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Determinantal Facet Ideals

Viviana Ene, Jürgen Herzog,
Takayuki Hibi , & Fatemeh Mohammadi

Introduction

Let K be a field, X = (xij ) an m × n matrix of indeterminates, and S = K[X]
the polynomial ring over K in the indeterminates xij . We assume that m ≤ n.

Classically the ideals It(X) generated by all t-minors of X have been consid-
ered. Hochster and Eagon [15] proved that the rings S/It(X) are normal Cohen–
Macaulay domains. A standard reference on the classical theory of determinantal
ideals, including the study of the powers of It(X), is the book by Bruns and Vet-
ter [4]. In addition, the study of a more general class of ladder determinantal ideals
has been motivated by geometrical considerations [6]. A new aspect to the theory
of determinantal ideals was introduced by Sturmfels [17] and Caniglia et al. [5],
who showed that the t-minors of X form a Gröbner basis of It(X) with respect to
any monomial order that selects the diagonals of the minors as leading terms. This
technique yields a new proof of the Cohen–Macaulayness of the determinantal
rings S/It(X) and was subsequently used also to compute important numerical in-
variants of these rings—including the a-invariant, the multiplicity, and the Hilbert
function (see [2; 7; 13]). Bruns and Conca [1] have written an excellent survey
on the theory of determinantal ideals with regard to the Gröbner basis aspect that
includes many references to more recent work.

Applications in algebraic statistics prompted the study of determinantal ideals
generated by quite general classes of minors, including ideals generated by ad-
jacent 2-minors [11; 16] or ideals generated by an arbitrary set of 2-minors in a
2 × n matrix [12]. Thus one may raise the following questions. Given an arbi-
trary set of minors of X, what can be said about the ideal they generate? When is
such an ideal a radical ideal, and when is it a prime ideal? What is its primary de-
composition, when is it Cohen–Macaulay, and what is its Gröbner basis? Apart
from the classical cases mentioned before, satisfactory answers to some of these
questions are known for ideals generated by arbitrary sets of 2-minors of a 2 × n
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matrix of indeterminates. For these ideals—all of which are radical—the primary
decomposition and the Gröbner basis are known (see [12]).

The purpose of this paper is to extend some of the results shown in [12] to ideals
generated by an arbitrary set of maximal minors of an m × n matrix of indeter-
minates. For any sequence of integers 1 ≤ a1 < a2 < · · · < am ≤ n, we denote
by [a1a2 . . . am] the maximal minor of X with columns a1, a2, . . . , am. The set
of integers {a1, a2, . . . , am} may be viewed as a facet of a simplex on the vertex
set [n]. We are thus led to the following definition. Let � be a pure simplicial com-
plex on the vertex set [n] = {1, . . . , n} of dimension m − 1. With each facet F =
{a1 < a2 < · · · < am} we associate the minor µF = [a1a2 . . . am], and we call
the ideal

J� = (µF : F ∈ F(�))

the determinantal facet ideal of �. Here F(�) denotes the set of facets of �.

If m = 2, then (i) � may be identified with a graph G and (ii) the m-minors are
binomials. In this case, the determinantal facet ideal coincides with the binomial
edge ideal of [12].

In the first section of this paper we establish when the maximal minors gen-
erating J� form a Gröbner basis of J�. In order to explain this result, we must
introduce some notation. Let � be a simplicial complex, and denote by �(i) the
i-skeleton of �. The simplicial complex �(i) is the collection of all simplices of �
whose dimension is at most i.

Now let � be a pure (m − 1)-dimensional simplicial complex on the vertex
set [n] = {1, 2, . . . , n}. We denote by S the set of simplices � with vertices in
[n] for which dim� ≥ m − 1 such that �(m−1) ⊂ �. Let �1, . . . ,�r be the max-
imal elements in S (with respect to inclusion) and set �i = �

(m−1)
i . Then � =

�1 ∪ �2 ∪ · · · ∪ �r. The simplicial complex whose facets are the �i is called the
clique complex of �, the �i are the cliques of �, and � = �1 ∪ �2 ∪ · · · ∪ �r

is the clique decomposition of �. For example, let � be the 2-dimensional sim-
plicial complex on the vertex set [7] with facets F1 = {1, 2, 3}, F2 = {1, 2, 4},
F3 = {1, 3, 4}, F4 = {2, 3, 4}, F5 = {3, 4, 5}, and F6 = {5, 6, 7}. Then � has
the clique decomposition � = �1 ∪ �2 ∪ �3, where �1 = �

(2)
1 for �1 is the

3-dimensional simplex on the set [4], �2 = �
(2)
2 for �2 the 2-dimensional sim-

plex on the set {3, 4, 5}, and �3 = �
(2)
3 for �3 the 2-dimensional simplex on the

set {5, 6, 7}.
Note that if m = 2 (i.e., if � is a graph), then the �i are exactly the cliques

of � as they are known in graph theory and �1, . . . ,�r are the facets of the clique
complex of the graph �.

The complex � is called closed (with respect to the given labeling) if, for any
two facets F = {a1 < · · · < am} and G = {b1 < · · · < bm} with ai = bi for
some i, the (m − 1)-skeleton of the simplex on the vertex set F ∪ G is contained
in �. In terms of its clique decomposition, the property of � of being closed can
be expressed in two different ways.

(1) � is closed if and only if, for all i �= j and for allF = {a1 < a2 < · · · < am} ∈
�i and G = {b1 < b2 < · · · < bm} ∈�j , we have a� �= b� for all �.
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(2) � is closed if and only if, for all i �= j and for all {a1, . . . , am} ∈ �i and
{b1, . . . , bm} ∈ �j , the monomials in<[a1 . . . am] and in<[b1 . . . bm] are rela-
tively prime; here < is the lexicographical order induced by the natural order
of indeterminates

x11 > x12 > · · · > x1n > x21 > · · · > x2n > · · · > xmn

(row by row from left to right).

The main result (Theorem 1.1) of Section 1 states that the minors generating the
facet ideal J� form a quadratic Gröbner basis—with respect to the lexicographic
order induced by the natural order of the variables—if and only if � is closed. We
also show that, whenever � is closed, J� is Cohen–Macaulay and the K-algebra
generated by the minors that generate J� is Gorenstein (see Corollary 1.3 and
Corollary 1.4).

In Section 2 we discuss when a determinantal facet ideal is a prime ideal. As a
main result we show in Theorem 2.2 that if � is closed and if J� is a prime ideal,
then the clique complexes �i of � satisfy the following intersection property: for
all 2 ≤ t ≤ m = dim� + 1 and for any pairwise distinct cliques �i1, . . . ,�it ,

|V(�i1) ∩ · · · ∩V(�it )| ≤ m − t.

We expect that this intersection property actually characterizes closed simplicial
complexes whose determinantal facet ideal is prime, but we have not yet proved
this. In Theorem 2.4 we can give only a partial converse of Theorem 2.2.

We show in Example 2.5 that, for determinantal facet ideals satisfying the in-
tersection condition just described, primality can be expected only in the case of
closed simplicial complexes. For nonclosed simplicial complexes, the primality
problem is difficult.

In Section 3 we study primality of J� for a closed simplicial complex under
the following strict intersection condition. Let � = �1 ∪ · · · ∪ �r be the clique
decomposition of �. We require that

(i) |V(�i) ∩ V(�j)| ≤ 1 for all i < j and
(ii) V(�i) ∩ V(�j) ∩ V(�k) = ∅ for all i < j < k.

For m = 3, this is exactly the necessary condition for primality formulated in The-
orem 2.2.

Assuming (i) and (ii), we let G� be the simple graph with vertices v1, . . . , vr
and edges {vi, vj} for all i �= j, where V(�i) ∩ V(�j) �= ∅. We would like to
identify the graphs G� for which the determinantal facet ideal J� is a prime ideal;
this is the case when � is closed and G� is a forest or a cycle (see Theorem 3.2
and Theorem 3.3). Finally, we show in Theorem 3.4 that for any graph G there is
a closed simplicial complex �, with G = G�, whose cliques are all simplices.

1. Determinantal Facet Ideals Whose Generators
Form a Gröbner Basis

In this section we seek to classify those ideals generated by maximal minors of
a generic m × n matrix X whose generating minors form a Gröbner basis. As
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explained in the Introduction, we identify each m-minor [a1a2 . . . am] of X with
the (m − 1)-simplex F = {a1, a2, . . . , am}. Thus an arbitrary collection of m-
minors of X can be indexed by the facets of a pure (m−1)-dimensional simplicial
complex � on the vertex set [n]. The ideal generated by these minors will be
denoted J� and is called the determinantal facet ideal of �. In other words, if
F(�) denotes the set of facets of � then J� = (µF : F ∈ F(�)), where µF =
[a1a2 . . . am] for F = {a1, a2, . . . , am}.

In analogy to the case of 2-minors as considered in [12], we say that � is closed
with respect to the given labeling if, for any two facets F = {a1 < · · · < am} and
G = {b1 < · · · < bm} with ai = bi for some i, the (m − 1)-skeleton of the sim-
plex on the vertex set F ∪ G is contained in �. Note that � is called closed if
there is a labeling of its vertices such that � is closed with respect to it.

For example, let � be the 2-dimensional simplicial complex of Figure 1(a).
The cliques of � are two simplices of dimension 2. The complex � is closed
with respect to the labeling given in Figure 1(b) but not with respect to the label-
ing given in Figure 1(c). Indeed, with the first labeling, the facets {1, 2, 3} of the
first clique and {3, 4, 5} of the second clique have no common label in the same
position whereas, with the second labeling, the facets {1, 2, 5} and {3, 4, 5} both
have the label 5 in the last position. In terms of initial monomials, in the first
case in<[123] = x11x22x33 and in<[345] = x13x24x35 are relatively prime; in the
second case, in<[125] = x11x22x35 and in<[345] = x13x24x35 are not relatively
prime. Nonetheless, the simplicial complex is closed because one may find at least
one labeling of its vertices with respect to which � is closed.

(a) (b)
1

2

3

5

4

(c)
2

1

5

4

3

Figure 1

The main result of this section is the following statement.

Theorem 1.1. The set G = {[a1 . . . am] : {a1, . . . , am} ∈�} is a Gröbner basis of
J� with respect to the lexicographical order induced by the natural order of inde-
terminates if and only if � is closed.

Before proving this theorem we recall some notation that is often used in the
classical theory of determinantal ideals. If r < m, then the minor correspond-
ing to the submatrix of X with rows a1, . . . , ar and columns b1, . . . , br is denoted
by [a1 . . . ar |b1 . . . br ]. Proving Theorem 1.1 will require the following technical
result.
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Lemma 1.2. Let m ≤ n − 1. For any m − 1 rows c1, c2, . . . , cm−1 and any m + 1
columns d1, d2, . . . , dm−2, e1, e2, e3 of X, we have

(−1)k[c1 . . . cm−1|d1 . . . dm−2e3][d1 . . . dm−2e1e2 ]

+ (−1)j [c1 . . . cm−1|d1 . . . dm−2e2 ][d1 . . . dm−2e1e3]

+ (−1)i[c1 . . . cm−1|d1 . . . dm−2e1][d1 . . . dm−2e2e3] = 0

provided that d1 < d2 < · · · < di−1 < e1 < di < · · · < dj−2 < e2 < dj−1 <

· · · < dk−3 < e3 < dk−2 < · · · < dm−2 for some 1 ≤ i < j < k ≤ m.

Proof. Our assumption on the sequence of integers means that e1 is the ith term,
e2 the j th term, and e3 the kth term in the preceding sequence.

Now consider the matrix

M =




x1d1 . . . x1di−1 x1e1 . . . x1e2 . . . x1e3 . . . x1dm−2

...
...

...
...

...
...

xmd1 . . . xmdi−1 xme1 . . . xme2 . . . xme3 . . . xmdm−2

gd1 . . . gdi−1 ge1 . . . ge2 . . . ge3 . . . gdm−2


,

where g� is the minor [c1 . . . cm−1|d1 . . . dm−2�] of X for each � ∈ {d1, d2, . . . ,
dm−1, e1, e2, e3}. Expanding g� by the last column yields

g� =
m−1∑
i=1

(−1)m−1+i[c1 . . . ci−1ci+1 . . . cm−1|d1 . . . dm−2 ]xci�

for each �. Hence the last row of M is a linear combination of the rows c1, . . . , cm−1

of M and so the determinant of M is zero. On the other hand, g� = 0 for � =
d1, . . . , dm−2 because, for these �, the polynomial g� is the determinant of a matrix
with two equal columns. Now computing the determinant of M by expanding its
last row, we obtain the desired identity.

Proof of Theorem 1.1. Assume that � is closed. We show that all S-pairs,

S([a1 . . . am], [b1 . . . bm]),

reduce to zero. If ai �= bi for all i, then in<[a1 . . . am] and in<[b1 . . . bm] have no
common factor. Therefore, S([a1 . . . am], [b1 . . . bm]) reduces to zero.

Let ai = bi for some i. Since � is closed, all m-subsets of {a1, . . . , am} ∪
{b1, . . . , bm} belong to �. As a result, S([a1 . . . am], [b1 . . . bm]) reduces to zero
with respect to the m-subsets of {a1, . . . , am}∪ {b1, . . . , bm} and hence with respect
to G. It then follows from Buchberger’s criterion that G is a Gröbner basis of J�.

Assume that G is a Gröbner basis for the ideal J�. Let [a1a2 . . . am] with a1 <

a2 < · · · < am and [b1b2 . . . bm] with b1 < b2 < · · · < bm belong to G, and as-
sume that ai = bi for some i. We will show that � is closed. The proof is by
descending induction on

k = |{a1, . . . , am} ∩ {b1, . . . , bm}|.
Case 1: k = m−1. Then there exists an integer � such that a1 = b1, . . . , a�−1 =

b�−1 and a� �= b�. We may assume b� < a�, so
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{b1 < · · · < bm}
= {a1 < a2 < · · · < a�−1 < b� < a� < · · · < a�′−1 < a�′+1 < · · · < am}

for some �′ ≥ �. In this case, proving that � is closed requires showing that

{a1, . . . , am, b�} \ {ar} ∈�

for all r.
Since ai = bi for some i we have that either �′ < m or 1 < �. First assume that

�′ < m, and choose an integer r with �′ < r ≤ m. We can use the determinantal
identity of Lemma 1.2, whereby {d1 < · · · < dm−2} is equal to

{a1 < · · · < a�−1 < a� < · · · < a�′−1 < a�′+1 < · · · < ar−1 < ar+1 < · · · < am}
and {e1 < e2 < e3} = {b� < a�′ < ar}, to obtain

(−1)�
′+1[1 . . . m − 1|a1 . . . â�′ . . . am][a1 . . . a�−1b�a� . . . âr . . . am]

+ (−1)r+1[1 . . . m − 1|a1 . . . âr . . . am][b1 . . . bm]

+ (−1)�[1 . . . m − 1|a1 . . . a�−1b�a� . . . â�′ . . . âr . . . am][a1 . . . am] = 0.

Since the last two terms are in J� and since G is a Gröbner basis for J�, it follows
that the initial monomial of the first term is divisible by the initial monomial of a
minor in G.

The initial monomial of the first term is

u = (x1a1 · · · x�′−1a�′−1
x�′a�′+1

· · · xm−1am)

× (x1a1 · · · x�−1a�−1x�b� x�+1a�x�+2a�+1 · · · xrar−1xr+1ar+1 · · · xmam).

Hence in<[a1 . . . a�−1b�a� . . . âr . . . am] is the only initial monomial of a maximal
minor of X that divides the displayed monomial. Indeed, in order to find the ini-
tial monomial of a maximal minor that divides u, we must choose an increasing
subsequence of a1 < · · · < a�−1 < b� < a� < a�+1 < · · · < am with m elements.
Observe that we have a unique choice for the first �−1 elements and the last m− r

elements; that choice is a1 < · · · < a�−1 and, respectively, ar+1 < · · · < am. We
must therefore choose a subsequence with r −�+1 elements of b� < a� < a�+1 <

· · · < ar. Now we see that xrar
does not divide u, so we cannot keep ar in the pre-

ceding sequence. As a result, the unique choice of the subsequence is b� < a� <

a�+1 < · · · < ar−1. Hence we deduce that

[a1 . . . a�−1b�a� . . . âr . . . am] ∈ G
and so {a1, . . . , a�−1, b�, a�, . . . , âr , . . . , am} is in � for all r > �′.

Next we assume that 1 < �. Then we deduce as in the �′ < m case that

{a1, . . . , âr , . . . , a�−1, b�, a�, . . . , am}
is in � for r < �. More precisely, we again use Lemma 1.2 but now for

[c1 . . . cm−1] = [2 . . . m];
this leads to the following identity:
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(−1)r [2 . . . m|a1 . . . âr . . . am][b1 . . . bm]

+ (−1)�−1[2 . . . m|a1 . . . âr . . . b�a� . . . â�′ . . . am][a1 . . . am]

+ (−1)�
′−1[2 . . . m|a1 . . . â�′ . . . am][a1 . . . âr . . . b�a� . . . am] = 0.

The last term in this identity belongs to J�, so its initial monomial is divisible by
the initial monomial of a minor in G. By using similar arguments as before, we
get the claim.

Finally we show that {a1, . . . , am, b�} \ {ar} ∈ � for all r. Toward this end, we
may assume that �′ < m and choose r = �′ + 1 to obtain (arguing as before) that
{a1, . . . , a�−1, b�, a�, . . . , â�′+1, . . . , am} is a facet of �. When we compare this facet
with the facet {a1, . . . , a�−1, b�, a�, . . . , â�′ , . . . , am} of �, it follows from the previ-
ous considerations that {a1, . . . , a�−1, b�, a�, . . . , am} \ {ar} ∈� for all r ≤ �′.

Case 2: k < m − 1. Let s be the number of integers i such that ai = bi. By
our assumption, s ≥ 1 and of course s ≤ k. Assume that a1 = b1, . . . , as = bs and
as+1 < bs+1. Then

in<([s + 1 . . . m|bs+1 . . . bm][a1 . . . am] − [s + 1 . . . m|as+1 . . . am][b1 . . . bm])

= (xs+1bs+1 · · · xmbm)(x1a1 · · · xs−1as−1xsas+1xs+1as xs+2as+2 · · · xmam) = u;
this is because the monomials greater than u (in the expression whose initial mono-
mial we compute) cancel. Hence there exists a minor [c1 . . . cm] in G with c1 <

c2 < · · · < cm such that in<[c1 . . . cm] divides the monomial

(xs+1bs+1 · · · xmbm)(x1a1 · · · xs−1as−1xsas+1xs+1as xs+2as+2 · · · xmam),

from which it follows that
c1 = a1, . . . , cs−1 = as−1, cs = as+1, cs+1 = bs+1

and c� ∈ {a�, b�} for � ≥ s + 2.

First consider the case s = k. Then cm is either am or bm, and we may assume
that cm = am. Therefore, |{c1, . . . , cm} ∩ {a1, . . . , am}| > k. Applying the induc-
tive hypothesis for the facets {c1, . . . , cm} and {a1, . . . , am} of �, we conclude that
all m-subsets of

{a1, . . . , am} ∪ {c1, . . . , cm}
belong to �.

Note that there exists some ci such that ci /∈ {a1, . . . , am}, given as /∈ {c1, . . . , cm}.
It follows that ci = bi and consequently bi /∈ {a1, . . . , am}. Moreover, since k <

m − 1 there exist two integers j1 and j2 such that

aj1, aj2 /∈ {b1, . . . , bm}.
Since {a1, . . . , âj1, . . . , am, bi} and {a1, . . . , âj2 , . . . , am, bi} are m-subsets of

{a1, . . . , am} ∪ {c1, . . . , cm},
both of them belong to �. Now applying the inductive hypothesis to the sets
{b1, . . . , bm} and {a1, . . . , âj1, . . . , am, bi} that intersect in k +1 elements, we obtain
all m-subsets of
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{a1, . . . , âj1, . . . , am, bi} ∪ {b1, . . . , bm}
in �. By the same argument we deduce that all m-subsets of

{a1, . . . , âj2 , . . . , am, bi} ∪ {b1, . . . , bm}
belong to �.

Now assume that F is an arbitrary subset of {a1, . . . , am} ∪ {b1, . . . , bm} such
that aj1, aj2 ∈ F and bj /∈ F for some j. By the foregoing statements we have
(F \ {aj1}) ∪ {bj} and (F \ {aj2}) ∪ {bj} in �. Comparing these two facets then
allows us to deduce that F ∈�, since their intersection has cardinality m − 1.

The proof is similar in the more general case where a�1 = b�1 , . . . , a�s = b�s .

We simply consider the minor

[1 . . . �̂1 . . . �̂s . . . m|a1 . . . â�1 . . . â�s . . . am]

instead of [s + 1 . . . m|as+1 . . . am] and the minor

[1 . . . �̂1 . . . �̂s . . . m|b1 . . . b̂�1 . . . b̂�s . . . bm]

instead of [s + 1 . . . m|bs+1 . . . bm] to get the desired minors in G. Therefore, the
assertion of the theorem is proved if s = k.

Now assume that s < k and that the results hold for every two sets in � with k

common elements at least s + 1 of which have the same position in both sets. Let
a�1 = bt1, . . . , a�k−s

= btk−s
for some integers �1 < · · · < �k−s and t1 < · · · <

tk−s , where tr �= �r for r = 1, . . . , k − s. Assume that

{a�σ1
, . . . , a�σp

} ⊂ {cs+2, . . . , cm} and {a�τ1
, . . . , a�τq

} �⊂ {cs+2, . . . , cm}
for {σ1, . . . , σp, τ1, . . . , τq} = {�1, . . . , �k−s}.

We begin by assuming that p = k − s. We remark that, since k < m − 1, there
exists some index j with j /∈ {1, . . . , s + 1, �1, . . . , �k−s}. If cj = aj for some j /∈
{1, . . . , s + 1, �1, . . . , �k−s} then |{a1, . . . , am} ∩ {c1, . . . , cm}| > k and, by the in-
ductive hypothesis, we derive all m-subsets of {a1, . . . , am} ∪ {c1, . . . , cm} in �.

Otherwise, |{b1, . . . , bm}∩{c1, . . . , cm}| > k and so, again by the inductive hypoth-
esis, all m-subsets of {b1, . . . , bm}∪ {c1, . . . , cm} belong to �. In both cases we can
apply the same argument as in the case s = k and thereby deduce that all desired
m-subsets are in �.

Next assume that p < k − s. We claim that

c�r = b�r for r = τ1, . . . , τq;
in particular, we have {b�τ1

, . . . , b�τq
} ⊂ {c1, . . . , cm}. Indeed, suppose that a�r /∈

{cs+2, . . . , cm}. Then c�r = b�r and ctr = atr .

Since as+1 < bs+1 < · · · < bm, we have �r > s + 1 for all r. Therefore,

c1 = b1, . . . , cs−1 = bs−1, cs+1 = bs+1, c�τ1
= b�τ1

, . . . , c�τq
= b�τq

,

c�σ1
= a�σ1

= btσ1
, . . . , c�σp

= a�σp
= btσp

.

These expressions show that {c1, . . . , cm} and {b1, . . . , bm} have at least k common
elements and that s + q ≥ s +1 of them have the same position in both sets. Now
applying the result of the first case to these two sets, we deduce that allm-subsets of
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{b1, . . . , bm} ∪ {c1, . . . , cm}
are in �. Finally, the same argument as in the case k = s—but for {b1, . . . , bm} ∪
{c1, . . . , cm} instead of {a1, . . . , am} ∪ {c1, . . . , cm}—implies that all desired m-
subsets belong to �.

For determinantal facet ideals of closed simplicial complexes, we may compute
important numerical invariants.

Corollary 1.3. Let � be a closed simplicial complex of dimension (m−1) and
let � = �1 ∪ �2 ∪ · · · ∪ �r be its clique decomposition. For 1 ≤ � ≤ r, let n� be
the number of vertices of ��. Then:

(a) height J� = ∑r
�=1 height J��

= ∑r
�=1 n� − (m − 1)r;

(b) J� is Cohen–Macaulay;
(c) the Hilbert series of S/J� has the form

HS/J�(t) =
∏r

�=1 Q�(t)

(1 − t)mn−∑r
�=1 n�+(m−1)r

,

where

Q�(t) =
det

(∑
k

(
m−i
k

)(
n�−j

k

))
1≤i,j≤m−1

t
(m−1

2 )

for 1 ≤ � ≤ r;
(d) the multiplicity of S/J� is

e(S/J�) =
r∏

�=1

(
n�

m − 1

)
.

Proof. It follows from characterization (2) of closed simplicial complexes that the
initial ideals in<(J��

) are monomial ideals in disjoint sets of variables; hence the
first equality in (a) is obvious. The second equality follows from the formula for
the height of determinantal ideals (see e.g. [8, Thm. 6.35]).

By [10, Cor. 3.3.5], S/J� and S/in<(J�) have the same Hilbert series. By [7,
Cor. 1] or by [1, Thm. 6.9] and [13, Thm. 3.5], we have formulas for the Hil-
bert series and know the multiplicity of determinantal rings defined by maximal
minors. Hence (c) and (d) follow once we observe that, by characterization (2) of
closed simplicial complexes,

S/in<(J�) ∼=
r⊗

i=1

Si/in<(J�i
); (1.1)

here the Si are polynomial rings in disjoint sets of variables whose union is the
set of all the variables of X. Another application of (1.1) reveals that, since all
factors in the right-hand side are Cohen–Macaulay (see [5] and [17]), in<(J�) =
in<(J�1)+ · · · + in<(J�r

) is also Cohen–Macaulay. This, in turn, implies that J�
is Cohen–Macaulay (see e.g. [10, Cor. 3.3.5]).
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Corollary 1.4. Suppose that � is closed and has clique decomposition � =
�1 ∪ · · · ∪ �r. Then the K-algebra

A = K[{[a1 . . . am] : {a1, . . . , am} ∈�}]
is Gorenstein and of dimension r + ∑r

i=1 m(ni − m), where ni is the cardinality
of the vertex set of �i.

Proof. We first observe that

B := K[{in<[a1 . . . am] : {a1, . . . , am} ∈�}]
∼=

r⊗
i=1

K[{in<[a1 . . . am] : {a1, . . . , am} ∈�i}].

We use the Sagbi basis criterion (see [8, Thm. 6.43]), which asserts that the minors
[a1 . . . am] with {a1, . . . , am} ∈� form a Sagbi basis ofA; in other words, the mono-
mials [a1 . . . am] with {a1, . . . , am} ∈� generate the initial algebra in<(A) provided
a generating set of binomial relations of the algebra B can be lifted. It follows
from the tensor presentation of B that a set of binomial relations of B is obtained
as the union of the binomial relations of each of the algebras K[{in<[a1 . . . am] :
{a1, . . . , am} ∈ �i}]. Because these algebras are known to admit a set of liftable
relations, we have B = in<(A).

Next we note that, for each i, the K-algebra K[{in<[a1 . . . am] : {a1, . . . , am} ∈
�i}] is the Hibi ring associated to the distributive lattice L i of all maximalm-minors
[a1 . . . am] with {a1, . . . , am} ∈�i. The partial order of this lattice is given by

[a1 . . . am] ≤ [b1 . . . bm] ⇐⇒ ai ≤ bi for i = 1, . . . ,m.

The distributive lattice L i is graded, which by a theorem of Hibi [14] implies that

K[{in<[a1 . . . am] : {a1, . . . , am} ∈�i}]
is Gorenstein. It follows from [1, Thm. 3.16] that A is Gorenstein.

Finally, we observe that

dimA = dim in<(A) =
r∑

i=1

dimK[{in<[a1 . . . am] : {a1, . . . , am} ∈�i}]

=
r∑

i=1

dimK[{[a1 . . . am] : {a1, . . . , am} ∈�i}].

The desired formula for the dimension ofA follows:K[{[a1 . . . am] : {a1, . . . , am}∈
�i}] is the algebra of all maximal minors of an m × ni matrix of indeterminates,
so its dimension is m(ni − m) + 1 (see e.g. [8, Thm. 6.45]).

2. Primality of Determinantal Facet Ideals

In this and the following section we discuss the conditions under which a deter-
minantal facet ideal is a prime ideal. In general, J� need not be a prime ideal
even when � is closed. For example, if � is the simplicial complex with facets
F(�) = {{1, 2, 3}, {2, 3, 4}} or F(�) = {{1, 2, 3}, {2, 3, 6}, {3, 4, 5}}, then J� is
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not a prime ideal. Indeed, in the first case we have height J� = height in<(J�) =
2 since in<(J�) is generated by a regular sequence of length 2 and since P =
(x2y3 − x3y2, x2z3 − x3z2, y2z3 − y3z2) is a prime ideal of height 2 that, it is
clear, strictly contains J�. We denote the variables of the first row of a matrix
(here, X) by x, of the second row by y, and of the third row by z together with
appropriate indices. In the second case we have height J� = height in<(J�) = 3
and J� � (x3, y3, z3), so clearly J� is not prime. Even in these relatively simple
examples we see that the primary decomposition of determinantal facet ideals is
far more complicated than that for binomial edge ideals.

The main result of this section, Theorem 2.2, explains why J� is not a prime
ideal in the examples just given. The proofs of primality that will follow depend on
localization with respect to nonzero divisors, a technique that allows for the use of
induction arguments. Indeed, suppose we want to show that J ⊂ S is a prime ideal.
Then we are looking for an element f ∈ S that is regular modulo J, whose exis-
tence would imply that the natural map S/J → (S/J )f is injective. If we can find
a prime ideal L ⊂ S such that (S/L)f ∼= (S/J )f then (S/J )f (and consequently
S/J ) is a domain, which implies that J is a prime ideal. This procedure often
allows us to use inductive arguments, as in many cases L is of a simpler structure.

The next lemma explicates the effect of localization when we are dealing with
ideals generated by minors of a matrix.

Lemma 2.1. Let K be a field, X an m × n matrix of indeterminates, and I ⊂
S = K[X] an ideal generated by a set G of minors. Let xij be an entry of X. We
assume that, for each minor [a1 . . . at |b1 . . . bt ] ∈ G (t ≥ 1), there exists an � such
that a� = i and so every minor of G involves the ith row.

Then (S/I )xij
∼= (S/J )xij , where J is generated by the minors

[a1 . . . at |b1 . . . bt ] ∈ G
for b� �= j with � ∈ {1, . . . , t} and by the minors [a1 . . . â� . . . at |b1 . . . b̂k . . . bt ]
when [a1 . . . at |b1 . . . bt ] ∈ G for a� = i and bk = j.

Proof. We assume for simplicity (and without loss of generality) that i = 1 and
j = 1. We apply the automorphism ϕ : Sx11 → Sx11 with

xij �→ x ′
ij =

{
xij + xi1x

−1
11 x1j if i �= 1 and j �= 1,

xij if i = 1 or j = 1.

Let I ′ ⊂ Sx11 be the ideal that is the image of ISx11 under the automorphism ϕ. Then
(S/I )x11

∼= Sx11/I
′. The ideal I ′ is generated in Sx11 by the elements ϕ(µM), where

µM ∈ G. Note that if µM = [a1 . . . at |b1 . . . bt ] then ϕ(µM) = det(x ′
aibj

)i,j=1,...,t .

We can safely assume hereafter that a1 < a2 < · · · < at and b1 < b2 < · · · <
bt for µM = [a1 . . . at |b1 . . . bt ] ∈ G. Then our assumption implies that a1 = 1.
First consider the case b1 �= 1; then ϕ(µM) is the determinant of the matrix



x1b1 x1b2 · · · x1bt

xa2b1 + xa21x
−1
11 x1b1 xa2b2 + xa21x

−1
11 x1b2 · · · xa2bt + xa21x

−1
11 x1bt

...
...

. . .
...

xat b1 + xat1x
−1
11 x1b1 xat b2 + xat1x

−1
11 x1b2 · · · xat bt + xat1x

−1
11 x1bt


.
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After subtracting suitable multiples of the first row from the other rows, we see
that

ϕ(µM) = det(xaibj )i,j=1,...,t = µM.

If instead b1 = 1 then the element ϕ(µM) is the determinant of the matrix


x11 x1b2 · · · x1bt

xa21 xa2b2 + xa21x
−1
11 x1b2 · · · xa2bt + xa21x

−1
11 x1bt

...
...

. . .
...

xat1 xat b2 + xat1x
−1
11 x1b2 · · · xat bt + xat1x

−1
11 x1bt


;

applying suitable row operations, we obtain the matrix


1 x−1
11 x1b2 · · · x−1

11 x1bt

0 xa2b2 · · · xa2bt

...
...

. . .
...

0 xat b2 · · · xat bt


.

It follows that ϕ(µM) = det(xaibj )i,j=2,...,t . These calculations show that I ′ =
JSx11, as desired.

Now we are ready to prove this section’s main result.

Theorem 2.2. Let m ≤ n, let � be a pure (m−1)-dimensional closed simplicial
complex on the vertex set [n], and let � = �1 ∪ · · · ∪ �r be the clique decom-
position of �. If J� is a prime ideal then, for all 2 ≤ t ≤ min(m, r) and for any
pairwise distinct cliques �i1, . . . ,�it ,

|V(�i1) ∩ · · · ∩V(�it )| ≤ m − t.

Proof. We proceed by induction on m. The initial step, m = 2, is already known
[12].

Let us make the inductive step. We first consider t < m. Let us assume that
there exist �i1, . . . ,�it such that |V(�i1) ∩ · · · ∩V(�it )| > m − t. Without loss
of generality, we may assume that V(�1) ∩ · · · ∩ V(�t) = {a1, a2, . . . , a�} with
� ≥ m− t +1 and 1 ≤ a = a1 < · · · < a� ≤ n. We may further assume that there
exists an s ≥ t such that a ∈ V(�i) for 1 ≤ i ≤ s and a /∈ V(�i) for s + 1 ≤ i ≤
r. Since J� is prime, it follows that xma is regular on J� and that J�Sxma

is also
a prime ideal in the localization Sxma

of S. Thus (S/J�)xma
is a domain. Then by

Lemma 2.1 we have (S/J�)xma
∼= (S/L)xma

; here L = L1 + ∑r
i=s+1 J�i

with L1

the determinantal facet ideal of the closed (m − 2)-dimensional simplicial com-
plex �′ having the clique decomposition �′ = �′

1∪· · ·∪�′
s , where �′

i = 〈F \{a} :
F ∈ F(�i), a ∈ F 〉 for 1 ≤ i ≤ s. Since �′

1, . . . ,�′
t intersect in � − 1 ≥ m − t

vertices, by induction it follows that L1 is not a prime ideal; this implies (as we
shall show) that L is not a prime ideal. Yet this is a contradiction because (S/L)xma

must be a domain.
Since L1 is not prime, there exist polynomials f , g in S such that fg ∈ L1 and

f , g /∈ L1. We claim that f , g /∈ L. Let us assume, for instance, that f ∈ L. Then
we may write f = ∑

G hGγG + ∑
F hFµF for some polynomials hG,hF ∈ S,
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where the first sum is taken over all G∈ ⋃s
i=1 F(�′

i ) and the second over all F ∈⋃r
i=s+1 F(�i). Then, after mapping the indeterminates xmj to 0 for all j �= a and

the determinants xma to 1, we obtain f = ∑
G h′

GγG for some polynomials h′
G ∈

S; hence f ∈L1, a contradiction. Therefore, L is not a prime ideal.
It remains to consider the case t = m. We may assume that

|V(�1) ∩ · · · ∩V(�m)| ≥ 1.

Let a ∈V(�1)∩ · · ·∩V(�m). It is clear that J� ⊂ (J�′ , x1a , . . . , xma), where �′ =
{F ∈� : a /∈F }. Since � is closed, it follows that �′ is also closed; moreover, by
Corollary 1.3 we have

height J�′ =
m∑
i=1

((ni − 1) − m + 1) +
r∑

i=m+1

(ni − m + 1) = height J� − m.

Since x1a , . . . , xma is obviously a regular sequence on S/J�′ , it follows that

height(J�′ , x1a , . . . , xma) = height J�′ + m = height J�.

Let P be a minimal prime of (J�′ , x1a , . . . , xma) of height equal to height(J�).
Because J� and P are prime ideals of the same height, we must have J� = P. But
P contains the indeterminates x1a , . . . , xma , which do not belong to J�. We have
thus obtained a contradiction, proving the theorem.

The proofs of primality that follow depend on localization with respect to nonzero
divisors. According to the next result, all variables in our situation are nonzero
divisors.

Lemma 2.3. Let � be a closed (m− 1)-dimensional simplicial complex with the
property that any m pairwise distinct cliques of � have an empty intersection.
Then each of the variables xij is regular modulo J�.

Proof. We may assume from the outset that the field K is infinite—given that nei-
ther the hypothesis nor the conclusion of the lemma is affected by tensoring with
a field extension of K. In order to show that xij is regular modulo J�, we consider
the ideal

I = (J�, x1j , . . . , xmj ).

Let �′ be the simplicial complex whose facets are those of � that do not con-
tain j. Observe that �′ is again closed and that I = (J�′ , x1j , . . . , xmj ). We use
the formula in Corollary 1.3 to compare the height of I with that of J�. If � =
�1 ∪ · · · ∪ �r is the clique decomposition of � with ni = |�i |, then height J� =∑r

i=1(ni − m + 1).
We may assume that �i contains the vertex j for i = 1, . . . , s. Our other as-

sumptions imply that s ≤ m − 1. Note that the clique decomposition of �′ is
�′

1 ∪ · · · ∪ �′
r , where the facets of each �′

i are those facets of �i that do not con-
tain j. Therefore, |�′

i | = |�i | − 1 = ni − 1 for i = 1, . . . , s and �′
i = �i for

i > s. Hence we obtain

height I = height J�′ + m =
s∑

i=1

(ni − 1 − m + 1) +
r∑

i=s+1

(ni − m + 1) + m

= height J� − s + m > height J�.
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Our considerations show that I/J� ⊂ S/J� has positive height. Since S/J� is
Cohen–Macaulay and since K is infinite, it follows that a generic linear combi-
nation a1x1j + a2x2j + · · · + amxmj of the variables x1j , . . . , xmj (whose residue
classes generate I/J�) is regular modulo J�. Because the preceding linear combi-
nation is generic, we may assume that ai = 1.

Now we consider the linear automorphism ϕ : S → S with ϕ(xik) = a1x1k +
a2x2k + · · · + amxmk for k = 1, . . . , n and ϕ(x�k) = x�k for � �= i and all k. Let
X ′ be the matrix whose entries are the elements ϕ(x�k) for � = 1, . . . ,m and k =
1, . . . , n. Then X ′ is obtained from X by elementary row operations. It follows
that ϕ(J�) = J�.

Our choice of ϕ implies that yij = ϕ(xij ) is regular modulo J�. Since J� =
ϕ(J�) it follows that xij = ϕ−1(yij ) is regular modulo ϕ−1(J�) = ϕ−1(ϕ(J�)) =
J�, as desired.

We do not know whether, for a closed simplicial complex �, the necessary con-
dition (given in Theorem 2.2) for J� to be a prime ideal is also sufficient. For the
moment we can only present a partial converse of this result.

Proposition 2.4. Let � be a simplicial complex with clique decomposition � =
�1 ∪�2 ∪ · · · ∪�r. Assume that all cliques are simplices of dimension m−1 and
that the following statements hold :

(1) |V(�r) ∩ · · · ∩V(�r−s+1)| ≤ m − s for s = 2, . . . , r;
(2) V(�i1)∩· · ·∩V(�is ) ⊂ V(�r)∩· · ·∩V(�r−s+1) for all subsets {i1, . . . , is} ⊂

[r] of cardinality s with 2 ≤ s ≤ r.

Then J� is a prime ideal.

Proof. Again we proceed by induction on m. The initial step, m = 2, is already
known [12]. Assume that |V(�1) ∩ · · · ∩V(�r)| = k. We consider a labeling on
the vertices of � such that

V(��) = {a�1 < · · · < a�,m−k−�+1 < b1 < · · · < bk < c�1 < · · · < c�,�−1}
for all � = 1, . . . , r, where the numbers aij are pairwise distinct. For each s =
2, . . . , r, we choose cij such that

crj = cr−1,j = · · · = cr−s+1,j

for j = 1, . . . , |V(�r) ∩ · · · ∩V(�r−s+1)| − k.

Then, with respect to this labeling, � is closed and so (by Lemma 2.3) xmb1 is a
regular element modulo J�. Then by Lemma 2.1 we have (S/J�)xmb1

∼= (S/L)xmb1
,

where L = ∑r
i=1 Li. Since xmb1 is regular modulo J�, it follows that J� is a prime

ideal if and only if Lxmb1
is a prime ideal; here Li is generated by the minor

[1 . . . m − 1|ai1 . . . ai,m−k−i+1b2 . . . bkci1 . . . ci,i−1].

Let �′ be the (m − 2)-simplicial complex with the clique decomposition �′
1 ∪

· · ·∪�′
t , where �′

i = �i \{b1}. Note that conditions (1) and (2) hold for �′. Then,
by the inductive hypothesis, L = J�′ is a prime ideal.
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Example 2.5. Let � = �1 ∪ · · · ∪ �r under the assumption of Theorem 2.4.
Then we can describe the vertices of each�i in a nice way as the ith row of a simple
matrix. For instance, let m = 6, r = 4, |V(�4) ∩V(�3)| = 3,

∣∣⋂4
i=2V(�i)

∣∣ =
3, and

∣∣⋂4
i=1V(�i)

∣∣ = 2. Then, by the proof of Proposition 2.4, we have


1 2 3 4 b1 b2

5 6 7 b1 b2 c1

8 9 b1 b2 c1 c2

10 b1 b2 c1 c3 c4




which describes the labels of the �1, . . . ,�4.

Example 2.6. Let F(�) = {{1, 2, 3}, {1, 4, 5}, {3, 5, 6}, {2, 4, 6}}. Then one may
check with Singular [9] that J� is not a prime ideal. However, the intersection
condition of Theorem 2.2 holds for �. Hence the converse of Theorem 2.2 re-
quires that � be a closed simplicial complex.

This is also an example of a determinantal facet ideal whose initial ideal with
respect to the lexicographic order is not squarefree even though J� is a radical
ideal.

3. Special Classes of Prime Determinantal Facet Ideals

Let� a pure simplicial complex of dimensionm−1 ≥ 2, and let� = �1∪· · ·∪�r

be its clique decomposition. In this section we pose the following intersection
properties on the cliques of �:

(i) |V(�i) ∩V(�j)| ≤ 1 for all i < j ;
(ii) V(�i) ∩V(�j) ∩V(�k) = ∅ for all i < j < k.

Theorem 2.2 implies that: (a) for m = 3, conditions (i) and (ii) are satisfied when-
ever J� is a prime ideal; and (b) for any m ≥ 3, (i) and (ii) imply the intersection
conditions formulated in Theorem 2.2.

In this section we show that, whenever � is closed, conditions (i) and (ii) en-
tail the primality of J� under some additional assumptions depending on a graph
that we shall define next. For the simplicial complex with properties (i) and (ii),
let G� be the simple graph with vertex set V(G�) = {v1, . . . , vr} and edge set

E(G�) = {{vi, vj} : V(�i) ∩V(�j) �= ∅}.
Hereafter, the phrase “� is a simplicial complex with graph G�” will always imply
that � satisfies the conditions (i) and (ii) (for otherwise G� is not defined).

At present we are able to prove the primality of J� for certain classes of sim-
plicial complexes � only under the additional assumption that these complexes
are closed. The following lemma provides a necessary condition for a simplicial
complex to be closed.

Lemma 3.1. Let � be a closed simplicial complex with graph G�. Then each
vertex vi of G� has order at most min{|V(�i)|, 2 dim(�)}.
Proof. We say that a vertex � ∈ �i takes the position s if there is an (m − 1)-
dimensional face {a1 < a2 < · · · < am} of �i such that � = as. In the clique �i
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there are exactly min{|V(�i)|, 2 dim(�)} vertices that do not take all m positions.
The proof now follows from assumption (ii), which implies that each of these ver-
tices can intersect with at most one clique �j (where vj is a neighbor of vi).

Now we are ready to consider the primality of J� for special classes of simplicial
complexes.

Theorem 3.2. Let � be simplicial complex such that G� is a tree. Then

(a) J� is a prime ideal if � is closed, and
(b) � is closed if and only if each vertex of G� has order at most min{|V(�i)|,

2 dim(�)}.
Let {i1 < · · · < is} ⊂ [m] and {j1 < · · · < jt } ⊂ [n]. We denote by X

j1j2 . . . jt
i1 . . . is

the
submatrix ofX with rows i1, . . . , is and columns j1, . . . , jt . Observe that Lemma 2.1
implies the well-known fact that if I is generated by all m-minors of the matrix
X

j1 . . . jt
1 . . . m then Ixijk

is generated by all (m − 1)-minors of Xj1 . . . ĵk . . . jt
1 . . . î . . . m

.

Proof of Theorem 3.2. (a) We may assume that � is a connected (m − 1)-dimen-
sional simplicial complex and that � = �1∪�2 ∪· · ·∪�r is the clique decompo-
sition of �. The proof is by induction on the number of cliques of � (which is the
number of vertices of G�). We may assume that v1 is a vertex of degree 1 in G�

and that v2 is its neighbor. Then �1 intersects with just one clique—namely, �2.

Let V(�1) = {j1, . . . , jt } and V(�2) = {�1, . . . , �s} with m ≤ t, s. We may
assume that V(�1) ∩ V(�2) = {k}, where k = j1 = �1. Since � is closed, by
Lemma 2.3 we know that xmk is regular modulo J�. It follows from Lemma 2.1
that (S/J�)xmk

∼= (S/L)xmk
, where L = L1 + L2 + ∑r

i=3 J�i
. Here L1 is gen-

erated by all (m − 1)-minors of the matrix X
j2 . . . jt
1 . . . m−1 and L2 is generated by all

(m − 1)-minors of the matrix X
�2 . . . �s
1 . . . m−1. The generators of L1 are polynomials in

a set of variables disjoint from those of L′ = L2 + ∑r
i=3 J�i

. It is known that
L1 is a prime ideal (see [3, Thm. 7.3.1]); therefore, L is a prime ideal if and only
if L′ is a prime ideal. To see this, observe that (S/L′)xmk

∼= (S/J�′)xmk
, where �′

is the closed simplicial complex with clique decomposition �′ = �2 ∪ · · · ∪ �r.

By the inductive hypothesis, J�′ is a prime ideal. Hence (S/L′)xmk
∼= (S/J�′)xmk

,
which implies that (J�′)xmk

is a prime ideal. Since the generators of L′ are poly-
nomials in variables different from xmk , it follows that xmk is regular modulo L′.
Consequently, L′ is a prime ideal.

(b) According to Lemma 3.1, it suffices to show that � is closed if each ver-
tex of G� has order at most min{|V(�i)|, 2 dim(�)}. We prove the assertion by
induction on r. As before, we assume that �1 intersects with just one clique: �2.

By induction it follows that �′ = �2 ∪ · · · ∪�r is closed. Our assumption on the
order of the vertices of G� implies that �2 has at most min{|V(�i)|, 2 dim(�)}−1
intersection points in �′.

So among the vertices of �2 that are not intersection points in �′, there is at
least one that does not take all m positions; say it misses the kth position. By sym-
metry we may assume that this vertex is the intersection point with �1. Now we
may label �1 such that the vertex in the intersection point does not have position k

for any facet of � in �1.
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Theorem 3.3. Let � be a simplicial complex such that G� is a cycle. Then J�
is a prime ideal.

Proof. Let � = �1 ∪ · · · ∪ �r be the clique decomposition of �. We consider a
labeling on the vertices of � such that

V(�1) = {1, 2, . . . , a1}, V(�2) = {a1, a1 + 1, . . . , a2}, . . . ,
V(�r−1) = {ar−2, ar−2 + 1, . . . , ar−1}, V(�r) = {a1 − 1, ar−1, ar−1 + 1, . . . , ar},

where 1 < a1 < · · · < ar−1 < ar = n. Then � is closed with respect to the given
labeling and, by Lemma 2.3, x1a1 is a regular element modulo J�. It follows from
Lemma 2.1 that (S/J�)x1a1

∼= (S/L)x1a1
, where L = L1 + L2 + ∑r

i=3 J�i
. Here

L1 is generated by all (m− 1)-minors of the matrix X
1 . . . a1−1
2 . . . m and L2 is generated

by all (m − 1)-minors of Xa1+1 . . . a2
2 . . . m . Hence J� is a prime ideal if Lx1a1

is a prime
ideal. Since the generators of L are polynomials in variables different from x1a1,
we conclude that x1a1 is regular modulo L. Therefore, J� is a prime ideal if and
only if L is a prime ideal.

We first show that the generators of L form a Gröbner basis for L. Toward this
end, we observe that the generators of

∑r
i=3 J�i

= J�3∪···∪�r
form a Gröbner

basis for
∑r

i=3 J�i
because �3 ∪ · · · ∪ �r is closed. Also the generators of L1

form a Gröbner basis for J�1 , where �1 is the pure (m− 2)-dimensional simplicial
complex on the vertices {1, . . . , a1 − 1}, and the generators of L2 form a Gröbner
basis for J�2 , where �2 is the pure (m − 2)-dimensional simplicial complex on
the vertices {a1 + 1, . . . , a2}. Finally, we note that the initial ideals of

∑r
i=3 J�i

,
L1, and L2 are each minimally generated by monomials in pairwise disjoint sets
of variables. As a result, the generators of L do indeed form a Gröbner basis.

Next observe that the variable xm−1,a1−1 does not appear in the support of the
generators of in<(L). In particular, xm−1,a1−1 is regular modulo L. By using
Lemma 2.1 we get (S/L)xm−1,a1−1

∼= (
S/L′

1 + L2 + Lr + ∑r−1
i=3J�i

)
xm−1,a1−1

, where

L′
1 is generated by all (m − 2)-minors of the matrix X

1 . . . a1−2
2 . . . m−2,m and Lr is gener-

ated by all (m − 1)-minors of Xar−1 . . . ar

1 . . . m−2,m.

Since the generators of L′ = L′
1 +L2 +Lr +∑r−1

i=3 J�i
are polynomials in vari-

ables different from xm−1,a1−1, we conclude that xm−1,a1−1 is regular modulo L′.
Hence Lxm−1,a1−1 is a prime ideal if and only if L′ is a prime ideal. Since L′

1 is a
prime ideal and the generators of L′

1 are polynomials in variables different from
the variables of the other summands, to prove that L′ is prime it suffices to show
that C = L2 + Lr + ∑r−1

i=3 J�i
is a prime ideal.

We define the pure (m − 1)-simplicial complex �′ to be the simplicial com-
plex with clique decomposition �′ = �2 ∪ · · · ∪ �r. Because the associated
graph of �′ is a tree, we know from Theorem 3.2 that J�′ is a prime ideal. Since
(S/C)x1a1xm−1,a1−1

∼= (S/J�′)x1a1xm−1,a1−1 and since x1a1xm−1,a1−1 is regular moduloC,
the desired conclusion follows.

Our next result describes the case when each clique of � is a simplex.

Theorem 3.4. Let � be a simplicial complex with graph G� such that each
clique of � is a simplex. Then the following statements hold.
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(a) If � is closed, then J� is generated by a regular sequence.
(b) Given a graph G and an integer m ≥ |V(G)|, there exists a closed simplicial

complex � with G� = G such that each clique of � is a simplex of dimension
m − 1.

(c) � is closed if dim� + 1 is no less than the number of facets of �.

Proof. (a) Let � = �1 ∪ · · · ∪ �r be the clique decomposition of �. Since
each clique is a simplex, it follows that J�i

= (fi) for all i (where fi is a suit-
able m-minor) and that J� = (f1, . . . , fr). Since � is closed, the monomials
in<(f1), . . . , in<(fr) are pairwise relatively prime. This implies that f1, . . . , fr is
a regular sequence.

(b) We first assume that m = |V(G)| and prove the assertion in this case by in-
duction on the number of vertices of G. The induction beginning is trivial. Now
assume that |G| > 1, and choose a vertex v of G. Let G′ be the induced subgraph
on the vertices V(G)\{v}. By induction, for each w ∈V(G′) there exists a labeled
simplex �′

w with dim�′
w + 1 = |V(G′)| = |V(G)| − 1 such that the simplicial

complex �′ with clique decomposition
⋃

w∈V(G′ ) �
′
w is closed and G�′ = G′. We

define new simplices �w = �′
w ∪ {aw}, where the labels aw are pairwise distinct

and are bigger than all labels of �′.
Let w1, . . . ,wr be the neighbors of v in G. Then we let �v be the simplex whose

vertices are labeled by the integers aw1, . . . , awr
together with |V(G)|− r numbers

that are all bigger than all labels used in the construction so far.
Now let m > |V(G)|, and let � be the closed simplicial complex with dim� =

|V(G)|−1that we have just constructed. For each labeled simplex�i of � that is of
dimension |V(G)|−1, we define the new labeled simplex �i = �i ∪{bi1, . . . , bis};
here s = m− |V(G)| and the numbers bij are pairwise distinct and bigger than all
labels of �. The simplicial complex � with facets �i has the desired properties.

(c) Let � be a simplicial complex with graph G� such that each clique of � is
a simplex. Then, up to an isomorphism, � is uniquely determined by dim� and
G�. Hence (c) is a simple consequence of (b).

Corollary 3.5. Let � be a simplicial complex with graph G� such that each
clique of � is a simplex of dimension m − 1. Suppose that G� is the complete
graph Kr. Then � is closed if and only if m ≥ r.

Proof. Each vertex of Kr has order r − 1. Hence m ≥ r − 1, for otherwise we
could not associate the graph G� to �. If m = r −1 then � has no free vertex, so
� cannot be closed. Yet if m ≥ r, the assertion follows from Theorem 3.4.
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