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Geometry of Brill–Noether Loci
on Prym Varieties

Andreas Höring

1. Introduction

Given a smooth curve X, it is well known that the Brill–Noether loci Wr
dX con-

tain much interesting information about the curve X and its polarized Jacobian
(JX,�X). Given a smooth curve C and an étale double cover π : C̃ → C, one
can analogously define Brill–Noether loci V r for the Prym variety (P,�) (see
Section 2). Several fundamental results on these loci have been known for some
time: the expected dimension is g(C) − 1 − (

r+1
2

)
, the loci are nonempty if the

expected dimension is nonnegative [Ber, Thm. 1.4], and they are connected if the
expected dimension is positive [D3, Exm. 6.2]. If C is general in the moduli
space of curves, then all the Brill–Noether loci are smooth and have the expected
dimension [W2, Thm. 1.11]. Whereas the Brill–Noether locus V 1 ⊂ P + is the
canonically defined theta-divisor and has received the attention of many authors,
the study of higher Brill–Noether loci (and the information they contain about the
étale cover π : C̃ → C) is a more recent development. Casalaina-Martin, Lahoz,
and Viviani [CaLV] show that V 2 is set-theoretically the theta-dual (cf. Defini-
tion 2.1) of the Abel–Prym curve. Lahoz and Naranjo [LN] refine this statement
and prove a Torelli theorem: the Brill–Noether locus V 2 determines the covering
C̃ → C. That finding motivates a more detailed study of the geometry of V 2. Our
first result is as follows.

1.1. Theorem. Let C be a smooth curve of genus g(C) ≥ 6, and let π : C̃ → C

be an étale double cover such that the Prym variety (P,�) is an irreducible prin-
cipally polarized abelian variety.

(a) Suppose thatC is hyperelliptic. ThenV 2 is irreducible of dimension g(C) − 3.
(b) Suppose that C is not hyperelliptic. Then V 2 is a reduced Cohen–Macaulay

scheme of dimension g(C) − 4. If the singular locus V 2
sing has an irreducible

component of dimension at least g(C)−5, then C is a plane quintic, trigonal,
or bielliptic.

The condition on the irreducibility is always satisfied unless C is hyperelliptic and
C̃ is not. In that case, (P,�) is isomorphic to a product of Jacobians [M2].
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In the hyperelliptic case (cf. Proposition 4.2), the statement is a straightforward
extension of [CaLV]. In the non-hyperelliptic case, it is based on the following
observation: if the singular locus of V 2 is large, then the singularities are excep-
tional in the sense of [B3]. This provides a link with certain Brill–Noether loci
on JC.

An immediate consequence of the theorem is that V 2 is irreducible unless C is a
plane quintic, trigonal, or bielliptic (Corollary 3.6). The case of trigonal curves is
very simple: (P,�) is isomorphic to a Jacobian JX andV 2 splits into two copies of
W 0

g(C)−4X. For a plane quintic,V 2 is reducible if and only if (P,�) is isomorphic
to the intermediate Jacobian of a cubic threefold; in this case, V 2 splits into two
copies of the Fano surface F. Note that the Fano surface F and the Brill–Noether
loci W 0

d X are expected to be the only subvarieties of principally polarized abelian
varieties having the minimal cohomology class

[
�k

k!

]
[D2]. By [dCPr], the coho-

mology class ofV 2 is
[
2 �g(C)−4

(g(C)−4)!

]; therefore, a reducibleV 2 provides an important
test for this conjecture. Our second result is the following theorem.

1.2. Theorem. Let C be a smooth non-hyperelliptic curve of genus g(C) ≥ 6,
and let π : C̃ → C be an étale double cover. Denote by (P,�) the polarized Prym
variety. The Brill–Noether locus V 2 is reducible if and only if at least one of the
following statements holds:

(a) C is trigonal;
(b) C is a plane quintic and (P,�) an intermediate Jacobian of a cubic threefold ;
(c) C is bielliptic and the covering π : C̃ → C belongs to the family RBg(C),g(C1)

with g(C1) ≥ 2 (cf. Remark 5.11). Then V 2 has two or three irreducible com-
ponents, but none of them has minimal cohomology class.

If C is bielliptic of genus g(C) ≥ 8, then the Prym variety is not a Jacobian of
a curve [S]. Moreover, these Prym varieties form

⌊ g(C)−1
2

⌋
distinct subvarieties

of Ag(C)−1 [D1]. For exactly one of these families, the general member has the
property that the cohomology class of any subvariety is a multiple of the mini-
mal class �k

k! . The proof of Theorem 1.2 shows that the Brill–Noether locus V 2 is
irreducible if and only if the Prym variety belongs to this family! This is the first
evidence for Debarre’s conjecture that is not derived from low-dimensional cases
or considerations on Jacobians and intermediate Jacobians (cf. [D2, Hö2, R]).

Acknowledgments. The work of O. Debarre, M. Lahoz, and J.-C. Naranjo
plays an important rôle in this paper. I want to thank them for patiently answer-
ing my numerous questions. The author acknowledges the support of the Albert-
Ludwigs-Universität Freiburg, where the main part of this work was done.

2. Notation

Most of our arguments are valid for an arbitrary algebraically closed field of char-
acteristic �= 2. However, we work over C so that we can apply [ACGH] and [D3],



Geometry of Brill–Noether Loci on Prym Varieties 787

which are crucial for Theorem 1.1 and its consequences. For standard definitions
in algebraic geometry we refer to [Ha] and for Brill–Noether theory to [ACGH].

Given a smooth curve C, we denote by PicC its Picard scheme and by

PicC =
⋃
d∈Z

Picd C

the decomposition into its irreducible components. We will identify the Jaco-
bian JC and the degree-0 component Pic0 C of the Picard scheme. In order to
simplify the notation we denote by L ∈ PicC the point corresponding to a given
line bundle L on C. We will abuse terminology somewhat and say that a line bun-
dle is effective if it has a global section.

For ϕ : X → Y a finite cover between smooth curves and D a divisor on X, we
denote the norm by Nmϕ(D). In the same way, Nmϕ : PicX → PicY denotes
the norm map. If F is a coherent sheaf on X (in general, F will be the locally free
sheaf corresponding to some divisor), then we denote by ϕ∗F the push-forward
as a sheaf.

Let C be a smooth curve of genus g(C) and let π : C̃ → C be an étale double
cover. We have (Nmπ)−1(KC) = P + ∪P−, where P− 
 P + 
 P are defined by

P− := {L∈ (Nmπ)−1(KC) | dim|L| ≡ 0 mod 2},
P + := {L∈ (Nmπ)−1(KC) | dim|L| ≡ 1 mod 2}.

For r ≥ 0 we set

Wr
2g(C)−2C̃ := {L∈ Pic2g(C)−2 C̃ | dim|L| ≥ r}.

The Brill–Noether loci of the Prym variety [W2] are defined as the scheme-
theoretical intersections

V r :=
{
Wr

2g(C)−2C̃ ∩ P− if r is even,

Wr
2g(C)−2C̃ ∩ P + if r is odd.

The notion of theta-dual was introduced by Pareschi and Popa in their work on
Fourier–Mukai transforms (see [PPo2] for a survey).

2.1. Definition. Let (A,�) be a principally polarized abelian variety, and let
X ⊂ A be any closed subset. Then the theta-dual T(X) of X is the maximal sub-
set Z ⊂ A such that A − Z ⊂ �.

Note that T(X) has a natural scheme structure [PPo2].

3. The Singular Locus of V 2

Throughout this section we denote byC a smooth non-hyperelliptic curve of genus
g(C) and by π : C̃ → C an étale double cover. The following lemma will be used
repeatedly.

3.1. Lemma. Let L ∈ V r be a line bundle such that dim|L| = r. If the Zariski
tangent space TLV r satisfies
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dim TLV
r > g(C) − 2r,

then there exist

(a) a line bundle M on C such that dim|M| ≥ 1 and
(b) an effective line bundle F on C̃ such that

L 
 π∗M ⊗ F.

3.2. Remark. For r = 1, the scheme V 1 = W 1
2g(C)−2C̃ ∩ P + identifies with

the canonical polarization �. The theta-divisor has dimension g(C) − 2, so the
condition

dim TLV
1 > g(C) − 2

is equivalent toV 1 being singular in L. Thus, for r = 1 we obtain the well-known
statement that if a point L ∈� with dim|L| = 1 is in �sing then the singularity is
exceptional (in the sense of Beauville [B3]).

Proof of Lemma 3.1. We consider the Prym–Petri map introduced by Welters
[W2, 1.8]:

β : ∧2H 0(C̃,L) → H 0(C̃,KC̃)
−, si ∧ sj �→ siσ

∗sj − sj σ
∗si;

here σ : C̃ → C̃ is the involution induced by the double cover. Note that
H 0(C̃,KC̃)

− is identified with the tangent space of the Prym variety; in partic-
ular, it has dimension g(C) − 1. By [W2, Prop. 1.9], the Zariski tangent space of
V r at the pointL is equal to the orthogonal of the image of β. Thus, if dim TLV

r >

g(C) − 2r then rkβ < 2r − 1. Because ∧2H 0(C̃,L) has dimension r(r+1)
2 , that

statement is equivalent to

dim kerβ >
r(r + 1)

2
− 2r − 1. (1)

The locus of decomposable 2-forms in ∧2H 0(C̃,L) is the affine cone over the
Plücker embedding of G(2,H 0(C̃,L)) in P(∧2H 0(C̃,L)), so it has dimension
2r −1. Thus, by (1) there is a nonzero decomposable vector si ∧ sj in kerβ. This
means that siσ ∗sj − sj σ

∗si = 0 and so sj/si defines a rational function h on C. We
conclude by taking M = OC((h)0) and F the maximal common divisor between
(si)0 and (sj )0. By construction, F is effective and dim|M| ≥ 1.

By [CaLV, Thm. 2.2; IPau, Lemma 2.1], every irreducible component of the Brill–
Noether locusV 2 has dimension at most g(C)−4 provided C is not hyperelliptic.
The following estimate is a generalization of their statement to arbitrary r.

3.3. Lemma. We have

dimV r ≤ g(C) − 2 − r ∀r ≥ 2.

Proof. Denote by |KC | ⊂ C(2g(C)−2) the set of effective canonical divisors and by
Nmπ : C̃ (2g(C)−2) → C(2g(C)−2) the norm map. Since the canonical linear system
|KC | defines an embedding, it follows from [B3, Sec. 2, Cor.] that Nmπ−1(|KC |)
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has exactly two irreducible components, %0 and %1, and that both are normal va-
rieties of dimension g(C) − 1. Let

i : C̃ (2g(C)−2) → Pic2g(C)−2 C̃, D �→ OC̃(D)

be the Abel–Jacobi map; then, up to renumbering,

ϕ(%0) = P− and ϕ(%1) = � ⊂ P +.

Recall that for all L ∈ Pic C̃ we have the set-theoretic equality i−1(L) = |L|. In
particular, we see that

dim i−1(V r ) ≥ dimV r + r (2)

for every r ≥ 0.
Suppose now that r is even (the odd case is analogous and is left to the reader).

For a general point L∈P− one has dim|L| = 0. Thus, for r ≥ 2,

i−1(V r ) � %1;
hence i−1(V r ) has dimension at most g(C) − 2. We conclude by using (2).

3.4. Remark. In the proof we used non-hyperellipticC only to show that%0 and
%1 are irreducible. Since inequality (2) is valid without this property, we obtain

dimV r ≤ g(C) − 1 − r ∀r ≥ 2.

We will see in Section 4.A that this estimate is optimal.

We can now use Marten’s theorem to give an estimate of the dimension of the sin-
gular locus V 2

sing.

3.5. Proposition. Suppose that g(C) ≥ 6 and V 2
sing has an irreducible compo-

nent S of dimension at least g(C) − 5. Then there exist

(a) a d ∈ {3, 4} such that
dimW 1

d C = d − 3

and
(b) an irreducible component W ⊂ W 1

d C of maximal dimension such that, for
every M ∈W,

dim|KC ⊗ M⊗−2| = g − d − 2.

For every L in S we have
L 
 π∗M ⊗ F

for some M ∈ W and some effective line bundle F on C̃. In particular, S is of
dimension g(C) − 5.

Proof. Let L ∈ S be a generic point; then, by Lemma 3.3, dim|L| = 2. Since V 2

is singular in L, it follows that

dim TLV
2 > g(C) − 4.

Hence by Lemma 3.1 there exist a line bundle M ∈W 1
d C for some d ≤ g(C) − 1

and an effective line bundle F on C̃ such that
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L 
 π∗M ⊗ F.

The family of such pairs (M,F ) is a finite cover of the set of pairs (M,B) for
which M ∈ W 1

d C for some d ≤ g(C) − 1 and B is an effective divisor of degree
2g(C) − 2 − 2d ≥ 0 on C such that B ∈ |KC ⊗ M⊗−2|.

By hypothesis, the parameter space T of the pairs (M,B) has dimension at least
g(C) − 5. Note that if degM = g(C) − 1 then KC ⊗ M⊗−2 
 OC. Thus M is
a theta-characteristic and the space of pairs (M,B) is finite—a contradiction to
g(C)−5 > 0. Because C is not hyperelliptic, 3 ≤ degM < g(C)−1. Moreover,
by Clifford’s theorem we have

dim|H 0(C,KC ⊗ M⊗−2)| ≤ g(C) − 1 − d − 1. (3)

Thus the varietyW parameterizing the line bundlesM has dimension at least d−3.
By construction we have W ⊂ W 1

d ; by Marten’s theorem [ACGH, IV, Thm. 5.1],

dimW ≤ dimW 1
d C ≤ d − 3. (4)

Therefore, T and S each have dimension at most g(C)− 5. Since (by hypothesis)
S has dimension at least g(C) − 5, it follows that (3) and (4) are equalities—at
least for M ∈W generic. By upper semicontinuity and Clifford’s theorem, we ob-
tain equality for every M ∈W.

The last remaining point is to show that this situation can occur only for d ∈
{3, 4}. We have already established the existence of a finite map

W → W
g−d−2
2g(C)−2−2dC, M �→ KC ⊗ M⊗−2.

If 2g(C)−2−2d ≤ g(C)−1 then, by Marten’s theorem, dimW
g(C)−d−2
2g(C)−2−2dC ≤ 1.

Because dimW = d − 3, we see that d ≤ 4. Now if 2g(C)− 2 − 2d ≥ g(C), we
use the isomorphism

W
g(C)−d−2
2g(C)−2−2dC → W d−1

2d C, KC ⊗ M⊗−2 �→ M⊗2

together with Marten’s theorem to show that dimW
g(C)−d−2
2g(C)−2−2dC ≤ 1; hence, again

we obtain d ≤ 4.

Proof of Theorem 1.1. The hyperelliptic case is settled in Proposition 4.2, so we
suppose that C is not hyperelliptic.

By [D3, Exm. 6.2.1], the Brill–Noether-locus V 2 is a determinantal variety.
Since for non-hyperelliptic C it has the expected dimension, V 2 is Cohen–
Macaulay. Since dimV 2

sing ≤ g(C) − 5 by Proposition 3.5, it follows that all
the irreducible components of V 2 are generically reduced. Recall that a generi-
cally reduced Cohen–Macaulay scheme is itself reduced. If dimV 2

sing ≥ g(C)− 5
then, by Proposition 3.5, dimW 1

d C = d − 3 for d = 3 or 4. Thus the second
statement follows from Mumford’s refinement of Marten’s theorem [ACGH, IV,
Thm. 5.2].

Remark. Lahoz and Naranjo [LN] use completely different methods to show
that V 2 is reduced and Cohen–Macaulay.
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3.6. Corollary. LetC be a smooth non-hyperelliptic curve of genus g(C) ≥ 6,
and let π : C̃ → C be an étale double cover. If V 2 is reducible, then C is a plane
quintic, trigonal, or bielliptic.

Remark. Teixidor i Bigas [T] uses the Martens–Mumford theorem to determine
when the singular locus of a Jacobian of a curve is reducible.

Proof of Corollary 3.6. By a theorem of Debarre [D3, Exm. 6.2.1], the locus V 2

is (g(C) − 5)-connected. In other words, if V 2 is not irreducible then there exist
two irreducible components Z1,Z2 ⊂ V 2 such that Z1 ∩Z2 has dimension at least
g(C) − 5 in one point [D3, p. 287]. So if V 2 is reducible, its singular locus has
dimension at least g(C) − 5. Now conclude using Theorem 1.1.

4. Examples

4.A. Hyperelliptic Curves

Let C be a smooth hyperelliptic curve of genus g(C). Let π : C̃ → C be an étale
double cover such that the Prym variety (P,�) is an irreducible principally polar-
ized abelian variety (i.e., C̃ is also a hyperelliptic curve). Let σ : C̃ → C̃ be the
involution induced by π.

Recall from [BiLa, Chap. 12, Sec. 5] that in this case, for a fixed p0 ∈ C, the
Abel–Prym map

α : C̃ → P, p �→ σ(p) − p + σ(p0) − p0

is two-to-one onto its image C ′ (which is a smooth curve) and the Prym variety
(P,�) is isomorphic to (J(C ′),�C ′).

In [CaLV, Lemma 2.1] the authors show that, for C not hyperelliptic, V 2 is a
translate of the theta-dual of the Abel–Prym embedded curve C̃ ⊂ P. In fact,
their argument works also for C hyperelliptic if one replaces C̃ ⊂ P by α(C̃) =
C ′ ⊂ P. Thus we have the following statement.

4.1. Lemma. The Brill–Noether locus V 2 is a translate of the theta-dual T(C ′).

Since the Prym variety (P,�) is isomorphic to (J(C ′),�C ′), it follows that the
theta-dual of C ′ is a translate of W 0

g(C)−3C
′. In particular, V 2 is irreducible of

dimension g(C) − 3.

4.2. Proposition. Let C be a smooth hyperelliptic curve of genus g(C) ≥ 6,
and let π : C̃ → C be an étale double cover such that the Prym variety (P,�)

is an irreducible principally polarized abelian variety. Then V 2 is irreducible of
dimension g(C) − 3 and, set-theoretically, it is a translate W 0

g(C)−3C
′.

For any point L∈V 2 we have

L 
 π∗H ⊗ F,

where H is the unique g1
2 on C and F is an effective line bundle on C̃.
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Proof. By Remark 3.4 we have a proper inclusion V 4 � V 2, so a general L∈V 2

satisfies dim|L| = 2. By Lemma 3.1 there exists a line bundle M ∈W 1
d C for some

d ≤ g(C) − 1 and an effective line bundle F on C̃ such that

L 
 π∗M ⊗ F.

We can now argue as in the proof of Proposition 3.5 to obtain the statement. We
need only observe that the inequality

dim|H 0(C,KC ⊗ M⊗−2)| ≤ g(C) − 1 − d − 1

is also valid on a hyperelliptic curve unless M is a multiple of the g1
2.

4.B. Plane Quintics

LetC ⊂ P2 be a smooth plane quintic and let π : C̃ → C be an étale double cover.
We denote by H the restriction of the hyperplane divisor to C and by η ∈ Pic0 C

the 2-torsion line bundle inducing π. Let σ : C̃ → C̃ be the involution induced
by π.

4.3. Example. Suppose that h0(C, OC(H ) ⊗ η) is odd—that is, suppose the
Prym variety P− is isomorphic to the intermediate Jacobian J(X) of a cubic three-
foldX [ClG]. Let us fix such an isomorphism of principally polarized abelian vari-
eties J(X) ∼−→P−. The Fano variety F parameterizing lines on the threefold X is
a smooth surface that has a natural embedding in the intermediate Jacobian J(X).

By [ClG], the surface F ⊂ P has minimal cohomology class
[
�3

3!

]
. Moreover, it

follows from [Hö1] and [PPo1] that the theta-dual satisfies T(F ) = −F. It is well
known that C̃ ⊂ F (up to translation), so

−F = T(F ) ⊂ V 2 = T(C̃).

Since the condition dim|L| ≥ 2 is invariant under isomorphism, the Brill–Noether
locus V 2 is stable under the map x �→ −x. Thus −F ⊂ V 2 implies that F ⊂ V 2.

Since the cohomology class of V 2 is
[
2�3

3!

]
, we see that (up to translation) V 2 is

a union of F and −F. In particular, V 2 is reducible and its singular locus is the
intersection of the two irreducible components. SinceV 2 is Cohen–Macaulay, the
singular locus has pure dimension 1.

We will now prove the converse of this example.

4.4. Proposition. The Brill–Noether locus V 2 is reducible if and only if
h0(C, OC(H ) ⊗ η) is odd—in other words, iff the Prym variety is isomorphic
to the intermediate Jacobian of a cubic threefold. In this case, the singular locus
V 2

sing is a translate of C̃.

Proof. Suppose that V 2
sing has a component S of dimension 1. Since C is not trig-

onal, we know from Proposition 3.5 that S corresponds to a 1-dimensional com-
ponentW ⊂ W 1

4C such that, for every [M ] ∈W,
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|KC ⊗ M⊗−2| �= ∅.
By adjunction we have KC 
 OC(2H ), and from [B2, Sec. 2, (iii)] it follows that
M 
 OC(H − p), where p ∈C is a point. Hence KC ⊗ M⊗−2 
 OC(2p) and a
general point L∈ S is of the form

L 
 π∗OC(H − p) ⊗ OC̃(q1 + q2),

where q1, q2 are points in C̃. Since Nmπ(L) 
 OC(2H ) and C is not hyperellip-
tic, we obtain that qi ∈π−1(p). Then we can write

L 
 π∗H or L 
 π∗OC(H ) ⊗ OC̃(q − σ(q)) for some q ∈ C̃.

Because L varies in a 1-dimensional family, we can exclude the first case. By
Mumford’s description of a Prym variety whose theta-divisor has a singular locus
of dimension g(C) − 5, we know that h0(C, OC(H ) ⊗ η) is even if and only if
h0(C̃,π∗OC(H ) ⊗ OC̃(q − σ(q))) is even [M2, p. 347]. Since V 2 ⊂ P−, this
shows the statement.

The description of the general points L ∈ S shows that V 2
sing has a unique 1-

dimensional component and that V 2
sing is the translate by π∗OC(H ) of the Abel–

Prym embedded C̃ ⊂ P.

4.C. Trigonal Curves

Let C be a trigonal curve of genus g(C) ≥ 6. Let π : C̃ → C be an étale double
cover and (P,�) the corresponding Prym variety. By a theorem of Recillas [Re],
the Prym variety is isomorphic as a principally polarized abelian variety to the
polarized Jacobian (JX,�X) of a tetragonal curve X of genus g(C) − 1. By Re-
cillas’s construction [BiLa, Chap. 12.7] we also know how to recover the double
cover π : C̃ → C from the curve X. Namely, let s : X(2) × X(2) → X(4) be the
sum map; then

C̃ 
 p1(s
−1(P1)),

where P1 ⊂ X(4) is the linear system giving the tetragonal structure and p1 is the
projection onto the first factor. In particular, we see that

C̃ ⊂ X(2) 
 W 0
2 X.

Therefore, up to choosing an isomorphism (P,�) 
 (JX,�X) (and appropriate
translates),

T(W 0
2 X) ⊂ T(C̃) 
 V 2.

By [PPo1, Exm. 4.5], the theta-dual of W 0
2 X is −W 0

g(C)−4X. As in the case of the
intermediate Jacobian described in Example 4.3, we see that (up to translation)

V 2 = −W 0
g(C)−4X ∪W 0

g(C)−4X;
moreover, the singular locus of V 2 is the union of ±(W 0

g(C)−4X)sing, which has di-
mension at most g(C)−6, and the intersection of the two irreducible components,
which has dimension g(C) − 5.
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5. Prym Varieties of Bielliptic Curves, I

5.A. Special Subvarieties

We recall some well-known facts about special subvarieties that we will use in the
next section.

Let ϕ : X → Y be a double cover (which may be étale or ramified) of smooth
curves. We suppose that g(Y ) is at least 1 and denote by Nmϕ : PicX → PicY the
norm morphism. Let M be a globally generated line bundle of degree d ≥ 2 on Y.
Denote by P r ⊂ Y (d ), where r := dim|M|, the set of effective divisors in the lin-
ear system |M|. If Nmϕ : X(d ) → Y (d ) is the norm map, then % := Nmϕ−1(P r )

is a reduced Cohen–Macaulay scheme of pure dimension r and the map % → |M|
is étale of degree 2d over the locus of smooth divisors in |M| that do not meet the
branch locus of ϕ.

If ϕ is étale then % has exactly two connected components, %0 and %1 [W1]. If
ϕ is ramified, the scheme % is connected [N, Prop. 14.1]. Let

iY : Y (d ) → Picd Y, D �→ OY (D)

and
iX : X(d ) → Picd X, D �→ OX(D)

be the Abel–Jacobi maps; then we have the commutative diagram

% ↪ ��

��

X(d )
iX ��

Nmϕ

��

Picd X

Nmϕ

��

P r ↪ �� Y (d )
iY

�� Picd Y .

The fibre of iX(X(d )) → iY (Y
(d )) over the point M—and thus the intersection of

iX(X
(d )) with Nmϕ−1(M)—is equal (at least set-theoretically) to iX(%).

Fix now a connected component S ⊂ %. Then we call V := iX(S) a special
subvariety associated to M. (In general it is not true that S is irreducible; in par-
ticular, the special subvariety may not be a variety. Note also that in general it
should be obvious which covering we consider, and otherwise we say that V is a
ϕ-special subvariety associated to M.) It is clear that

dimV = r − dim|OX(D)|, (5)

where D ∈ S is a general point.
The following technical definition will be crucial in the next section.

5.1. Definition. Let ϕ : X → Y be a double cover of smooth curves. An effec-
tive divisor D ⊂ X is not simple if there exists a point y ∈ Y such that ϕ∗y ⊂ D,
and it is simple if this is not the case.

Note that if an effective divisorD ⊂ X is not simple then Nmϕ(D) is not reduced.
Hence, if Y is an elliptic curve and M a line bundle of degree d ≥ 2 on Y, then a
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general divisor D ∈ X(d ) such that Nmϕ(D) ∈ |M| is simple: the linear system
|M| is base point free, so a general element is reduced.

5.2. Lemma. Let ϕ : X → Y be a ramified double cover of smooth curves such
that Y is an elliptic curve. Denote by δϕ the line bundle of degree g(X)−1 defin-
ing the cyclic cover ϕ. Let M �
 δϕ be a line bundle of degree 2 ≤ d ≤ g(X)− 1
on Y. Then the following statements hold :

(a) % is smooth and irreducible;
(b) a general divisor D ∈% is simple and satisfies dim|OX(D)| = 0.

In particular, there exists a unique special subvariety associated to M and it is
irreducible of dimension d − 1.

Proof. We start by showing part (b). By the foregoing, D is simple and so, ac-
cording to [M1, p. 338], we have an exact sequence

0 → OY → ϕ∗OX(D) → OY (Nmϕ(D)) ⊗ δ∗
ϕ → 0.

Since degD ≤ deg δϕ and OY (Nmϕ(D)) 
 M �
 δϕ , we have

h0(Y, OY (Nmϕ(D)) ⊗ δ∗
ϕ) = 0.

Therefore, 1 = h0(Y, OY ) = h0(Y,ϕ∗OX(D)).

For the proof of part (a) we note first that, since % is connected, it is suffi-
cient to show the smoothness. Let D ∈% be any divisor. Then we have a unique
decomposition

D = ϕ∗A + R + B,

where A is an effective divisor on Y ; the divisor R is effective, with support con-
tained in the ramification locus of ϕ; and B is effective, simple, and has support
disjoint from the ramification locus of ϕ. Since Y is an elliptic curve, we have

h0(Y,M ⊗ OY (−A − Nmϕ(R))) = h0(Y,M) − deg(A + Nmϕ(R))

unless degM = deg(A+ ϕ∗R) and M ⊗ OY (−A− Nmϕ(R)) is not trivial. Be-
cause degM = degD, this last case could occur only when A = 0 and B = 0;
henceD = R.Yet by construction we haveM 
 OY (Nmϕ(D)) = OY (Nmϕ(R)),
so M ⊗OY (−A− Nmϕ(R)) is trivial. By [N, Prop. 14.3] this shows the smooth-
ness of %. The statement on the dimension follows by part (b) and equation (5).

5.B. The Irreducible Components of V 2

In this section C will be a smooth curve of genus g(C) ≥ 6 that is bielliptic; in
other words, we have a double cover p : C → E onto an elliptic curve E. As
usual, π : C̃ → C will be an étale double cover. In this section we suppose that
the covering p � π : C̃ → E is Galois. Then one sees easily that the Galois group
is Z2 × Z2.



796 Andreas Höring

Using the Galois action on C̃ yields the commutative diagram

C̃

π

����
��

��
��

�
π1

��

π2

����
��

��
��

�

C

p
����

��
��

��
� C1

p1

��

C2 .

p2
����

��
��

��
�

E

(The presentation here follows [D1, Chap. 5], to which we refer for details.) It is
straightforward to see that

g(C1) + g(C2) = g(C) + 1,

and we will assume without loss of generality that 1 ≤ g(C1) ≤ g(C2) ≤ g(C).

Denote by 2 the branch locus of p and by δ the line bundle inducing the cyclic
cover p. Then 2δ 
 2 and, by the Hurwitz formula, degKC = deg2; hence

deg δ = g(C) − 1.

The cyclic covers p1 and p2 are analogously given by line bundles δ1 and δ2 such
that deg δ1 = g(C1) − 1 and deg δ2 = g(C2) − 1.

For any a ∈ Z we define closed subsets Za ⊂ PicC1 × PicC2 by{
(L1,L2) | L1 ∈W 0

g(C1)−1+aC1,

L2 ∈W 0
g(C2 )−1−aC2, Nmp1(L1) ⊗ Nmp2(L2) 
 δ

}
.

We note that the sets Za are empty unless 1 − g(C1) ≤ a ≤ g(C2) − 1. Pulling
back to C̃ we obtain natural maps

(π∗
1,π∗

2 ) : Za → Pic C̃, (L1,L2) �→ π∗
1L1 ⊗ π∗

2L2,

and by [D1, p. 230] the image (π∗
1,π∗

2 )(Za) is in P− if and only if a is odd. More-
over, we can argue as in [D1, Prop. 5.2.1] to show that

V 2 ⊂ (π∗
1,π∗

2 )

( ⋃
a odd

Za

)
. (6)

5.3. Lemma. For a odd, the sets Za are empty or

dimZa = g(C) − 1 − a. (7)

Furthermore, Za is irreducible unless g(C1) = 1 and a ≥ g(C2) − 2.

Proof. We divide the proof into two cases as follows.

Case 1: g(C1) > 1. We prove the statement for positive a (the argument is
analogous for negative a). The projection onto the second factor gives a surjective
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map Za → W 0
g(C2 )−1−aC2, and the fibres of this map are parameterized by effec-

tive line bundles L1 with fixed norm. Because a ≥ 1, the line bundles L1 are of
degree at least g(C1) and so are automatically effective. Thus the fibres identify to
fibres of the norm map Nmp1 : PicC1 → PicE. Since the double covering p1 is
ramified, it follows that the (Nmp1)-fibres are irreducible of dimension g(C1)−1;
hence Za is irreducible of the expected dimension.

Case 2: g(C1) = 1. The sets Za are empty for a negative, so suppose that a is
positive. Arguing as in the first case, we obtain the statement on the dimension.
In order to see that Za is irreducible for a ≤ g(C2)− 3, we consider the surjective
map induced by the projection onto the first factor Za → Picg(C1)−1+a C1. The
fibre over a line bundle L1 is the union of the p2-special subvarieties associated
to δ ⊗ Nmp1L

∗
1. Since 2 ≤ deg δ ⊗ Nmp1(L

∗
1) ≤ g(C2) − 2, it follows from

Lemma 5.2 that the unique special subvariety is irreducible and so the fibres are
irreducible.

Since all the irreducible components of V 2 have dimension g(C) − 4, by (6) and
(7) we have

V 2 ⊂ (π∗
1,π∗

2 )

( ⋃
a odd,|a|≤3

Za

)
. (8)

If (L1,L2)∈Z±3 then, by the Riemann–Roch theorem, it follows that dim|L1| ≥ 2
and dim|L2| ≥ 2; therefore,

(π∗
1,π∗

2 )(Z±3) ⊂ V 2.

For the sets Z±1 this cannot be true, since equation (7) shows that they have di-
mension g(C) − 2. We introduce the following smaller loci:

W1 := {(L1,L2)∈Z1 | L1 ∈W 1
g(C1)

C1};
W−1 := {(L1,L2)∈Z−1 | L2 ∈W 1

g(C2 )
C2}.

Note that if g(C1) = 1 then W1 = ∅: there is no g1
1 on a nonrational curve. Be-

cause dimW 1
g(C1)

C1 = g(C1) − 2 (resp., dimW 1
g(C2 )

C1 = g(C2) − 2), one may
easily deduce (from the proof of Lemma 5.2) that the setsW±1 are either empty or
irreducible of dimension g(C) − 4.

By the same lemma we see that, for fixed L1 (resp. L2) and general L2 (resp.
L1) such that (L1,L2) ∈W1 (resp. (L1,L2) ∈W−1), the linear system |L1| (resp.
|L2|) contains a unique effective divisor and this divisor is simple.

Observe that if (L1,L2) ∈ W±1 then dim|(π∗
1,π∗

2 )(L1,L2)| ≥ 1. Since these
sets map into the component P−, we obtain

(π∗
1,π∗

2 )(W±1) ⊂ V 2.

5.4. Proposition. We have

V 2 = (π∗
1,π∗

2 )(Z−3 ∪W−1 ∪W1 ∪ Z3).

The proof requires some technical preparation.
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5.5. Definition. Let ϕ : X → Y be a double cover of smooth curves, and let L
be a line bundle on X such that dim|L| ≥ 1. Then the line bundle L is simple if
every divisor in D ∈ |L| is simple in the sense of Definition 5.1.

5.6. Lemma [D1, Cor. 5.2.8]. In our situation, let L1 ∈ PicC1 and L2 ∈ PicC2

be effective line bundles such that L 
 π∗
1L1 ⊗ π∗

2L2. If L1 is p1-simple, then

h0(C̃,L) ≤ 2h0(C2,L2) + g(C2) − 1 − degL2.

Analogously, if L2 is p2-simple then

h0(C̃,L) ≤ 2h0(C1,L1) + g(C1) − 1 − degL1.

Proof of Proposition 5.4. Let L ∈ V 2 be an arbitrary line bundle. By the inclu-
sion (8) we need only show that if L∈ (π∗

1,π∗
2 )(Z±1) and L /∈ (π∗

1,π∗
2 )(Z−3 ∪Z3)

then L∈ (π∗
1,π∗

2 )(W±1). We will suppose that L∈ (π∗
1,π∗

2 )(Z1); the other case is
analogous and is left to the reader. Because L∈ (π∗

1,π∗
2 )(Z1), we can write

L 
 π∗
1L1 ⊗ π∗

2L2

with L1 effective of degree g(C1) and L2 effective of degree g(C1) − 2. If L2 is
not simple then L is in (π∗

1,π∗
2 )(Z3), which we have already excluded. Hence L2

is simple and so, by Lemma 5.6,

3 ≤ h0(C̃,L) ≤ 2h0(C1,L1) + g(C1) − 1 − g(C1).

Therefore, dim|L1| ≥ 1 and L∈ (π∗
1,π∗

2 )(W1).

5.7. Corollary. If g(C1) = 1 then

V 2 = (π∗
1,π∗

2 )(Z3).

In particular, V 2 is irreducible.

Proof. Since the setsZ−3,W−1, andW1 are empty for g(C1) = 1, the first statement
is immediate from Proposition 5.4. Since g(C1) = 1 implies that g(C2) = g(C)

and g(C) ≥ 6 by hypothesis, it follows from Lemma 5.3 thatZ3 is irreducible.

We now focus on the case g(C1) ≥ 2. Proposition 5.4 reduces the study of V 2 to
understanding the setsW±1,Z±3 and their images in P−. We start with the follow-
ing observation.

5.8. Lemma. For g(C1) ≥ 2,

(π∗
1,π∗

2 )(W1) = (π∗
1,π∗

2 )(W−1).

Proof. We claim that the following holds: If L1 ∈W 1
g(C1)

C1 is a general point then

(a) L1 is not simple and
(b) there exists a point x ∈E such that

L1 
 p∗
1OE(x) ⊗ OC1(D1),

with D1 an effective divisor such that OE(Nmp1(D1) + x) 
 δ1.
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Assuming this for the time being, let us show how to conclude. IfL∈ (π∗
1,π∗

2 )(W1)

is a general point, then L 
 π∗
1L1 ⊗ π∗

2L2 with L1 ∈W 1
g(C1)

C1 a general point and
L2 a p2-simple line bundle. Thus, by the claim we can write

L 
 π∗
1 OC1(D1) ⊗ π∗

2(L2 ⊗ p∗
2OE(x)).

Since OE(Nmp1(D1)+ x) 
 δ1 and δ 
 δ1 ⊗ δ2, a short computation shows that
Nmp2(L2)⊗OE(x) 
 δ2. MoreoverL2 isp2-simple and so, by [D1, Prop. 5.2.7],
dim|L2 ⊗p∗

2OE(x)| ≥ 1. Hence L is in (π∗
1,π∗

2 )(W−1). This shows one inclusion;
the proof of the other is analogous.

Proof of the claim. Set

S := {(x,D1)∈E × C
(g(C1)−2)
1 | x + Nmp1(D1)∈ |δ1|}.

(For g(C1) = 2, the symmetric product C(g(C1)−2)
1 is a point; it corresponds to the

zero divisor on C1.) Observe that the projection p2 : S → C
(g(C1)−2)
1 on the sec-

ond factor is an isomorphism, so S is not uniruled. For (x,D1) ∈ S general, the
divisor D1 is p1-simple by Lemma 5.2 and so, by [M1, p. 338], we have the exact
sequence

0 → OE(x) → (p1)∗OC1(p
∗
1x + D1) → OE(x + Nmp1(D1)) ⊗ δ∗

1 → 0.

By construction we have OE(x+Nmp1(D1))⊗ δ∗
1 
 OE. Thus H1(E, OE(x)) =

0 implies that h0(C1, OC1(p
∗
1x + D1)) = 2. Hence the image of

τ : S → PicC1, (x,D1) �→ OC1(p
∗
1x + D1)

is contained inW 1
g(C1)

C1. Because S is not uniruled, the general fibre of S → τ(S)

has dimension 0. By Riemann–Roch, the residual map W 1
g(C1)

C1 → W 0
g(C1)−2C1 is

an isomorphism and so W 1
g(C1)

C1 is irreducible of dimension g(C1) − 2. Hence τ
is surjective onW 1

g(C1)
(C1).

Suppose that g(C1) ≥ 2. Let (JC1,�C1) and (JC2,�C2) be the Jacobians of the
curves C1 and C2 with their natural principal polarizations. Since p1 and p2 are
ramified, the pull-backs π∗

1 : JE → JC1 and π∗
2 : JE → JC2 are injective and

the restricted polarizations B1 := �C1|JE and B2 := �C2 |JE are of type (2) [M1,
Chap. 3]. We define

P1 := ker(Nmp1 : JC1 → JE), P2 := ker(Nmp2 : JC2 → JE).

We set A1 := �C1|P1 and A2 := �C2 |P2; then the polarizations A1 and A2 are of
type (1, . . . ,1, 2) [BiLa, Cor. 12.1.5].

If p∗
j × iPj : JE×Pj → JCj denotes the natural isogeny, then (p∗

j × iPj )
∗�Cj ≡

Bj � Aj . Thus if αj : JCj → JE × P̂j is the dual map then

�⊗2
Cj

≡ α∗
j (B̂j � Âj ) (9)

[BiLa, Prop. 14.4.4], where B̂j and Âj are the dual polarizations. We remark that
Âj has type (1, 2, . . . , 2).
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By [D1, Prop. 5.5.1], the pull-back maps P1 and P2 into the Prym variety P and
we obtain an isogeny (π∗

1,π∗
2 )|P1×P2 : P1 × P2 → P such that

(π∗
1,π∗

2 )|∗P1×P2
� ≡ A1 � A2.

In particular, if g : P → P̂1 × P2 denotes the dual map then

�⊗2 ≡ g∗(Â1 � Â2). (10)

5.9. Proposition. If g(C1) ≥ 3 then the cohomology classes of (π∗
1,π∗

2 )(Z−3),
(π∗

1,π∗
2 )(W1), and (π∗

1,π∗
2 )(Z3) are not minimal. Moreover, their cohomology

classes are distinct and so they are distinct irreducible components of V 2.

If g(C1) = 2 then the same holds for (π∗
1,π∗

2 )(W1) and (π∗
1,π∗

2 )(Z3).

Proof. In order to simplify the notation, we denote the pull-back of the polariza-

tions Â1 and Â2 to P̂1 × P2 by the same letter.
We start by observing that is sufficient to show that [(π∗

1,π∗
2 )(Z−3)] (resp.

[(π∗
1,π∗

2 )(Z−3)]) is a nonnegative multiple of g∗Â1
3 (g∗Â2

3). Indeed, once we
have shown this property, we can use that

[(π∗
1,π∗

2 )(Z−3)] + [(π∗
1,π∗

2 )(Z3)] + [(π∗
1,π∗

2 )(W1)] = [V 2] = �3

3!
and the identity (10) to compute that

[(π∗
1,π∗

2 )(W1)]

= 1

3! 23
[(1 − a1)g

∗Â1
3 + 3g∗Â1

2Â2 + 3g∗Â1Â2
2 + (1 − a2)g

∗Â2
3],

where a1, a2 ≥ 0 correspond to the cohomology class of Z±3. It is clear that none
of these classes is (a multiple of ) a minimal cohomology class. If g(C1) ≥ 4 then
all the classes are nonzero and distinct, in which case the images of Z±3 and W1

are distinct irreducible components of V 2. If 2 ≤ g(C1) ≤ 3 then the set Z−3

is empty (and the corresponding class zero), so we obtain only two irreducible
components.

Computation of the cohomology class of (π∗
1,π∗

2 )(Z±3). We will prove the
claim for Z3; the proof for Z−3 is analogous. We have the commutative diagram

P ↪
iP ��

JC̃

∼−→
��
ĴC̃

îP ��

̂(π∗
1,π∗

2 )

��

P̂ 
 P

g

��

JC1 × JC2

 ��

(π∗
1,π∗

2 )

��

̂JC1 × JC2

q
�� P̂1 × P2 ;

therefore, if X ⊂ JC1 × JC2 is a subvariety such that (π∗
1,π∗

2 )(X) ⊂ P, then its
cohomology class is determined (up to a multiple) by the class of q(X) in P̂1 × P2.

We choose a translate of Z3 that is in JC1 × JC2 and denote it by the same let-
ter. We want to understand the geometry of q(Z3). Since the norm maps Nmpj



Geometry of Brill–Noether Loci on Prym Varieties 801

are dual to the pull-backs p∗
j [M1, Chap. 1], the map q fits into an exact sequence

of abelian varieties

0 −→ JE × JE
p∗

1×p∗
2−−−−→ JC1 × JC2

q−→ P̂1 × P2 −→ 0. (11)

Recall from the proof of Lemma 5.3 thatZ3 is a fibre space overW 0
g(C1)−4 such that,

for givenL2 ∈W 0
g(C2 )−4, the fibre identifies to the fibre of Nmp1 : Picg(C1)+2 C1 →

Picg(C1)+2 E over δ ⊗ Nmp2(L
∗
2). Thus Z3 identifies to a fibre product

Picg(C1)+2 C1 ×JE W 0
g(C2 )−4.

Together with the exact sequence (11) this shows that

q(Z3) = P̂1 × q2(W
0
g(C2 )−4),

where q2 : JC2 → P2 is the restriction of q to JC2.

Thus we are left to compute the cohomology class of q2(W
0
g(C2 )−4). Note first

that q2 is the composition of the isogeny α2 : JC2 → JE × P̂2 with the pro-

jection on P̂2. Since the polarization B̂2 is numerically equivalent to a multiple

of e × P̂2 ⊂ JE × P̂2 and since the cohomology class of W 0
g(C2 )−4 is

�4
C2

4! , it

follows from the identity (9) that the cohomology class of q2(W
0
g(C2 )−4) is a mul-

tiple of Â2
3.

5.10. Remark. With some additional effort one can prove the following state-
ment. If g(C1) ≥ 2, then the following equalities in H 6(P, Z) hold:

[(π∗
1,π∗

2 )(Z−3)] = 1

4!
g∗p∗

P̂1
Â1

3; (12)

[(π∗
1,π∗

2 )(Z3)] = 1

4!
g∗p∗

P̂2
Â2

3; (13)

[(π∗
1,π∗

2 )(W1)] = 1

8
g∗(p∗

P̂1
Â1

2p∗
P̂2
Â2 + p∗

P̂1
Â1p

∗
P̂2
Â2

2). (14)

The polarization Âj is of type (1, 2, . . . , 2) and so, by [BiLa, Thm. 4.10.4], 1
4! Âj

3

is a “minimal” cohomology class for (Pj , Âj ); in other words, it is in H 6(Pj , Z)
and is not divisible.

5.11. Remark. Let Rg(C) be the moduli space of pairs (C,π), where C is a
smooth projective curve of genus g(C) and π : C̃ → C is an étale double cover.
We denote by

Pr : Rg(C) → Ag(C)−1

the Prym map associating to (C,π) the principally polarized Prym variety (P,�).

Let Bg(C) be the moduli space of bielliptic curves of genus g(C) ≥ 6, and
let RBg(C)

⊂ Rg(C) be the moduli space of étale double covers over them. Let
RBg(C),g(C1)

be those étale double covers such that C̃ → C → E has Galois group
Z2 × Z2 and the curve C1 has genus g(C1).



802 Andreas Höring

By [D1, Thm. 4.1(i)], the closure of Pr(RBg(C),1) in Ag(C)−1 contains the locus
of Jacobians of hyperelliptic curves of genus g(C)−1. A general hyperelliptic Ja-
cobian has the property that the cohomology class of every subvariety is an integral
multiple of the minimal class [Bis]. Hence the same property holds for a general
element in Pr(RBg(C),1). So if V 2 were reducible then the irreducible components
would have minimal cohomology class.

6. Prym Varieties of Bielliptic Curves, II

6.A. Tetragonal Construction and V 2

Denote by C an irreducible nodal curve of arithmetic genus pa(C) ≥ 6 and by
π : C̃ → C a Beauville admissible cover. By [B1], the corresponding Prym vari-
ety (P,�) is a principally polarized abelian variety. Suppose that C is a tetragonal
curve—that is, suppose there exists a finite morphism f : C → P1 of degree 4.
We set H := f ∗OP1(1). By Donagi’s tetragonal construction ([Do]; see also
[BiLa, Chap. 12.8]), the corresponding special subvarieties give Beauville admis-
sible covers C̃ ′ → C ′ and C̃ ′′ → C ′′ such that C ′ and C ′′ are tetragonal and the
Prym varieties are isomorphic to (P,�).

Consider now the residual line bundle KC ⊗H ∗. By Riemann–Roch, the linear
series |KC ⊗H ∗| is a gpa(C)−4

2pa(C)−6 to which we can apply the construction of special
subvarieties (cf. Section 5.A). If S ⊂ % is a connected component then, by [B3,
Thm. 1 and Rem. 4], the cohomology class of V := iC̃(S) is

[
2�3

3!

]
. Denote by

(P +,�+) the canonically polarized Prym variety; thus,

�+ = {L∈ (Nmπ)−1(KC) | |L| �= ∅, dim|L| ≡ 0 mod 2}.
Up to exchanging C̃ ′ and C̃ ′′, we can suppose that the image of the natural map

V × C̃ ′ → JC̃

is contained in P +. By construction, the image is then contained in �+; hence
a translate of −V is contained in the theta-dual T(C̃ ′). Since T(C̃ ′) equals the
Brill–Noether locus (V 2)′ of the covering C̃ ′ → C ′, it has cohomology class

[
2�3

3!

]
and the inclusion is a (set-theoretical) equality.

The preceding argument shows that the special subvariety V is isomorphic to
the Brill–Noether locus (V2)

′ of a tetragonally related covering. The following
technical lemma shows that this special subvariety is irreducible unless we are in
a very special situation.

6.1. Lemma. LetC be an irreducible nodal curve of arithmetic genuspa(C) ≥ 6,
and let π : C̃ → C be a Beauville admissible cover. Suppose that C is a tetrag-
onal curve but is not hyperelliptic, trigonal, or a plane quintic. Assume that the
normalization ν : T → C is a hyperelliptic curve, and denote by h : T → P1 the
hyperelliptic covering.

Denote by f : C → P1 the morphism of degree 4 and set H := f ∗OP1(1).
Suppose that the base locus of the linear system |KC ⊗ H ∗| does not contain
any points of Csing, and suppose that the special subvariety S corresponding to
|KC ⊗ H ∗| is reducible. Then the following claims hold.
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(a) There exist points p, q in the smooth locus Csm such that we have a two-to-one
cover

ϕ|H⊗OC(p+q)| : C → C̄ ⊂ P2

onto a singular plane cubic C̄. This morphism factors through the hyper-
elliptic covering; that is, we have a commutative diagram

T

h

��

ν �� C

ϕ|H⊗OC(p+q)|
��

P1 ν̄ �� C̄ .

(b) If x1, x2 ∈ T such that ν(x1) = ν(x2), then h(x1) = h(x2) unless C̄ is nodal
and h(x1) and h(x2) are mapped onto the unique node.

Proof. Since C is not a plane quintic, the linear system |KC ⊗ H ∗| is base point
free. By [B3, Sec. 2, Cor.] applied to the pull-back of the linear system to T, we
know that S is irreducible if the linear system |KC ⊗H ∗| induces a map f : C →
Ppa(C)−4 that is birational onto its image f(C). Suppose now that this is not the
case; then, for every generic point p ∈C, there exists another generic point q ∈C

such that

h0(C,KC ⊗ H ∗ ⊗ OC(−p − q)) = h0(C,KC ⊗ H ∗ ⊗ OC(−p)).
By Riemann–Roch, this equality implies that the linear system |H ⊗ OC(p + q)|
is a base point free g2

6 . Because C is not hyperelliptic, we obtain in this way a
1-dimensional subsetW ⊂W 2

6 C. Consider now the morphismϕ|H⊗OC(p+q)| : C →
C̄ ⊂ P2. Because C is irreducible and not trigonal, the curve C̄ is an irreducible
cubic or sextic curve.

Since H and H ⊗ OC(p + q) are base point free, it is easy to see that
|ν∗(H ⊗ OC(p + q))| is a g3

6 . Thus we have ν∗(H ⊗ OC(p + q)) 
 h∗OP1(3)
and a factorization ν̄ : P1 → C̄ such that ν̄ � h = ϕ|H⊗OC(p+q)| � ν.

In particular, ϕ|H⊗OC(p+q)| is not birational onto its image and C̄ is a singular
cubic. A look at the lemma’s commutative diagram shows that if x1, x2 ∈ T such
that ν(x1) = ν(x2), then h(x1) = h(x2) unless C̄ is nodal and h(x1) and h(x2)

are mapped onto the unique node.

Remark. For the sake of completeness we also consider the case where, in
Lemma 6.1, the normalization T is not hyperelliptic. In this case the pull-backs
ν∗(H ⊗ OC(p + q)) define a 1-dimensional subset W̃ ⊂ W 2

6 T. It follows from
[ACGH, p. 198] that T is bielliptic, and if h : T → E is a two-to-one map onto an
elliptic curve E then ν∗(H ⊗ OC(p + q)) 
 h∗L, where L ∈ Pic3 E. As before,
we have a factorization ν̄ : E → C ′, which is easily seen to be an isomorphism.
In particular, C is obtained from T by identifying points that are in a h-fibre.

6.B. The Irreducible Components of V 2

Let C ′ be a smooth curve of genus g(C) ≥ 6 that is bielliptic; in other words, we
have a double cover p ′ : C ′ → E onto an elliptic curve E. As usual, π ′ : C̃ ′ → C ′
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will be an étale double cover. We suppose that the morphism p ′ � π ′ : C̃ ′ → E

is not Galois (in the terminology of [D1; N], the covering belongs to the family
R′

Bg(C)
⊂ Rg(C); cf. Remark 5.11).

If we apply the tetragonal construction to a general g1
4 on C, the result is a

Beauville admissible cover π : C̃ → C such that the normalization ν : T → C

is a smooth hyperelliptic curve T of genus g(C) − 2. Denote by h : T → P1 the
hyperelliptic structure. Then ν identifies two pairs of points, x1, x2 and y1, y2, such
that h(x1),h(x2),h(y1),h(y2) are four distinct points in P1 (this follows from the
“figure locale” in [D1, 7.2.4]).

By [N, Chap. 15], a tetragonal structure on C can be constructed as follows.
There exists a unique double cover j : P1 → P1 sending each pair h(x1),h(x2)

and h(y1),h(y2) onto a single point. The four-to-one covering j � h : T → P1

factors through the normalization ν, so we have a four-to-one cover f : C → P1.

After applying the tetragonal construction toH := f ∗OP1(1), we recover the orig-
inal étale double cover π ′ : C̃ ′ → C ′. We have already seen in Section 6.A that
the Brill–Noether locus V 2 associated to π ′ is isomorphic to a special subvariety
associated to |KC ⊗ H ∗|.

Now, by considering the exact sequence

0 → ν∗(KT ⊗ ν∗H ∗) → KC ⊗ H ∗ → Cν(x1) ⊕ Cν(y1) → 0,

one sees easily that the linear system |KC ⊗ H ∗| is base point free yet does
not separate the singular points ν(x1) and ν(y1). Since the points h(x1),h(x2),
h(y1),h(y2) are distinct, it follows from Lemma 6.1 that the special subvarieties
are irreducible. Our final proposition summarizes these considerations.

6.2. Proposition. LetC ′ be a smooth curve of genus g(C ′) ≥ 6 that is bielliptic
(i.e., we have a double cover p ′ : C ′ → E onto an elliptic curveE). Let π ′ : C̃ ′ →
C ′ be an étale double cover such that the cover C̃ ′ → E is not Galois. Then V 2

is irreducible.

7. Proof of Theorem 1.2

If V 2 is reducible then, by Corollary 3.6, C is trigonal, a plane quintic, or biellip-
tic. The first two cases are settled in Sections 4.B and 4.C, respectively. If C is
bielliptic, we distinguish two cases depending on whether or not the four-to-one
cover C̃ → C → E is Galois. In the Galois case we conclude by Corollary 5.7
and Proposition 5.9; otherwise, we use Proposition 6.2.
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