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Geometry of Brill-Noether Loci
on Prym Varieties

ANDREAS HORING

1. Introduction

Given a smooth curve X, it is well known that the Brill-Noether loci WX con-
tain much interesting information about the curve X and its polarized Jacobian
(JX, ®x). Given a smooth curve C and an étale double cover 7 : C—>C , one
can analogously define Brill-Noether loci V" for the Prym variety (P, ®) (see
Section 2). Several fundamental results on these loci have been known for some
time: the expected dimension is g(C) — 1 — ("}"), the loci are nonempty if the
expected dimension is nonnegative [ Ber, Thm. 1.4], and they are connected if the
expected dimension is positive [D3, Exm. 6.2]. If C is general in the moduli
space of curves, then all the Brill-Noether loci are smooth and have the expected
dimension [W2, Thm. 1.11]. Whereas the Brill-Noether locus V! ¢ P is the
canonically defined theta-divisor and has received the attention of many authors,
the study of higher Brill-Noether loci (and the information they contain about the
étale coverr: C — C ) is a more recent development. Casalaina-Martin, Lahoz,
and Viviani [ ] show that V2 is set-theoretically the theta-dual (cf. Defini-
tion 2.1) of the Abel-Prym curve. Lahoz and Naranjo [[LN] refine this statement
and prove a Torelli theorem: the Brill-Noether locus V2 determines the covering
C — C. That finding motivates a more detailed study of the geometry of V2. Our
first result is as follows.

1.1. THEOREM. Let C be a smooth curve of genus g(C) > 6, and let 7 : C—C
be an étale double cover such that the Prym variety (P, ®) is an irreducible prin-
cipally polarized abelian variety.

(a) Suppose that C is hyperelliptic. Then V*? is irreducible of dimension g(C) — 3.

(b) Suppose that C is not hyperelliptic. Then V? is a reduced Cohen—-Macaulay
scheme of dimension g(C) — 4. If the singular locus Vs%ng has an irreducible
component of dimension at least g(C) — 5, then C is a plane quintic, trigonal,
or bielliptic.

The condition on the irreducibility is always satisfied unless C is hyperelliptic and
C is not. In that case, (P, ®) is isomorphic to a product of Jacobians [ M 2].
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In the hyperelliptic case (cf. Proposition 4.2), the statement is a straightforward
extension of [ ]. In the non-hyperelliptic case, it is based on the following
observation: if the singular locus of V2 is large, then the singularities are excep-
tional in the sense of [B3]. This provides a link with certain Brill-Noether loci
on JC.

An immediate consequence of the theorem is that V? is irreducible unless C is a
plane quintic, trigonal, or bielliptic (Corollary 3.6). The case of trigonal curves is
very simple: (P, ®) is isomorphic to a Jacobian JX and V2 splits into two copies of
Wg%)— +X. For a plane quintic, V2 is reducible if and only if (P, ®) is isomorphic
to the intermediate Jacobian of a cubic threefold; in this case, V2 splits into two
copies of the Fano surface F. Note that the Fano surface F' and the Brill-Noether
loci WdOX are expected to be the only subvarieties of principally polarized abelian
varieties having the minimal cohomology class [%k] [D2]. By [ ], the coho-
mology class of V2 is [2%]; therefore, a reducible V2 provides an important
test for this conjecture. Our second result is the following theorem.

1.2. THEOREM. Let C be a smooth non-hyperelliptic curve of genus g(C) > 6,
andlet w: C — C be an étale double cover. Denote by (P, ©) the polarized Prym
variety. The Brill-Noether locus V? is reducible if and only if at least one of the
following statements holds:

(a) C is trigonal,

(b) C isaplane quintic and (P, ®) an intermediate Jacobian of a cubic threefold,;

(¢) C is bielliptic and the covering w: C — C belongs to the family R Bycy.ecn
with g(C1) > 2 (cf. Remark 5.11). Then V? has two or three irreducible com-
ponents, but none of them has minimal cohomology class.

If C is bielliptic of genus g(C) > 8§, then the Prym variety is not a Jacobian of
a curve [S]. Moreover, these Prym varieties form L@J distinct subvarieties
of Agc)-1 [D1]. For exactly one of these families, the general member has the
property that the cohomology class of any subvariety is a multiple of the mini-
mal class %k. The proof of Theorem 1.2 shows that the Brill-Noether locus V? is
irreducible if and only if the Prym variety belongs to this family! This is the first
evidence for Debarre’s conjecture that is not derived from low-dimensional cases
or considerations on Jacobians and intermediate Jacobians (cf. [D2, , R]).

ACKNOWLEDGMENTS. The work of O. Debarre, M. Lahoz, and J.-C. Naranjo
plays an important rdle in this paper. I want to thank them for patiently answer-
ing my numerous questions. The author acknowledges the support of the Albert-
Ludwigs-Universitit Freiburg, where the main part of this work was done.

2. Notation

Most of our arguments are valid for an arbitrary algebraically closed field of char-
acteristic # 2. However, we work over C so that we can apply [ ]land [D3],
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which are crucial for Theorem 1.1 and its consequences. For standard definitions
in algebraic geometry we refer to [ Ha] and for Brill-Noether theory to [ ].
Given a smooth curve C, we denote by Pic C its Picard scheme and by

PicC = | JPic’ C
deZ
the decomposition into its irreducible components. We will identify the Jaco-
bian JC and the degree-0 component Pic® C of the Picard scheme. In order to
simplify the notation we denote by L € Pic C the point corresponding to a given
line bundle L on C. We will abuse terminology somewhat and say that a line bun-
dle is effective if it has a global section.

For ¢ : X — Y afinite cover between smooth curves and D a divisor on X, we
denote the norm by Nm ¢(D). In the same way, Nm¢: Pic X — PicY denotes
the norm map. If F is a coherent sheaf on X (in general, F will be the locally free
sheaf corresponding to some divisor), then we denote by ¢, F the push-forward
as a sheaf.

Let C be a smooth curve of genus g(C) and let 7 : C — C be an étale double
cover. We have (Nm ) ~'(K¢) = PTUP~, where P~ ~ P+ ~ P are defined by

P :={Le (Nmn)’l(KC) | dim|L| = 0 mod 2},

Pt :={Le(Nmn) ' (K¢) | dim|L| = 1 mod 2}.
For r > 0 we set

Wieic)—oC :={L €Pic* @2 C | dim|L| > r}.
The Brill-Noether loci of the Prym variety [W?2] are defined as the scheme-
theoretical intersections
v W{g(c)fz(f NP~ if riseven,
| Wi €N PE s odd,
The notion of theta-dual was introduced by Pareschi and Popa in their work on

Fourier—Mukai transforms (see [ ] for a survey).

2.1. DEFINITION. Let (A, ®) be a principally polarized abelian variety, and let
X C A be any closed subset. Then the theta-dual T(X) of X is the maximal sub-
set Z C Asuchthat A —Z C ©.

Note that 7(X) has a natural scheme structure [ 1.

3. The Singular Locus of V?2

Throughout this section we denote by C a smooth non-hyperelliptic curve of genus
g(C)andby w: C — C an étale double cover. The following lemma will be used
repeatedly.

3.1. LEMMA. Let L € V7 be a line bundle such that dim|L| = r. If the Zariski
tangent space T, V' satisfies
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dim7,V" > g(C) — 2r,
then there exist

(a) a line bundle M on C such that dim|M| > 1 and
(b) an effective line bundle F on C such that

L>~n"MQ®F.

3.2. REMARK. For r = 1, the scheme V! = Wzlg(c)_zé N P7 identifies with
the canonical polarization ®. The theta-divisor has dimension g(C) — 2, so the
condition

dim 7, V' > g(C) —2

is equivalent to V! being singular in L. Thus, for r = 1 we obtain the well-known
statement that if a point L € ® with dim|L| = 11is in Ogj,e then the singularity is
exceptional (in the sense of Beauville [B3]).

Proof of Lemma 3.1. We consider the Prym—Petri map introduced by Welters
[W2, 1.8]:

B: NHYC,L) - HC, K&, siAsj > si07sj —sj07s;;

here 0: C — C is the involution induced by the double cover. Note that
HYC, K &)~ is identified with the tangent space of the Prym variety; in partic-
ular, it has dimension g(C) — 1. By [W2, Prop. 1.9], the Zariski tangent space of
V" at the point L is equal to the orthogonal of the image of 8. Thus, if dim 7, V" >
g(C) —2r thentk B < 2r — 1. Because A2H(C, L) has dimension r(r;”, that
statement is equivalent to

1
dimker 8 > r(r2+ )

—2r—1. (1)

The locus of decomposable 2-forms in N H O(C' , L) is the affine cone over the
Pliicker embedding of G(2, HYC, L)) in P(A2H(C, L)), so it has dimension
2r — 1. Thus, by (1) there is a nonzero decomposable vector s; A s; in ker 8. This
means that s;0*s; —s;0*s; = 0 and so s;/s; defines a rational function 4 on C. We
conclude by taking M = O¢((h)o) and F the maximal common divisor between
(si)o and (s;)o. By construction, F' is effective and dim|M| > 1. O

By [ ,Thm.2.2; , Lemma 2.1], every irreducible component of the Brill-
Noether locus V2 has dimension at most g(C) — 4 provided C is not hyperelliptic.
The following estimate is a generalization of their statement to arbitrary r.

3.3. LEMMA. We have
dimV" <g(C)—2—r Vr>2.

Proof. Denote by |K¢| C C?8©)=2 the set of effective canonical divisors and by
Nmo: C@8©=2 5 C8()=2) the norm map. Since the canonical linear system
|K¢| defines an embedding, it follows from [B3, Sec. 2, Cor.] that Nm 7 ~'(|K¢|)
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has exactly two irreducible components, Ay and A, and that both are normal va-
rieties of dimension g(C) — 1. Let

i: CAO=D 5 picBO2C, D> Ox(D)
be the Abel-Jacobi map; then, up to renumbering,
@(Ag) =P~ and ¢(A) =0 C Pt
Recall that for all L € Pic C we have the set-theoretic equality i ~'(L) = |L|. In
particular, we see that
dimi (V") > dim V' +r )
for every r > 0.

Suppose now that r is even (the odd case is analogous and is left to the reader).
For a general point L € P~ one has dim|L| = 0. Thus, for r > 2,

iV € A
hence i ~!(V") has dimension at most g(C) — 2. We conclude by using (2). [

3.4. REMARK. Inthe proof we used non-hyperelliptic C only to show that A and
A are irreducible. Since inequality (2) is valid without this property, we obtain

dmV" <g(C)—1—r Vr>2.
We will see in Section 4. A that this estimate is optimal.

We can now use Marten’s theorem to give an estimate of the dimension of the sin-

2
gular locus V..

3.5. PROPOSITION. Suppose that g(C) > 6 and ang has an irreducible compo-
nent S of dimension at least g(C) — 5. Then there exist
(a) ad €{3,4} such that
dimW,;C =d -3

and
(b) an irreducible component W C WdIC of maximal dimension such that, for

every M € W,

dim/Kc ® M®*| =g —d — 2.

For every L in S we have
L>a*"MQF

for some M € W and some effective line bundle F on C.In particular, S is of
dimension g(C) — 5.
Proof. Let L € S be a generic point; then, by Lemma 3.3, dim|L| = 2. Since V2
is singular in L, it follows that

dim7T,V? > g(C) — 4.

Hence by Lemma 3.1 there exist a line bundle M € WdlC for some d < g(C) — 1
and an effective line bundle F on C such that
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L>~n"MQF.

The family of such pairs (M, F) is a finite cover of the set of pairs (M, B) for
which M € WdlC for some d < g(C) — 1 and B is an effective divisor of degree
2g(C) —2—2d > 0on C such that Be |[Kc @ M®2|.

By hypothesis, the parameter space T of the pairs (M, B) has dimension at least
g(C) — 5. Note that if degM = g(C) — 1then K¢ ® M® 2~ Oc. Thus M is
a theta-characteristic and the space of pairs (M, B) is finite—a contradiction to
g(C)—5 > 0. Because C is not hyperelliptic, 3 < deg M < g(C) — 1. Moreover,
by Clifford’s theorem we have

dim| H(C,Kc @ M®7%)| < g(C) —1—d — 1. 3)

Thus the variety W parameterizing the line bundles M has dimension at least d — 3.
By construction we have W C Wdl; by Marten’s theorem [ , IV, Thm. 5.1],
dim W < dim W,C < d — 3. 4)

Therefore, T and S each have dimension at most g(C) — 5. Since (by hypothesis)
S has dimension at least g(C) — 5, it follows that (3) and (4) are equalities—at
least for M € W generic. By upper semicontinuity and Clifford’s theorem, we ob-
tain equality for every M € W.

The last remaining point is to show that this situation can occur only for d €
{3,4}. We have already established the existence of a finite map

W— W2, 5 C M Kc®M®™2.

If2g(C)—2—2d < g(C) —1then, by Marten’s theorem, dim Wf;(cc))_szizde <1.
Because dim W = d — 3, we see thatd < 4. Now if2g(C) —2 —2d > g(C), we
use the isomorphism
(€)—d-2 d—1 -2 2
W3oior-2-24C = Wiy 'C, Kc@M® % 1> M®
together with Marten’s theorem to show that dim Wzgg((cc)): d2:22 +C = 1; hence, again
we obtaind < 4. O

Proof of Theorem 1.1. The hyperelliptic case is settled in Proposition 4.2, so we
suppose that C is not hyperelliptic.

By [D3, Exm. 6.2.1], the Brill-Noether-locus V2 is a determinantal variety.
Since for non-hyperelliptic C it has the expected dimension, V? is Cohen—
Macaulay. Since dim stng < g(C) — 5 by Proposition 3.5, it follows that all
the irreducible components of V? are generically reduced. Recall that a generi-
cally reduced Cohen-Macaulay scheme is itself reduced. If dim V2 > g(C)—5

sing =
then, by Proposition 3.5, dim W)C = d — 3 for d = 3 or 4. Thus the second
statement follows from Mumford’s refinement of Marten’s theorem [ , 1V,
Thm. 5.2]. O

REMARK. Lahoz and Naranjo [[LN] use completely different methods to show
that V2 is reduced and Cohen—Macaulay.
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3.6. COROLLARY. Let C be a smooth non-hyperelliptic curve of genus g(C) > 6,
and let w: C — C be an étale double cover. If V? is reducible, then C is a plane
quintic, trigonal, or bielliptic.

ReEMARk. Teixidor i Bigas [T] uses the Martens—Mumford theorem to determine
when the singular locus of a Jacobian of a curve is reducible.

Proof of Corollary 3.6. By a theorem of Debarre [D3, Exm. 6.2.1], the locus V>
is (g(C) — 5)-connected. In other words, if V2 is not irreducible then there exist
two irreducible components Z;, Z, C V2 such that Z, N Z, has dimension at least
g(C) — 5 in one point [D3, p. 287]. So if V2 is reducible, its singular locus has
dimension at least g(C) — 5. Now conclude using Theorem 1.1. O

4. Examples

4.A. Hyperelliptic Curves

Let C be a smooth hyperelliptic curve of genus g(C). Let 7: C — C be an étale
double cover such that the Prym variety (P, ©) is an irreducible principally polar-
ized abelian variety (i.e., C is also a hyperelliptic curve). Let o : C — Cbethe
involution induced by 7.

Recall from [ , Chap. 12, Sec. 5] that in this case, for a fixed pg € C, the
Abel-Prym map

a:C— P, pro(p)—p+o(py)—

is two-to-one onto its image C’ (which is a smooth curve) and the Prym variety
(P, ®) is isomorphic to (J(C"), O¢/).

In [ , Lemma 2.1] the authors show that, for C not hyperelliptic, V2 is a
translate of the theta-dual of the Abel-Prym embedded curve C C P. In fact,
their argument works also for C hyperelliptic if one replaces C C P by a(C) =
C’ C P. Thus we have the following statement.

4.1. LEMMA. The Brill-Noether locus V? is a translate of the theta-dual T(C").

Since the Prym variety (P, ®) is isomorphic to (J(C"), ©c¢), it follows that the
theta-dual of C’ is a translate of Wg(c) ,C’. In particular, V? is irreducible of
dimension g(C) — 3.

4.2. PROPOSITION. Let C be a smooth hyperelliptic curve of genus g(C) > 6,
and let w: C — C be an étale double cover such that the Prym variety (P, ®)
is an irreducible principally polarized abelian variety. Then V? is irreducible of
dimension g(C) — 3 and, set-theoretically, it is a translate Wg(gc)%C i’

For any point L € V?* we have
L>~7"HQF,

where H is the unique gi on C and F is an effective line bundle on C.
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Proof. By Remark 3.4 we have a proper inclusion V# C V2, so a general L € V?
satisfies dim|L| = 2. By Lemma 3.1 there exists a line bundle M € WdlC for some
d < g(C) — 1 and an effective line bundle F" on C such that

L>~a"MQ F.

We can now argue as in the proof of Proposition 3.5 to obtain the statement. We
need only observe that the inequality

dim|H(C,Kc @ M®2)| < g(C)—1—d —1

is also valid on a hyperelliptic curve unless M is a multiple of the gJ. UJ

4.B. Plane Quintics

Let C C IP? be a smooth plane quintic and let 7 : C — C be an étale double cover.
We denote by H the restriction of the hyperplane divisor to C and by n € Pic’ C
the 2-torsion line bundle inducing 7. Let : C — C be the involution induced
by 7.

4.3. EXAMPLE. Suppose that h(C,Oc(H) ® 1) is odd—that is, suppose the
Prym variety P~ is isomorphic to the intermediate Jacobian J(X) of a cubic three-
fold X [CI1G]. Letus fix such an isomorphism of principally polarized abelian vari-
eties J(X) — P~. The Fano variety F parameterizing lines on the threefold X is
a smooth surface that has a natural embedding in the intermediate Jacobian J(X).
By [CIG], the surface F C P has minimal cohomology class [(3)—7] Moreover, it
follows from [ ]and [ ] that the theta-dual satisfies T (F) = —F. Itis well
known that C C F (up to translation), so

—F=T(F)cV*=T().

Since the condition dim|L| > 2 is invariant under isomorphism, the Brill-Noether
locus V2 is stable under the map x — —x. Thus —F C V? implies that F C V2.

Since the cohomology class of V? is [2%], we see that (up to translation) V2 is
a union of F and —F. In particular, V2 is reducible and its singular locus is the
intersection of the two irreducible components. Since V2 is Cohen-Macaulay, the

singular locus has pure dimension 1.
We will now prove the converse of this example.

4.4. PROPOSITION. The Brill-Noether locus V?* is reducible if and only if
h(C,Oc(H) ® n) is odd—in other words, iff the Prym variety is isomorphic
to the intermediate Jacobian of a cubic threefold. In this case, the singular locus
ang is a translate of C.

Proof. Suppose that ang has a component S of dimension 1. Since C is not trig-
onal, we know from Proposition 3.5 that S corresponds to a 1-dimensional com-

ponent W C W41C such that, for every [M] e W,
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|Ke @ M®2| £ @.

By adjunction we have K¢ ~ O¢(2H ), and from [B2, Sec. 2, (iii)] it follows that
M ~ Oc(H — p), where p € C is a point. Hence K¢ ® M®~2 ~ Oc(2p) and a
general point L € S is of the form

L>7"0Oc(H — p) ® Os(q1 + q2),

where g1, ¢» are points in C. Since Nm 7 (L) ~ Oc(2H ) and C is not hyperellip-
tic, we obtain that ¢; € 7 ~!(p). Then we can write

L>~n*H or L~a*Oc(H)® Ox(q —o(q)) for some g € C.

Because L varies in a 1-dimensional family, we can exclude the first case. By
Mumford’s description of a Prym variety whose theta-divisor has a singular locus
of dimension g(C) — 5, we know that h%(C,Oc(H) @ n) is even if and only if
hO(C,7*Oc(H) ® Oz(q — a(g))) is even [M2, p. 347]. Since V> C P, this
shows the statement.

The description of the general points L € S shows that Vs%ng has a unique 1-
dimensional component and that ang is the translate by 7*Oc(H) of the Abel-

Prym embedded C C P. ]

4.C. Trigonal Curves

Let C be a trigonal curve of genus g(C) > 6. Let 7: C — C be an étale double
cover and (P, ®) the corresponding Prym variety. By a theorem of Recillas [Re],
the Prym variety is isomorphic as a principally polarized abelian variety to the
polarized Jacobian (JX, ®x) of a tetragonal curve X of genus g(C) — 1. By Re-
cillas’s construction [ , Chap. 12.7] we also know how to recover the double
cover 7: C — C from the curve X. Namely, let s: X@ x X@ — X©® be the
sum map; then ~
C = pi(s™'(P1)),

where P! ¢ X @ is the linear system giving the tetragonal structure and p is the
projection onto the first factor. In particular, we see that
CcXx@~wk.

Therefore, up to choosing an isomorphism (P, ®) =~ (JX, ®x) (and appropriate
translates), ~

T(WyX) C T(C) ~ V2
By [ , Exm. 4.5], the theta-dual of W20X is —Wg?C)74X. As in the case of the
intermediate Jacobian described in Example 4.3, we see that (up to translation)

2 _ 0 0 .
V= =Weio)-a X U W0y 0 X
moreover, the singular locus of V2 is the union of :I:(Wg(()c )— 4X)sing, Which has di-

mension at most g(C) — 6, and the intersection of the two irreducible components,
which has dimension g(C) — 5.
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5. Prym Varieties of Bielliptic Curves, I

5.A. Special Subvarieties

We recall some well-known facts about special subvarieties that we will use in the
next section.

Let ¢: X — Y be a double cover (which may be étale or ramified) of smooth
curves. We suppose that g(Y') is atleast 1 and denote by Nm ¢ : Pic X — PicY the
norm morphism. Let M be a globally generated line bundle of degree d > 2 on Y.
Denote by P" C Y @) where r := dim|M|, the set of effective divisors in the lin-
ear system |M|. f Nmg: X@ — Y@ s the norm map, then A := Nm¢~'(P")
is areduced Cohen—Macaulay scheme of pure dimension  and the map A — |M|
is étale of degree 2¢ over the locus of smooth divisors in | M| that do not meet the
branch locus of ¢.

If ¢ is étale then A has exactly two connected components, Ay and A; [W1]. If
@ is ramified, the scheme A is connected [N, Prop. 14.1]. Let

iy: Y9 > PiclY, D Oy(D)
and
ix: X = Pic’ X, D Ox(D)

be the Abel-Jacobi maps; then we have the commutative diagram

A x@ —2 5 picd x

N

Pre—— y@ ——— Pic’Y.
Y

The fibre of ix (X)) — iy (Y ) over the point M—and thus the intersection of
ix (X @) with Nm ¢ ~!(M)—is equal (at least set-theoretically) to ix (A).

Fix now a connected component S C A. Then we call V := ix(S) a special
subvariety associated to M. (In general it is not true that S is irreducible; in par-
ticular, the special subvariety may not be a variety. Note also that in general it
should be obvious which covering we consider, and otherwise we say that V is a
@-special subvariety associated to M.) It is clear that

dimV = r — dim|Ox(D)|, ®)
where D € § is a general point.

The following technical definition will be crucial in the next section.

5.1. DEFINITION. Letg: X — Y be a double cover of smooth curves. An effec-
tive divisor D C X is not simple if there exists a point y € Y such that p*y C D,
and it is simple if this is not the case.

Note that if an effective divisor D C X is not simple then Nm ¢ (D) is not reduced.
Hence, if Y is an elliptic curve and M a line bundle of degree d > 2 on Y, then a
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general divisor D € X@ such that Nm¢(D) € |M]| is simple: the linear system
| M| is base point free, so a general element is reduced.

5.2. LEMMA. Let ¢: X — Y be a ramified double cover of smooth curves such
that Y is an elliptic curve. Denote by 3, the line bundle of degree g(X) — 1 defin-
ing the cyclic cover ¢. Let M # &, be a line bundle of degree2 < d < g(X) —1
on Y. Then the following statements hold:

(a) A is smooth and irreducible;
(b) a general divisor D € A is simple and satisfies dim|Ox (D)| = 0.

In particular, there exists a unique special subvariety associated to M and it is
irreducible of dimension d — 1.

Proof. We start by showing part (b). By the foregoing, D is simple and so, ac-
cording to [ M1, p. 338], we have an exact sequence

0 — Oy = ¢.0x(D) - Oy(Nmg(D)) ® §;, — 0.
Since deg D < degd, and Oy (Nm (D)) >~ M # §,, we have
h(Y, Oy (Nm (D)) ® 8%) = 0.

Therefore, 1 = h°(Y, Oy) = h°(Y, ¢.Ox(D)).

For the proof of part (a) we note first that, since A is connected, it is suffi-
cient to show the smoothness. Let D € A be any divisor. Then we have a unique
decomposition

D =¢*A+ R + B,

where A is an effective divisor on Y; the divisor R is effective, with support con-
tained in the ramification locus of ¢; and B is effective, simple, and has support
disjoint from the ramification locus of ¢. Since Y is an elliptic curve, we have

hO(Y, M ® Oy(—A —Nmge(R))) = hO(Y, M) — deg(A + Nme(R))

unless deg M = deg(A + ¢, R) and M ® Oy(—A — Nm¢(R)) is not trivial. Be-
cause deg M = deg D, this last case could occur only when A = 0 and B = 0;
hence D = R. Yetby construction we have M >~ Oy (Nm (D)) = Oy (Nm ¢(R)),
so M ® Oy(—A —Nm (R)) is trivial. By [N, Prop. 14.3] this shows the smooth-
ness of A. The statement on the dimension follows by part (b) and equation (5).
O

5.B. The Irreducible Components of V?

In this section C will be a smooth curve of genus g(C) > 6 that is bielliptic; in
other words, we have a double cover p: C — E onto an elliptic curve E. As
usual, 7: C — C will be an étale double cover. In this section we suppose that
the covering p o w: C — E is Galois. Then one sees easily that the Galois group
is ZQ X Zg.
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Using the Galois action on C yields the commutative diagram

C C C,
\ lp/
V4 P2
E

(The presentation here follows [D1, Chap. 5], to which we refer for details.) It is
straightforward to see that

g(C1) +8(Cr) =g(C) +1,

and we will assume without loss of generality that 1 < g(C;) < g(C») < g(C).
Denote by A the branch locus of p and by § the line bundle inducing the cyclic
cover p. Then 25 >~ A and, by the Hurwitz formula, deg K- = deg A; hence

degd =g(C) — 1.

The cyclic covers p; and p; are analogously given by line bundles §; and &, such
that deg6; = g(Cy) — 1l and deg §, = g(C,) — 1.
For any a € Z we define closed subsets Z, C Pic C; x Pic C; by

{(L1,Ly) | Lie Wyie 11,C,
Ly € Wic,) 1 4Ca, Nm pi(Ly) ® Nm py(Ly) = 8}.

We note that the sets Z, are empty unless 1 — g(C;) < a < g(C,) — 1. Pulling
back to C we obtain natural maps

(n},75): Zy — PicC, (Ly,Ly) — 7Ly ® 75 L,

and by [D1, p. 230] the image (7, 75)(Z,) isin P~ if and only if a is odd. More-
over, we can argue as in [D1, Prop. 5.2.1] to show that

V2 c (], n;)( U za). (6)
aodd
5.3. LEMMA. For a odd, the sets Z, are empty or
dimZ, =g(C)—1—a. @)
Furthermore, Z, is irreducible unless g(Cy) = 1and a > g(C,) — 2.
Proof. We divide the proof into two cases as follows.

Case 1: g(C;) > 1. We prove the statement for positive a (the argument is
analogous for negative a). The projection onto the second factor gives a surjective
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map Z, — Wg‘gcz)ilfan, and the fibres of this map are parameterized by effec-
tive line bundles L; with fixed norm. Because a > 1, the line bundles L are of
degree at least g(C) and so are automatically effective. Thus the fibres identify to
fibres of the norm map Nm p;: Pic C; — Pic E. Since the double covering p; is
ramified, it follows that the (Nm p)-fibres are irreducible of dimension g(C;) —1;
hence Z, is irreducible of the expected dimension.

Case 2: g(Cy) = 1. The sets Z, are empty for a negative, so suppose that a is
positive. Arguing as in the first case, we obtain the statement on the dimension.
In order to see that Z,, is irreducible fora < g(C,) — 3, we consider the surjective
map induced by the projection onto the first factor Z, — PicéV~+4 C|. The
fibre over a line bundle L, is the union of the p,-special subvarieties associated
to § ® Nm p;L7. Since 2 < degd ® Nm p;(L}) < g(C,) — 2, it follows from
Lemma 5.2 that the unique special subvariety is irreducible and so the fibres are
irreducible. O

Since all the irreducible components of V2 have dimension g(C) — 4, by (6) and

(7) we have
vzc(nf,n;)( U za). (8)

a odd,|a|<3
If (L1, Ly) € Z 5 then, by the Riemann—Roch theorem, it follows that dim|L ;| > 2
and dim|L,| > 2; therefore,
(T, 75)(Z23) C V2
For the sets Z 1 this cannot be true, since equation (7) shows that they have di-
mension g(C) — 2. We introduce the following smaller loci:
Wii={(L1,Ly) € Zy | L1 € Wy, Cil:
W_ii={(L1,L2) € Z_; | L2 € Wy(c,,Cal.
Note that if g(C;) = 1 then W; = : there is no g% on a nonrational curve. Be-
cause dim ng(mCI = g(Cy) — 2 (resp., dim ng(Cz)Cl = g(Cy) — 2), one may
easily deduce (from the proof of Lemma 5.2) that the sets W, are either empty or
irreducible of dimension g(C) — 4.
By the same lemma we see that, for fixed L, (resp. L) and general L, (resp.
L) such that (L, L,) € W (resp. (L1, L,) € W_)), the linear system |L| (resp.
|L,|) contains a unique effective divisor and this divisor is simple.

Observe that if (L1, Ly) € W4, then dim|(7r{, ))(L1, L2)| > 1. Since these
sets map into the component P~, we obtain

(f, 735 (Wa) C V2
5.4. PROPOSITION. We have

Vi= (a5, ) (Z_3UW_UW, U Z3).

The proof requires some technical preparation.
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5.5. DErFINITION. Letg: X — Y be a double cover of smooth curves, and let L
be a line bundle on X such that dim|L| > 1. Then the line bundle L is simple if
every divisor in D € |L| is simple in the sense of Definition 5.1.

5.6. LEmMma [DI1, Cor. 5.2.8]. In our situation, let L| € Pic C; and L, € Pic C,
be effective line bundles such that L ~ w{L, ® mjL,. If L, is p\-simple, then

hY(C, L) < 2h°(Ca, Ly) + g(C2) — 1 — deg L.
Analogously, if L, is p,-simple then
h(C, L) < 2h°(Cy, L) + g(C1) — 1 —deg L;.

Proof of Proposition 5.4. Let L € V? be an arbitrary line bundle. By the inclu-
sion (8) we need only show thatif L € (7}, 7))(Z+1) and L ¢ (], n5)(Z_3U Z3)
then L € (ry, w5)(W41). We will suppose that L € (rr{, w5)(Z,); the other case is
analogous and is left to the reader. Because L € (7], w5)(Z;), we can write

L >~ 7T1*L1 ®7T2*L2

with L effective of degree g(C;) and L, effective of degree g(C;) — 2. If L, is
not simple then L is in (7], w5)(Z3), which we have already excluded. Hence L,
is simple and so, by Lemma 5.6,

3 <h%C,L) < 2h°(Ci, Ly) + g(C1) — 1 = g(Cy).
Therefore, dim|L{| > 1 and L € (&], 7w} )(W)). O
5.7. COorROLLARY. Ifg(Ci) = 1then
V= (n},71})(Z3).
In particular, V? is irreducible.

Proof. Since the sets Z_3, W_j, and W are empty for g(C;) = 1, the first statement
is immediate from Proposition 5.4. Since g(C;) = 1 implies that g(C,) = g(C)
and g(C) > 6 by hypothesis, it follows from Lemma 5.3 that Z3 is irreducible. [

We now focus on the case g(C;) > 2. Proposition 5.4 reduces the study of V2 to
understanding the sets W4, Z 13 and their images in P~. We start with the follow-
ing observation.

5.8. LEmMA. For g(Cy) > 2,
(zf, ) (W) = (], 5 (Wy).

Proof. We claim that the following holds: If L; € ng(Cl)Cl is a general point then

(a) L is not simple and
(b) there exists a point x € E such that

Ly~ piOr(x) ® Oc¢, (Dy),
with D an effective divisor such that Og(Nm p;(D) + x) = §;.



Geometry of Brill-Noether Loci on Prym Varieties 799

Assuming this for the time being, let us show how to conclude. If L € (z{, w5 )(W;)
is a general point, then L >~ 7L ® w5 L, with L; € W} e )C1 a general pomt and
L, a p,-simple line bundle. Thus, by the claim we can write

L ~7{Oc,(Dy) @ w5 (Ly ® p50g(x)).

Since O (Nm pi(D;) + x) =~ §; and § =~ §; ® §,, a short computation shows that
Nm p,(L2)Q0Og(x) = §,. Moreover L, is p,-simple and so, by [ D1, Prop. 5.2.7],
dim|L, ® p3Og(x)| > 1. Hence L isin (x{, w;)(W_;). This shows one inclusion;
the proof of the other is analogous.

Proof of the claim. Set
S:={(x,D)) € E x C¥V7? | x + Nm py(D)) € |8,]}.

(For g(C}) = 2, the symmetric product Cl(g @2 isa point; it corresponds to the
zero divisor on Cj.) Observe that the projection p,: S — Cl(g €72 6n the sec-
ond factor is an isomorphism, so S is not uniruled. For (x, D;) € S general, the
divisor D, is p;-simple by Lemma 5.2 and so, by [M1, p. 338], we have the exact
sequence

0 — Op(x) = (p1)+Oc, (pix + D1) = Op(x +Nm p(Dy)) ® 6] — 0.

By construction we have Og (x +Nm p(D;)) ® 8§ >~ Of. Thus HYE,O(x)) =
0 implies that hoc, Oc, (pix + D;)) = 2. Hence the image of

7: S — PicCy, (x,D1) — Oc¢ (pix + Dy)

is contained in ng(c] yC1. Because S is not uniruled, the general fibre of S — 7(S)
has dimension 0. By Riemann-Roch, the residual map ng(cl)cl A wc—2C1is
an isomorphism and so WI(C )Cl is irreducible of dimension g(C;) — 2. Hence t
is surjective on g(Cl)(Cl) O

Suppose that g(C;) > 2. Let (JC1, Oc,) and (JC,, Oc,) be the Jacobians of the
curves C; and C, with their natural principal polarizations. Since p; and p, are
ramified, the pull-backs n{: JE — JC; and nry: JE — JC, are injective and
the restricted polarizations B := Oc¢,| ;g and B, := Oc,| g are of type (2) [MI,
Chap. 3]. We define

Py :=ker(Nm p;: JC, — JE), P, :=ker(Nm p,: JCy, — JE).

We set Aj := O¢,|p, and A, := Oc,|p,; then the polarizations A; and A, are of
type (1,...,1,2) [ , Cor. 12.1.5].

pr Xip,: JEX P; — JC; denotes the natural isogeny, then (pj X ip, )*@C =
B; X A Thus ifo: JC — JE X P is the dual map then

0 = o (B K A)) )

[ , Prop. 14.4.4], where B; and A; are the dual polarizations. We remark that
A; has type (1,2,...,2).
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By [D1, Prop. 5.5.1], the pull-back maps P; and P, into the Prym variety P and
we obtain an isogeny ({,73)|p,xp,: P1 X P, — P such that

(5 Ty p,© = A1 K A

In particular, if g: P — PS(\PQ denotes the dual map then

022 = ¢"(A, X A,). (10)

5.9. ProPOSITION. If g(Cy) > 3 then the cohomology classes of (], n3)(Z_3),
(', n3)(Wh), and (rtf,n5)(Z3) are not minimal. Moreover, their cohomology
classes are distinct and so they are distinct irreducible components of V2.

If (Cy) = 2 then the same holds for (w{,n3)(W)) and (r{, n5)(Z3).

Proof. In order to simplify the notation, we denote the pull-back of the polariza-
tions fﬂ and AAQ to PS<\P2 by the same letter.

We start by observing that is sufficient to show that [(],75)(Z_3)] (resp.
[(7{,m5)(Z_3)]) is a nonnegative multiple of g*A? (g*A5%). Indeed, once we
have shown this property, we can use that

@3
(G, ) (23] + [ 23) (Zo)] + [ w) (WDl = [V = =+
and the identity (10) to compute that

(7], m3) (W1)]

= il —aDg A +3¢7A% A + 3¢ A1 A2 + (1 - an)g ™A,
where a;,a, > 0 correspond to the cohomology class of Z 3. It is clear that none
of these classes is (a multiple of ) a minimal cohomology class. If g(C;) > 4 then
all the classes are nonzero and distinct, in which case the images of Z 3 and W,
are distinct irreducible components of V2 If2 < g(Cy) < 3 then the set Z_3
is empty (and the corresponding class zero), so we obtain only two irreducible
components.

Computation of the cohomology class of (m{,n5)(Z+3). We will prove the
claim for Z3; the proof for Z_3 is analogous. We have the commutative diagram

-~

ip

ip =

P« Jé JC P

(nf‘,nz*)/[ (@)J gl

~ — q —
JC x JC; —— JC, x JC; — Py x Py;

P

therefore, if X C JC; x JC; is a subvariety such that (r{, 75)(X) C P, then its
cohomology class is determined (up to a multiple) by the class of g (X) in Pl/ﬁz.

We choose a translate of Z5 thatis in JC; x JC, and denote it by the same let-
ter. We want to understand the geometry of g(Z3). Since the norm maps Nm p;
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are dual to the pull-backs p7 [M1, Chap. 1], the map ¢ fits into an exact sequence
of abelian varieties

0 — JE x JE 2225 jey x JCy 4 Py x Py — 0. (11)
Recall from the proof of Lemma 5.3 that Z5 is a fibre space over Wg(C )4 Such that,
for given L, € W?cz) 4 the fibre identifies to the fibre of Nm p;: Pic$©)+2 C) —
Pic8©)*2 E over § ® Nm p2(L%). Thus Z3 identifies to a fibre product

CH+2
Png( » C] X JE W(Cz) 4-
Together with the exact sequence (11) this shows that

q(Z3) = Pl x q2(W, (cz) 4)

where g, : JC, — P; is the restriction of g to JC5.
Thus we are left to compute the cohomology class of g, (W, (Cz )—4)- Note first

that ¢, is the composition of the i isogeny o> JC, — JE x P, with the pro-

jection on P5. Since the polarization B, is numerically equivalent to a multiple
4

of e x P, C JE x P, and since the cohomology class of W(CZ) 418 4C!2, it

follows from the identity (9) that the cohomology class of g2 (W, g(Cz) 4) 1s a mul-
tiple of A3, O

5.10. REmaRK. With some additional effort one can prove the following state-
ment. If g(C;) > 2, then the following equalities in H 5(P,7) hold:

1

(. mNZ9)] = 338" Ph A (12)
1

(s m)(Z9)] = 8'ph A (13)
1 ~ ~

[l T Wl = 28" (05 AP As + P Aipg AdY). (14)

The polarization A; is of type (1,2,...,2) and so, by [ , Thm. 4.10.4], ; A A3

is a “minimal” cohomology class for (P; A )); in other words, it is in H° (P ,Z)
and is not divisible.

5.11. REMARK. Let R,y be the moduli space of pairs (C, ), where C is a
smooth projective curve of genus g(C) and 7: C — C is an étale double cover.
We denote by

Pr: Ree) = Agior-

the Prym map associating to (C, ) the principally polarized Prym variety (P, ®).

Let Bg(cy be the moduli space of bielliptic curves of genus g(C) > 6, and
let R, C Rg(c) be the moduli space of €tale double covers over them. Let
R By, b€ those étale double covers such that C — C — E has Galois group

Zy X 7, and the curve C; has genus g(C)).
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By [D1, Thm. 4.1(i)], the closure of Pr(Rs,c),) in A, (cy—1 contains the locus
of Jacobians of hyperelliptic curves of genus g(C) — 1. A general hyperelliptic Ja-
cobian has the property that the cohomology class of every subvariety is an integral
multiple of the minimal class [Bis]. Hence the same property holds for a general
element in Pr(R s, ,)- So if V2 were reducible then the irreducible components
would have minimal cohomology class.

6. Prym Varieties of Bielliptic Curves, I1

6.A. Tetragonal Construction and V?

Denote by C an irreducible nodal curve of arithmetic genus p,(C) > 6 and by
7: C — C aBeauville admissible cover. By [B1], the corresponding Prym vari-
ety (P, ®) is a principally polarized abelian variety. Suppose that C is a tetragonal
curve—that is, suppose there exists a finite morphism f: C — P! of degree 4.
We set H := f*Opi(1). By Donagi’s tetragonal construction ([Do]; see also
[ , Chap. 12.8]), the corresponding special subvarieties give Beauville admis-
sible covers C’ — C’and C” — C" such that C’ and C” are tetragonal and the
Prym varieties are isomorphic to (P, ®).

Consider now the residual line bundle K¢ ® H* By Riemann—Roch, the linear
series |Kc ® H*|isa gg;f,?c))_fa to which we can apply the construction of special
subvarieties (cf. Section 5.A). If S C A is a connected component then, by [B3,
Thm. 1 and Rem. 4], the cohomology class of V := iz (S§) is [263)—7] Denote by
(P*,®") the canonically polarized Prym variety; thus,

0" =({Le(Nmn)"(K¢) | |L| # @, dim|L| = 0 mod 2}.
Up to exchanging €’ and C”, we can suppose that the image of the natural map
VxC — JC
is contained in P*. By construction, the image is then contained in ®; hence
a translate of —V is contained in the theta-dual T(C’). Since T(C’) equals the
Brill-Noether locus (V2)' of the covering C’ — C’, it has cohomology class [2%:]
and the inclusion is a (set-theoretical) equality.

The preceding argument shows that the special subvariety V is isomorphic to

the Brill-Noether locus (V) of a tetragonally related covering. The following

technical lemma shows that this special subvariety is irreducible unless we are in
a very special situation.

6.1. LEMMA. Let C be anirreducible nodal curve of arithmetic genus p,(C) > 6,
and let w2 C — C be a Beauville admissible cover. Suppose that C is a tetrag-
onal curve but is not hyperelliptic, trigonal, or a plane quintic. Assume that the
normalization v: T — C is a hyperelliptic curve, and denote by h: T — P! the
hyperelliptic covering.

Denote by f: C — P! the morphism of degree 4 and set H = f*Opi(1).
Suppose that the base locus of the linear system |Kc ® H*| does not contain
any points of Cgng, and suppose that the special subvariety S corresponding to
|Kc @ H*| is reducible. Then the following claims hold.
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(a) There exist points p, q in the smooth locus Cqy, such that we have a two-to-one
cover _
¢ieoc(prql: C — C CP?
onto a singular plane cubic C. This morphism factors through the hyper-
elliptic covering; that is, we have a commutative diagram

T —— C
hl l‘/’m@@c(ﬂwﬂ
pt -t €,

(b) If x1,x5 € T such that v(x;) = v(xy2), then h(x;) = h(x,) unless C is nodal
and h(x1) and h(x,) are mapped onto the unique node.

Proof. Since C is not a plane quintic, the linear system |K¢ ® H*| is base point
free. By [B3, Sec. 2, Cor.] applied to the pull-back of the linear system to 7, we
know that S is irreducible if the linear system |K¢ ® H*| induces amap f: C —
PP(€)=% that is birational onto its image f(C). Suppose now that this is not the
case; then, for every generic point p € C, there exists another generic point g € C
such that

h(C.Kc ® H*® Oc(=p — @) = h(C.Kc ® H* ® Oc(—p)).
By Riemann—Roch, this equality implies that the linear system |H @ Oc(p + q)|
is a base point free gZ. Because C is not hyperelliptic, we obtain in this way a
1-dimensional subset W C W2 C. Consider now the morphism g Heoc(p+q) - C =
C c P2 Because C is irreducible and not trigonal, the curve C is an irreducible
cubic or sextic curve.

Since H and H ® Oc(p + g) are base point free, it is easy to see that
W*(H ® Oc(p +¢g))lisa gg. Thus we have v(H ® Oc(p + q)) =~ h*Op1(3)
and a factorization v: P! — C such that b o h = Q| oc(p+q)] © V-

In particular, |ggoe(p+q)| is nOt birational onto its image and C is a singular
cubic. A look at the lemma’s commutative diagram shows that if x;, x, € T such
that v(x;) = v(x,), then A(x;) = h(x,) unless C is nodal and A (x;) and h(x;)
are mapped onto the unique node. UJ

ReEMARK. For the sake of completeness we also consider the case where, in
Lemma 6.1, the normalization 7 is not hyperelliptic. In this case the pull-backs

V¥*(H ® Oc(p + ¢q)) define a 1-dimensional subset W C W6 T. It follows from
[ , p- 198] that T is bielliptic, and if A: T — E is a two-to-one map onto an
elliptic curve E then v*(H ® Oc(p + q)) =~ h*L, where L € Pic® E. As before,
we have a factorization v: E — C’, which is easily seen to be an isomorphism.
In particular, C is obtained from 7 by identifying points that are in a A-fibre.

6.B. The Irreducible Components of V?

Let C’ be a smooth curve of genus g(C) > 6 that is bielliptic; in other words, we
have a double cover p’: C’ — E onto an elliptic curve E. Asusual, 7’: C' — C’



804 ANDREAS HORING

will be an étale double cover. We suppose that the morphism p’ o 7': C' — E
is not Galois (in the terminology of [D1; N], the covering belongs to the family
Ry, © Rgicys of. Remark 5.11).

If we apply the tetragonal construction to a general g on C, the result is a
Beauville admissible cover 7: € — C such that the normalization v: T — C
is a smooth hyperelliptic curve T of genus g(C) — 2. Denote by h: T — P! the
hyperelliptic structure. Then v identifies two pairs of points, x|, x; and yj, y,, such
that i1(x1), h(x2), h(y1), h(y,) are four distinct points in P! (this follows from the
“figure locale” in [D1, 7.2.4]).

By [N, Chap. 15], a tetragonal structure on C can be constructed as follows.
There exists a unique double cover j: P! — P! sending each pair & (x;), h(x2)
and h(yi),h(y2) onto a single point. The four-to-one covering j o h: T — P!
factors through the normalization v, so we have a four-to-one cover f: C — PL
After applying the tetragonal constructionto H := f*Op1(1), we recover the orig-
inal étale double cover 7’: C’ — C’. We have already seen in Section 6.A that
the Brill-Noether locus V2 associated to 7’ is isomorphic to a special subvariety
associated to |[Kc ® H*|.

Now, by considering the exact sequence

00— v(Kr® V*H*) —-> Kc® H* — (CV(XI) ® (CV(,VI) — 0,

one sees easily that the linear system |Kc ® H*| is base point free yet does
not separate the singular points v(x;) and v(y;). Since the points i(x),h(x2),
h(y1),h(y,) are distinct, it follows from Lemma 6.1 that the special subvarieties
are irreducible. Our final proposition summarizes these considerations.

6.2. PROPOSITION. Let C’ be a smooth curve of genus g(C’) > 6 that is bielliptic
(i.e., we have a double cover p': C' — E onto an elliptic curve E). Let 7': C' —
C’ be an étale double cover such that the cover C' — E is not Galois. Then V?
is irreducible.

7. Proof of Theorem 1.2

If V2 is reducible then, by Corollary 3.6, C is trigonal, a plane quintic, or biellip-
tic. The first two cases are settled in Sections 4.B and 4.C, respectively. If C is
bielliptic, we distinguish two cases depending on whether or not the four-to-one
cover C — C — E is Galois. In the Galois case we conclude by Corollary 5.7
and Proposition 5.9; otherwise, we use Proposition 6.2.
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