q_{1}=O$.
Subcase 1: c is distributed. Then $Q[b c]$ is a superordinate of $A c b$. $O a b, A c b \models$ Oac.

Subcase 2: $\quad c$ is undistributed. Then $Q[b c]$ is $I[b c], A b c$, or $c c b$. Then there must be some affirmative sentence $Q_{2}[d c]$ in which c is distributed. Then $Q_{2}[d c]$ is a superordinate of Acd. Suppose d is distributed. $I[b c], \alpha[c d] \models \iota b d$. Suppose d is undistributed. $I[b c], A c d \models I b d$.

Case 3: $\quad Q_{1}=\eta$.
Subcase 1: $\quad c$ is distributed. Then $Q[b c]$ is $\alpha[b c] . \eta a b, \alpha[b c] \models E a c$.
Subcase 2: c is undistributed. Then $Q[b c]$ is $A b c$ or $\iota c b$. Suppose the former. $\eta a b, A b c \models \eta a c$. Suppose the latter. $\eta a b, \iota c b \models O c a$.

Case 4: $\quad Q_{1}=\omega$.
Subcase 1: $\quad c$ is distributed. Then $Q[b c]$ is $\alpha[b c] . \omega a b, \alpha b c \vDash O a c$.
Subcase 2: c is undistributed. Then $Q[b c]$ is a superordinate of $A b c . \omega a b, A b c \models$ $\omega a c$.

Lemma 3.6 Suppose C_{1}, \ldots, C_{n} is a sequence of chains such that C_{1} satisfies conditions (i) to (iii) and C_{j} is 1-reducible to C_{j+1}. Then C_{n} satisfies conditions (i) to (iii) and C_{1} is inconsistent if C_{n} is inconsistent.

Proof: Use induction, relying on the preceding lemma and this fact: if X, y is inconsistent and $Y \models y$ then X, Y is inconsistent.

Lemma 3.7 Every two-membered chain that satisfies conditions (i) to (iii) is inconsistent.

Proof: The only two-membered chains that satisfy conditions (i) to (iii) are: $E a b, I a b ; O a b, A a b ; \eta a b, \iota a b ; \omega a b, \alpha a b$; and their superordinates, where 'chains that are superordinates of chains' is defined in the natural way. It is easily shown that these chains are inconsistent.

Corollary 3.8 (Smiley [3]) A chain in which no quantifiers other than A, E, I, or O occur is inconsistent if and only if it has one of the following forms: (i) $O a b, A a-b$, (ii) $E a b, A c-a, A c-b$, or (iii) $E a b, I[c d], A c-a, A d-b$.

Definition 3.9 Suppose X is a set of sentences and x is a sentence. $\langle X, x\rangle$ is a syllogism if and only if $X, \operatorname{cd}(x)$ is a chain. $X \models y$ (' X, so x ' is valid) if and only if $X, \operatorname{cd}(x)$ is inconsistent.

Theorem 3.10 Theorem 3.2 rovides a decision procedure for determining whether any syllogism is valid.

Proof: Note that $X \models x$ if and only if $X, \operatorname{cd}(x)$ is inconsistent.
Theorem 3.11 A syllogism is valid if and only if there is no countermodel with a three-membered domain. ${ }^{4}$

Proof: Given the above proof of Theorem 3.2 every consistent chain can be shown to be consistent by using a three-membered model.

Definition 3.12

(i) Dilution
(ii) Cut

If $X \vdash x$ then $X, Y \vdash x$.
(iii) Antilogism

If $X \vdash x$ and $Y, x \vdash y$ then $X, Y \vdash y$.
(iv) Reductio
$X, x \vdash y$ then $X, c d(y) \vdash c d(x)$.
(v) Superordination

If $X, x \vdash y$ and $X, x \vdash c d(y)$ then $X \vdash c d(x)$.
(vi) Basic syllogisms
$x \vdash y$ if x is a superordinate of y.
$A a b, A b c \vdash A a c ; I a b, A b c \vdash I a c ; I a b, \alpha b c \vdash$ $\iota a c ; A a b, \alpha b c \vdash \alpha a c$; and $A a b, \iota c b \vdash \iota c a$.
$X \vdash y$ iff $X \vdash y$ in virtue of (i) to (vi).

Theorem 3.13 If X, x is a syllogism then $X \models x$ if and only if $X \vdash x$.
Proof: (If) Straightforward. (Only if) Assume the antecedent. Given the proof of Theorem 3.2 here is a sequence of chains $C_{1}(X, \operatorname{cd}(x)), \ldots, C_{n}(\{y, z\})$ such that $\{y, z\}$ satisfies conditions (i) to (iii) of Theorem 3.2 and C_{j} is 1-reducible to C_{j+1}. $C_{n} \vdash y$ and $C_{n} \vdash c d(y)$ (by Superordination and Dilution); $C_{j} \vdash C_{j+1}$ (by Basic syllogisms, Superordination, Antilogism, and Cut); and $C_{1} \vdash y$ and $C_{1} \vdash c d(y)$ (by repeated uses of Cut). So $X \vdash x$ (by Reductio).
We illustrate the algorithm for showing that $X \vdash x$ given $\langle X, x\rangle$ is a valid syllogism by considering the Pseudo-Scotus valid syllogism mentioned in note 1 : uI-2. $E a b \vdash E a b$ (by Reflexivity). $a a b \vdash c d(E a b)$ (by Superordination). So Eab, $a b \vdash$ $E a b$ and $E a b, \iota a b \vdash c d(E a b)$ (by Dilution). Eac, $\iota c b \vdash E a b$ (by Antilogism) since $I a b, \iota c b \vdash I a c$ (by Cut) since $\iota c b \vdash A b c$ (by Superordination) and $I a b, A b c \vdash I a c$ (by Basic syllogisms). So Eac, $\iota c b, \iota a b \vdash E a b$ and $E a c, \iota c b, \iota a b \vdash c d(E a b)$ (by Cut). So $\iota c b, \iota a b \vdash I a c$ (by Reductio).

Departing from the algorithm, $\iota c b, \iota a b \vdash I a c$ (by Cut) since $\iota c b \vdash A b c$ and $\iota a b \vdash$ $I a b$ (by Superordination) and $A b c, I a b \vdash I a c$ (by Basic syllogisms).

Acknowledgments I am grateful to the referee for major improvements in the paper.

NOTES

1. See Parry [2] for alternative ways of reading the nontraditional sentences and for a useful discussion of the history of them. He reads $t a b$ as 'Some b is every a.' And he claims that the earliest known example of a syllogism with such nontraditional sentences is due to Pseudo-Scotus: "Something that moves in a circle is every moon. Something shining is every moon. So something shining moves in a circle." An alternative formulation of the syllogism is: 'There is exactly one moon and all moons are things that move in a circle. There is exactly one moon and all moons are things that shine. So some things that shine are things that move in a circle.' So this nontraditional syllogism has mood and figure $\omega I-2$.
2. Our axiomatization of Aristotle's syllogistic is similar to Smiley [3].
3. Parry [2] conjectures that this theorem holds for chains with three members given the following fourth condition is added: if ω occurs then α or ι occurs. Given our theorem the fourth condition is superfluous.
4. Johnson proves the special case of this theorem that involves only the Aristotelian quantifiers.

REFERENCES

[1] Johnson, F., "Three-membered domains for Aristotle's syllogistic," Studia Logica, vol. 50 (1993), pp. 180-87. Zbl 0739.03006/MR 93a:03009 3
[2] Parry, W. T., "Quantification of the predicate and many-sorted logic," Philosophy and Phenomenological Research, vol. 26 (1966), pp. 342-60. 1.|3.3
[3] Smiley, T. J., "What is a syllogism?," Journal of Philosophical Logic, vol. 2 (1973), pp. 136-54. Zbl 0259.02005 3.8.3

Department of Philosophy
Colorado State University
Fort Collins CO 80523
email: iohnsonf@lamar.colostate.edu

