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Moduli Spaces of Curves and Cox Rings

David Bourqui

1. Introduction

Let k be a field, X a smooth projective geometrically irreducible k-variety, and
C a smooth projective geometrically irreducible k-curve of genus gC. Let
KX be the canonical class of X. For every element y of the dual NS(X)∨ of
the Néron–Severi group of X, let Mor(C,X, y) denote the quasi-projective k-
variety parameterizing the morphisms f : C → X such that [f∗C ] = y. By [De,
Sec. 2.11], every irreducible component of Mor(C,X, y) has dimension at least
(1 − gC) dim(X) + 〈y,−KX〉. The latter quantity will be referred to as the ex-
pected dimension of Mor(C,X, y). It is a natural though difficult question to ask
for the number and dimension of the irreducible components of Mor(C,X, y).
Works addressing this question for specific families of varieties include [Ca; CS;
dJS; HRS1; HRS2; KLO; KP; Pe; T].

In this paper we study the question using the so-called Cox ring ofX, restricting
ourselves to a class of varieties whose Cox ring has an especially simple presenta-
tion. It is known, at least when C is rational, that the Cox ring of a toric variety X
provides a useful description of the moduli spaces Mor(C,X, y) [Ba; Bo3; G].
Toric varieties may be characterized by the fact that their Cox ring is a polynomial
ring; hence they are the simplest varieties from the viewpoint of the description of
the Cox ring.

Here we consider varieties whose Cox ring may be presented by only one equa-
tion, which has moreover a kind of linearity property with respect to a certain subset
of variables (see Definitions and Notation 2.1for more precision). We will call such
varieties linear intrinsic hypersurfaces (the terminology intrinsic hypersurface is
borrowed from [BHau]). Let Mor(C,X, y)◦ denote the open set of Mor(C,X, y)
consisting of those morphisms that do not factor through the boundary—in other
words, the union of the divisors of the sections used to present the Cox ring.

Our main result reads as follows (see Theorem 2.4 for a more precise statement).

Theorem 1.1. LetX be smooth projective Q-variety that is a linear intrinsic hy-
persurface. Assume that certain rational combinatoric series derived from the
equation of the Cox ring fulfill some explicit analytic properties. Let C be a
smooth projective geometrically irreducible Q-curve. For every y ∈NS(X)∨ lying
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in an explicit truncation of an explicit subcone of the dual of the effective cone,
Mor(C,X, y)◦ is irreducible of the expected dimension and dense in Mor(C,X, y).

By explicit we mean explicit in terms of the data describing the Cox ring and the
genus of the curve. A truncation of a polyedral cone C is a subpolyhedron of C de-
fined by a finite number of affine inequalities 〈x, ·〉 ≥ a, where x lies in the dual
of C and a is nonnegative. We emphasize that the needed properties of the combi-
natoric series alluded to in the theorem’s statement can be checked by a computer
algebra system once we have at our disposal an effective presentation of the Cox
ring of X.

The basic strategy of the proof will be to count the number of points of the re-
duction of Mor(C,X, y) modulo primes p with values in Fp-extensions of large
degree. We are thus reduced to a situation akin to the one encountered in the con-
text of Manin’s conjecture about the asymptotical behavior of curves of bounded
degree, and we apply techniques similar to those used in [Bo1; Bo2; Bo4]. The
main difference is that in this paper we fix the degree y and look at the asymptotic
behavior of the number of points with value in an Fp-extension of large degree
whereas, in the context of Manin’s conjecture, the Fp-extension is fixed and the
degree y becomes large. Our varieties are assumed to be defined over Q for the
sake of simplicity and because all our examples of applications are, but by stan-
dard arguments the strategy could be applied over any field.

By the same method one can show the following theorem about toric varieties.
We do not include the proof here because it is strongly similar to the one used in
the case of a linear intrinsic hypersurface—as well as technically easier given that,
in the toric case, the Cox ring has “no equation”.

Theorem 1.2. LetX be a smooth projective split toric variety. Let C be a smooth
projective geometrically irreducible Q-curve. For every y lying in an explicit trun-
cation of the dual of the effective cone, Mor(C,X, y)◦ (the open set parameterizing
those morphisms that do not factor through the complement of the open orbit ) is
irreducible of the expected dimension and dense in Mor(C,X, y).

In case C = P1, that Mor(C,X, y)◦ is irreducible of the expected dimension was
proved in [Bo3].

At the end of the paper we give examples of linear intrinsic hypersurfaces for
which Theorem 1.1 applies for a “positive proportion” of y (see Remark 2.6). One
family of examples is drawn from [Bo4] and the other from Derenthal’s list [D] of
the minimal resolutions of those singular del Pezzo surfaces with a Cox ring that
is presented by one equation. We will compare our results with those of [KLO],
whose authors deal with the case of blow-ups of projective spaces.

The paper proceeds as follows. In Section 2, after introducing and defin-
ing the necessary objects, we state a more explicit version of our main result
(Theorem 2.4). In Section 3 we recall some well-known facts about the connec-
tion between dimension and number of points in the reduction modulo a prime p.
In Section 4 we recall from [Bo2] the expression for the number of points of
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Mor(C,X, y) over a finite field in terms of a presentation of the Cox ring. Sec-
tion 5 is devoted to some technical lemmas, and in Section 6 we prove the main
theorem. Finally, in Section 7 we give examples of applications.

I thank Bumsig Kim for answering questions about [KLO]. I also thank the
referee for helpful remarks.

2. Statement of the Result

Definitions and Notation 2.1. LetX be a smooth projective Q-variety whose
geometric Picard group is free and of finite rank with a trivial Galois action. Let
Eff(X)be the effective cone ofX.Assume, moreover, thatX is a Mori dream space;
in other words, the Cox ring Cox(X) of X (cf. e.g. [Has]) is finitely generated.

Let (si)i∈I be a finite family of nonconstant global sections generating the Cox
ring, and let E i be the divisor of si . The divisors {E i}i∈I span Eff(X). Later on,
when considering a Mori dream spaceX, we shall always assume that such a fam-
ily of sections has been chosen.

Let C be a smooth projective geometrically irreducible Q-curve and let y ∈
NS(X)∨. We define a partition of Mor(C,X, y) into locally closed subsets
{Mor(C,X, y, I∗)}I∗⊂I as follows: a morphism ϕ lies in Mor(C,X, y, I∗) if and
only if I∗ is the set of indices i ∈ I such that ϕ does not factor through E i . Thus
Mor(C,X, y, I) is the open subset Mor(C,X, y)◦ of Mor(C,X, y) parameterizing
those morphisms C →X that do not factor through the boundary

⋃
i∈I E i .

Let IX,I denote the kernel of the morphism k[xi]i∈I → Cox(X) that maps xi
to si . This kernel is homogeneous with respect to the natural Pic(X)-grading on
k[xi]. Let I hom

X,I denote the set of the homogeneous elements of IX,I.

Definition 2.2. With notation as before, a Mori dream space X is said to be
an intrinsic hypersurface if IX,I is principal. Let I be a subset of I. The Mori
dream spaceX is said to be a linear intrinsic hypersurface with respect to the pair
(I, I ) if the classes of {E i}i∈I form a basis of Pic(X) and if IX,I is principal, with
generator a linear form with respect to the variables {xi}i /∈I , whose coefficients
are pairwise coprime monomials in the {xi}i∈I . Thus a generator of IX,I may be
written as ∑

j∈I\I
αj xj

∏
i∈I
x
bi,j
i , (αj )∈ kI\I, (bi,j )∈NI×(I\I ), (2.1)

where the sets Ij = {i ∈ I, bi,j �= 0} are pairwise disjoint. The degree of the gen-
erator will be denoted by D tot; thus, D tot lies in Pic(X).

Examples of linear intrinsic hypersurfaces will be given in Section 7.

Remark 2.3. If X is a linear intrinsic hypersurface with respect to (I, I ), then
dim(X) = [I \ I ] − 1. Moreover, by [BHau, Prop. 8.5] there is an adjunction
formula that allows us to compute the class of the canonical sheaf:

−KX =
∑
i∈I

E i −D tot. (2.2)
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Let X be a Mori dream space and let y ∈ NS(X)∨. Since the divisors {E i}i∈I

span Eff(X), if y does not lie in Eff(X)∨ then Mor(C,X, y, I) is empty; that is,
every morphism of degree y has its image contained in the boundary. We are not
interested in this kind of degeneracy and thus shall always assume that y lies in
Eff(X)∨. Let I∗ be a proper subset of I such that

⋂
i /∈I∗ E i is nonempty. For every

ϕ ∈ Mor(C,X, y, I∗) and j ∈ I∗ such that Ej does not meet
⋂
i /∈I∗ E i, one must

have ϕ∗Ej = 0 and so 〈y, Ej〉 = 0. We will say that y satisfies the degeneracy con-
dition for I∗ if the latter equalities hold; it is thus a necessary condition for the
nonemptiness of Mor(C,X, y, I∗).

We can now state a more explicit version of Theorem 1.1.

Theorem 2.4. With notation as before, assume thatX is a linear intrinsic hyper-
surface with respect to (I, I ) (cf. Definition 2.2). Let C be a smooth projective
geometrically irreducible Q-curve of genus gC. Let y ∈ Eff(X)∨ satisfy the nu-
merical inequality〈

y,
1

[I \ I ]− 1

∑
j∈I\I

Ej −D tot

〉
≥ Sup

(
1,

4

[I \ I ]− 1

)
gC dim(X). (2.3)

(1) Suppose Assumptions 5.7 hold for (I, I ). Then Mor(C,X, y, I) is irreducible
of the expected dimension.

(2) Let I∗ be a proper subset of I such that
⋂
i /∈I∗ E i is nonempty. Assume that

y fulfills the degeneracy condition for I∗ and that the numerical inequalities

〈y, E i〉 ≥ gC ∀i ∈ I \ I∗ (2.4)

hold. In case I \ I ⊂ I∗ , suppose moreover that Assumptions 5.7 hold for
(I∗ , I ) and that at least one of the inequalities in (2.4) is strict. Then

dim(Mor(C,X, y, I∗)) < (1− gC) dim(X)+ 〈y,−KX〉. (2.5)

Remark 2.5. We still postpone the description of Assumptions 5.7, which are
the conditions on the combinatoric series alluded to in Theorem 1.1 but are techni-
cally somewhat cumbersome. It would naturally be desirable to omit them from
the statement—or at least to relax them or reinterpret them in a more conceptual
way. Doing so would allow us (a) to avoid the use of a computer algebra system
and (b) to cover more cases of linear intrinsic hypersurfaces. (There are a few ex-
amples in Derenthal’s list [D] for which the assumptions fail; see Section 7.)

Remark 2.6. The subcone of Eff(X)∨ in the statement of Theorem 1.1 is thus
the dual of the cone generated by the effective cone and 1

[I\I ]−1

∑
j∈I\I Ej −D tot.

Let us denote this subcone by CI and denote by C̃ the union of all the CI for which
X is a linear intrinsic hypersurface with respect to (I, I ) and such that Assump-
tions 5.7 hold.

The result will be optimal if C̃ coincides with the dual of the cone generated by
the effective cone and −KX and hence coincides with Eff(X)∨ when −KX lies
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in Eff(X) (thus, in the toric case, the result of Theorem 1.2 is optimal). In Sec-
tion 7 we give examples of linear intrinsic hypersurfaces for which the result is
either optimal or holds for a “positive proportion” of y; that is, CI is of maximal
dimension for at least one choice of I.

3. Reduction Modulo p

The following lemma is a standard application of the Weil conjectures (proved by
Deligne).

Lemma 3.1. Let X be a Q-variety. If p is a prime and r a positive integer, we
denote by X(Fpr) the set of Fpr -points of the reduction of X modulo p, which is
well-defined up to a finite number of primes. Assume that there exists an integer
D and a positive integer N such that, for almost all primes p,

lim
r→+∞ p

−rD[X(Fpr)] = N (3.6)

and (respectively)
lim
r→+∞ p

−rD[X(Fpr)] = 0. (3.7)

In the first case one has dim(X) = D, every irreducible component of X with di-
mension dim(X) is geometrically irreducible, and there are N such irreducible
components. In the second case, dim(X) < D.

4. Counting Morphisms Using a Presentation
of the Cox Ring

We retain our previous notation; until otherwise specified, X is only assumed to
be a Mori dream space. If Y is a Q-variety and p a prime number then we denote
by Yp the Fp-variety obtained by reducing Y modulo p, which is well-defined up
to a finite number of primes.

Let Cinc be the class of subsets I∗ of I such that
⋂
i /∈I∗ E i �= ∅. Let TNS(X)

def=
Hom(Pic(X), Gm). There exists a TNS(X)-invariant morphism

π : TX
def= Spec(Cox(X)) ∩

⋃
I∗∈C inc

{ ∏
i∈I∗

xi �= 0

}
→ X (4.8)

that makes TX an X-torsor under TNS(X) (cf. [Bo4, Sec. 2.2]). For almost all
primes p, (4.8) reduces to an Xp-torsor πp : TX,p →Xp under TNS(Xp).

Let I∗ ∈ Cinc. We shall later give a formula (equation (4.20)) for the number of
points in the reduction of Mor(C,X, y, I∗) modulo a prime p. First we must in-
troduce some definitions and notation. In order to motivate them, let us briefly
sketch how (4.20) is obtained. Using the torsor (4.8) and adapting a proof of
Cox (who addressed the toric setting in [Cox]), one can show that the map ϕ ∈
Mor(C,X, y, I∗) �→ {(ϕ∗OX(E i ),ϕ∗si)}i∈I induces a one-to-one correspondence
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between the set of points of Mor(C,X, y, I∗) and the set of TNS(X)-orbits of iso-
morphism classes of families {(Li, ui)}i∈I, where Li is a line bundle on C and ui
is a global section of Li, such that:

• ui is the zero section if and only if i /∈ I∗;
• for every (ai)∈ZI such that

∑
aiE i ∼ 0, the line bundle

⊗
i∈I L ⊗ai

i is trivial;
• for every F ∈I hom

X,I , we have F((ui)i∈I) = 0; and
• the sections

{∏
i∈K ui

}
K∈C inc

do not vanish simultaneously, or (what amounts

to the same thing as regards the first condition) the intersection of the supports
of the divisors

{∑
i∈K div(ui)

}
K⊂I∗,K∈C inc

is empty.

We refer to [Bo2, Thm. 1.11] for a more precise statement. Now let

I◦∗
def=

{
i ∈ I∗ , E i ∩

⋂
j /∈I∗

Ej �= ∅
}
. (4.9)

Thus y ∈Eff(X)∨∩NS(X)∨ satisfies the degeneracy condition for I∗ if 〈y, E i〉 =
0 for every i ∈ I∗ \I◦∗. One sees that the last listed condition on the data {(Li, ui)}
is equivalent to the emptiness of the intersection of the supports of the divisors:{∑

i∈K

div(ui)

}
K⊂I◦∗,K∪(I∗\I◦∗)∈C inc

. (4.10)

We will perform a Möbius inversion in order to remove the conditions on the in-
tersection of the supports.

Definitions and Notation 4.1. Let I∗ ∈ Cinc. Letµ◦
X,I◦∗ : NI◦∗ → Z be defined

recursively by

∀n∈NI◦∗ ,
∑

0≤m≤n

µ◦X,I◦∗ (m) =




1 if Inf
K⊂I◦∗

K∪(I∗\I◦∗)∈C inc

(∑
i∈K

ni

)
= 0,

0 otherwise.

(4.11)

Remark 4.2. For i ∈ I◦∗ one has I∗ \ {i} ∈ Cinc. By definition, then, for n∈NI◦∗

one has µ◦
X,I◦∗ (n) = 0 as soon as

∑
i∈I◦∗ ni = 1.

For almost all primes p and every positive integer r, let Cp,r
def= Cp⊗Fpr . Let C (0)

p,r

be the set of closed points of Cp,r , let Div(Cp,r ) be the group of its divisors, and
let Diveff(Cp,r ) be the monoid of its effective divisors. For P ∈C (0)

p,r and n ∈NI◦∗

we set
µX,I◦∗,p,r ((niP )i∈I◦∗ )

def= µ◦X,I◦∗ (n). (4.12)

By additivity, we extend µX,I◦∗,p,r to a function Diveff(Cp,r )
I◦∗ → Z; this is the

unique function satisfying, for all D∈Diveff(Cp,r )
I◦∗ ,

∑
0≤E≤D

µX,I◦∗,p,r (E) =




1 if Inf
K⊂I◦∗

K∪(I∗\I◦∗)∈C inc

(∑
i∈K

Di

)
= 0,

0 otherwise.

(4.13)
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Definitions and Notation 4.3. We retain the notation described previously.
For j ∈ I \ I, write Ej =∑

i∈I ai,jE i with (ai,j )∈ZI .
Let I∗ ∈ Cinc. Let p be a sufficiently large prime and r a positive integer. Abus-

ing notation, we let Pic◦(Cp,r ) denote a set of representatives in Div(Cp,r ) of
Pic◦(Cp,r ). We fix a degree-1 divisor d1 in Div(Cp,r ). For y ∈Eff(X)∨ ∩NS(X)∨
satisfying the degeneracy condition for I∗ and for D ∈ Diveff(Cp,r )

I◦∗∩I, E ∈
Div(Cp,r )

I◦∗ , E∈ Pic◦(Cp,r )
I\I∗ , and K1,K2 ⊂ I∗ \ I, let

N(y, I∗ , I,K1,K2,p, r, E, D, E) (4.14)

denote the cardinality of the set of the elements (tj )j∈I∗\I of the product

∏
j∈I◦∗\I

H ◦
(

Cp,r , OC

(
−Ej +

∑
i∈I◦∗∩I

ai,j(Di + Ei )+
∑
i∈I\I∗

ai,j(Ei + d1〈y, E i〉)
))

×
∏

j∈I∗\(I◦∗∪I )
H ◦(Cp,r , OC) (4.15)

that satisfy

tj �= 0 ∀j ∈K1, tj = 0 ∀j ∈K2, (4.16)

and

F((sDi
sEi )i∈I∗∩I , 0, . . . , 0, (tj sEj )j∈I∗\I , 0, . . . , 0) = 0 ∀F ∈I hom

X,I ; (4.17)

here we have set sDi
= sEi = sEj = 1 for i ∈ I ∩ (I∗ \ I◦∗) and j ∈ I∗ \ (I ∪ I◦∗).

For every subset K of I∗ \ I we set

N(y, I∗ , I,K,p, r)
def=

∑
E∈Diveff(Cp,r )

I◦∗
deg(Ei)≤〈y,E i〉, i∈I◦∗

µX,I◦∗,p,r (E)

×
∑

E∈Pic◦(Cp,r )I\I∗
D∈Diveff(Cp,r )

I◦∗∩I
deg(Di )=〈y,E i〉−deg(Ei), i∈I◦∗∩I

N(y, I∗ , I,∅,K,p, r, E, D, E). (4.18)

Lemma 4.4. With notation as before, let y ∈ Eff(X)∨ ∩ NS(X)∨ and I∗ ∈ Cinc.

Assume that y satisfies the degeneracy condition for I∗. Then, for almost all primes
p and every positive integer r,

[Mor(C,X, y, I∗)(Fpr)] =
∑

K⊂I∗\I
(−1)|K|N(y, I∗ , I,K,p, r). (4.19)

Proof. For almost all primesp, there is a natural isomorphism NS(X) ∼−→NS(Xp)
and Mor(C,X, y, I∗)p is isomorphic to Mor(Cp,Xp, y, I∗). Thus from [Bo2, Sec.
1.2, Sec. 1.3] we have
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[Mor(C,X, y, I∗)(Fpr)]

=
∑

E∈Diveff(Cp,r )
I◦∗

deg(Ei)≤〈y,E i〉, i∈I◦∗

µX,I◦∗,p,r (E)

×
∑

E∈Pic◦(Cp,r )I\I∗
D∈Diveff(Cp,r )

I◦∗∩I
deg(Di )=〈y,E i〉−deg(Ei), i∈I◦∗∩I

N(y, I∗ , I, I∗ \ I,∅,p, r, E, D, E) (4.20)

and thus the result follows by inclusion-exclusion. Strictly speaking, in [Bo2]
only the case I∗ = I is extensively treated; however, the general case may be ad-
dressed in the same way.

Theorem 2.4 follows immediately from Lemma 3.1, Lemma 4.4, and the next
proposition. Recall that, according to deformation theory, every irreducible com-
ponent of Mor(C,X, y) has dimension greater than or equal to the expected di-
mension (1− gC) dim(X)+ 〈y,−KX〉.
Proposition 4.5. With notation as before, assume that X is a linear intrinsic
hypersurface with respect to (I, I ) (cf. Definition 2.2). Let C be a smooth projec-
tive geometrically irreducible Q-curve of genus gC and let y ∈ Eff(X)∨. Assume
that y fulfills the numerical inequality〈

y,
1

[I \ I ]− 1

∑
j∈I\I

Ej −D tot

〉
≥ Sup

(
1,

4

[I \ I ]− 1

)
gC dim(X). (4.21)

(1) For every nonempty subset K of I \ I,
lim
r→∞p

−r[(1−gC) dim(X)+〈y,−KX〉]N(y, I, I,K,p, r) = 0. (4.22)

(2) Let I∗ ∈ Cinc be such that y satisfies the degeneracy condition for I∗. Let K
be a subset of I∗ \ I. Assume that I∗ \ I is a proper subset of I \ I or thatK
is nonempty, and assume that y satisfies the numerical inequalities

〈y, E i〉 ≥ gC ∀i ∈ I \ I∗. (4.23)

Then

lim
r→∞p

−r[(1−gC) dim(X)+〈y,−KX〉]N(y, I∗ , I,K,p, r) = 0. (4.24)

(3) Let I∗ be an element of Cinc such that I \ I ⊂ I∗ and y satisfies the degener-
acy condition for I∗. Assume, moreover, that Assumptions 5.7 hold for (I∗ , I )
and that y satisfies the numerical inequalities

〈y, E i〉 ≥ gC ∀i ∈ I \ I∗. (4.25)

In case I∗ is a proper subset of I, assume that at least one of these inequali-
ties is strict. Then

lim
r→∞p

−r[(1−gC) dim(X)+〈y,−KX〉]N(y, I∗ , I,∅,p, r) =
{

1 if I∗ = I,

0 otherwise.
(4.26)
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Our task is now to prove Proposition 4.5. The next section contains some prelim-
inary technical lemmas that will be needed during the proof.

5. Technical Lemmas

The following lemma is a slight variation of [Bo4, Lemme 12] but with an identi-
cal proof.

Lemma 5.1. Let n be a positive integer, ρ > 1 a real number, and (ad) ∈ CNn.

Assume that the series F(t)
def= ∑

d∈Nn ad t
d converges absolutely on a polydisc

of multi-radius (ρ−1+ν, . . . , ρ−1+ν) with ν > 0. For every positive real number η
such that η < ρ−1+ν, denote by ‖F‖η the quantity Sup|t1|=···=|tn|=η|F(t)|.

Define (bd)∈CNn by
∑
d∈Nn

bd t
d def= F(t)

(1− ρt1) · · · (1− ρtn) . (5.27)

Then, for every ε > 0 such that ε < ν, for all d ∈Nn we have

|bd | ≤ 1+ nρ−ε
(1− ρ−ε)n ‖F‖ρ−1+ερ|d| (5.28)

and

|bd − F(ρ−1, . . . , ρ−1)ρ|d|| ≤ ρ−ε

(1− ρ−ε)n ‖F‖ρ−1+ε
∑

1≤i≤n
ρ(1−ε)di+

∑
j �=i dj. (5.29)

Lemma 5.2. Let p be a sufficiently large prime number. For v ∈ C (0)
p,r denote

by fv the degree of the extension κv/Fpr , where κv is the residue field at v. Let
θ : N>0 × N>0 → R≥0 be an application such that there exist C ≥ 0 and η > 0
satisfying

θ(r, f ) ≤ Cp−rf(1+η) ∀(r, f )∈N>0 × N>0. (5.30)

Then
lim
r→∞

∏
v∈C

(0)
p,r

[1+ θ(r, fv)] = 1. (5.31)

Proof. Since

[{v ∈C (0)
p,r , fv = f }] ≤ [C(Fprf )]s = prf + O

f→+∞(p
rf/2), (5.32)

we have

[1+ θ(r, f )][{v∈C
(0)
p,r,fv=f }] ≤ exp

[
Cp−rfη + O

f→+∞(p
rf(−1/2+η))

]
; (5.33)

hence the result follows by dominated convergence.

Lemma 5.3. Let I∗ ∈ Cinc, r ∈N, and d ∈RI◦∗ . We set

-(I∗ ,p, r, d )
def=

∑
E∈Diveff(Cp,r )

I◦∗

|µX,I◦∗,p,r (E)|p−r
∑
i∈I◦∗ di deg(Ei). (5.34)
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Assume that, for every e∈{0,1}I◦∗ such thatµ◦
X,I◦∗ (e) �= 0, one has

∑
i∈I◦∗ diei >1.

Then
lim
r→+∞-(I∗ ,p, r, d ) = 1. (5.35)

Proof. -(I∗ ,p, r, d )− 1 is nonnegative and bounded from above by

−1+
∏
v∈C

(0)
p,r

∑
e∈{0,1}I◦∗

|µ◦X,I◦∗ (e)|p−rfv
∑
i∈I◦∗ diei, (5.36)

and one can conclude by using Lemma 5.2.

Remark 5.4. By Remark 4.2, the assumption on d holds, for example, if di > 1
2

for all i.

The following crucial lemma gives an estimate of the number of sections satis-
fying the equation of the Cox ring of a linear intrinsic hypersurface. It follows
easily from [Bo4, Prop. 14], whose proof rests on elementary linear algebra and
the Riemann–Roch theorem for curves.

Lemma 5.5. With notation as before, assume that X is a linear intrinsic hyper-
surface with respect to (I, I ) (cf. Definition 2.2). Let I∗ ∈ Cinc and let

y ∈ Pic(X)∨ ∩ Eff(X)∨

satisfy the degeneracy condition for I∗. Let E∈Pic◦(Cp,r )
I\I∗ , E∈Diveff(Cp,r )

I◦∗ ,
and D∈Diveff(Cp,r )

I◦∗∩I such that deg(Di ) = 〈y, E i〉−deg(Ei ) for all i ∈ I◦∗ ∩ I.
We set Di = Ei = Ej = 0 for i ∈ I \ I◦∗ and j ∈ I∗ \ (I◦∗ ∪ I ).
(1) Let K ⊂ I∗ \ I, and let (αj )j∈I∗\(I∪K) be nonnegative real numbers such that∑

αj = 1. Then

logpr [N(I, I,∅,K,p, r, E, D, E)]

≤ [I∗ \ (I ∪K)]− 1+
∑

j∈I∗\(I∪K)
(1− αj )(〈y, Ej〉 − deg(Ej )). (5.37)

(2) Assume that I \ I ⊂ I∗. Then either

logpr [N(I∗ , I,∅,∅,p, r, D, E)]

≤ [I \ I ]− 1+
〈
y,−D tot +

∑
j∈I\I

Ej

〉
−

∑
j∈I\I

deg(Ej )

+ deg

[
inf
j∈I\I

( ∑
i∈I∗∩I

bi,j(Ei +Di )+ Ej

)]
(5.38)

or

logpr [N(I∗ , I,∅,∅,p, r, D, E)]

≤ [I \ I ]− 2+
(

1− 1

[I \ I ]− 1

) ∑
j∈I\I

(〈y, Ej〉 − deg(Ej )). (5.39)
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(3) Assume that I \ I ⊂ I∗ , and assume there exists a numbering of I \ I such
that, for all 1 ≤ j ≤ [I \ I ]− 1,

〈y, Ej + Ej+1−D tot〉 ≥ deg(Ej )+ deg(Ej+1)+ 2gC − 1. (5.40)

Then it follows that

logpr [N(I∗ , I,∅,∅,p, r, D, E)]

= ([I \ I ]− 1)(1− gC)+
〈
y,−D tot +

∑
j∈I\I

Ej

〉
−

∑
j∈I\I

deg(Ej )

+ deg

[
inf
j∈I\I

( ∑
i∈I∗∩I

bi,j(Ei +Di )+ Ej

)]
. (5.41)

Next we introduce some combinatoric series derived from the Cox ring equation
of a linear intrinsic hypersurface. We assume that X is a linear intrinsic hyper-
surface with respect to (I, I ) (cf. Definition 2.2). Let I∗ be an element of Cinc such
that I \ I ⊂ I∗. For e ∈NI◦∗ , we set

F(I∗ , I, e, ρ, t)

def=
∑

d∈NI◦∗∩I
ρ

Infj∈I\I (ej+
∑
i∈I◦∗∩I bi,j (di+ei ))t d ∈ k[[ρ, (ti)i∈I◦∗∩I ]] (5.42)

(where ej = 0 for j /∈ I ∪ I◦∗) and

F̃(I∗ , I, e, ρ, t)
def=

( ∏
i∈I◦∗∩I

1− ti
)
F(I∗ , I, e, ρ, t). (5.43)

Remark 5.6. Recall that the sets Ij = {i ∈ I, bi,j �= 0} are assumed to be pair-
wise disjoint. Let m be the lowest common multiple of the bi,j that are positive.
After partitioning NI◦∗∩I in accordance with the various remainders of the di mod-
ulo m/bi,j for i ∈ Ij , one sees easily that F(I∗ , I, e, ρ, t) is rational; in fact, it
is possible to obtain thereby an explicit formula that allows for calculations by a
computer algebra program. Arguing as in the proof of [Bo4, Prop. 57], one can
show that ∏

(ij )∈
∏
j∈I\I Ij

(
1− ρm

∏
t
m/bij,j

i

) ∏
i∈I
(1− ti)F(I∗ , I, e, ρ, t) (5.44)

is a polynomial with explicitly bounded degrees in the ti; however, this approach
does not seem well suited to computational purposes.

Let us write F̃(I∗ , I, e, ρ, t) =∑
d∈NI◦∗∩I P(I∗ , I, e, ρ)d t d , where P(I∗ , I, e, ρ)d

is polynomial with respect to the variable ρ. We need the following assumptions
on the series F̃(ρ, I∗ , I, e, t).

Assumptions 5.7. (1) For every sufficiently small η > 0 and every d �= 0,

(1− η)|d| ≥ 1+ η + degρ P(I∗ , I, 0, d, ρ). (5.45)
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(2) For every e ∈ {0,1}I◦∗ one can write

F̃(I∗ , I, e, ρ, t) =
(

1+
∑
d �=0

Q(I∗ , I, e, ρ)d t
d

)
R(I∗ , I, e, ρ, t), (5.46)

whereQ(I∗ , I, e, ρ)d is polynomial with respect to ρ and R(I∗ , I, e, ρ, t) is poly-
nomial with respect to ρ and t . Moreover, for every sufficiently small η > 0 and
every d �= 0,

(1− η)|d| ≥ 1+ η + degρ Q(I∗ , I, e, ρ)d . (5.47)

(3) For e ∈NI◦∗ , letR(I∗ , I, e, ρ)d denote the coefficient of t d inR(I∗ , I, e, ρ, t)
and set

C(I∗ , I, e)
def= Sup

d∈NI◦∗∩I
R(I∗,I,e,ρ)d �=0

[degρ R(I∗ , I, e, ρ)d − |d|]. (5.48)

Then, for all e ∈ {0,1}I◦∗ \ {(0, . . . , 0)},
µ◦X,I◦∗ (e) �= 0  ⇒ C(I∗ , I, e)− |e| ≤ −2. (5.49)

Remark 5.8. From (5.42) and (5.43) we see immediately that, for every d, the
ρ-polynomial P(I∗ , I, e, ρ)d has at most [I◦∗ ∩ I ] nonzero coefficients, whose ab-
solute values are bounded by [I◦∗ ∩ I ].

Moreover, if Assumption 5.7(2) holds then, for every e ∈ {0,1}I∗ and letting
D(I∗ , I, e) denote the degree with respect to t of R(I∗ , I, e, ρ, t), it is straightfor-
ward to check that, for every sufficiently small η > 0, the degree with respect to
ρ of P(I∗ , I, e, ρ)d is bounded by |d|(1− η)+ C(I∗ , I, e)+ ηD(I∗ , I, e).

Hence if Assumptions 5.7(1) and 5.7(2) both hold, then letting p denote a suf-
ficiently large prime and setting

c(I∗ , I,p, η)
def= [I◦∗ ∩ I ]2

[ ∏
i∈I◦∗∩I

1

1− p−η/2
− 1

]
, (5.50)

for all positive integers r and f and every sufficiently small η > 0 one has

‖−1+ F̃(prf , I∗ , I, 0, t)‖pr(−1+η/2) ≤ c(I∗ ,p, η).prf(−1−η) (5.51)

and, for every e ∈ {0,1}I◦∗ ,
‖F̃(prf , I∗ , I, e, t)‖pr(−1+η/2) ≤ c(I∗ , I,p, η).prf [C(I∗,I,e)+ηD(I∗,I,e)]. (5.52)

In particular, for every sufficiently small η > 0 there exists a positive integer Rη
such that, for all r ≥ Rη and all f ,

Inf
|t1|=···=|tn|=pr(−1+η/2)

|F̃(prf , I∗ , I, 0, t)| ≥ 1

2
. (5.53)

6. Proof of the Main Theorem

In this section we prove Proposition 4.5—and hence also Theorem 2.4, as remarked
before the statement of the proposition.
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Let p be a sufficiently large prime number. Thanks to the Riemann hypothesis
for abelian varieties, one has

[Pic◦(Cp,r )] ∼
r→+∞p

rgC. (6.54)

We write the Hasse–Weil zeta function of Cp,r as
Pp,r (t)

(1−t)(1−pr t) . By the Riemann hy-
pothesis for curves, there exists a positive constant c depending only on gC and
such that, for every t satisfying |t | < p−r/2,

|Pp,r (t)| ≤ 1+ c|t |pr/2. (6.55)

From this one easily deduces that, for every sufficiently small positive ε,

lim sup
r→+∞

∥∥∥∥Pp,r (t)

1− t
∥∥∥∥
pr(−1+ε)

≤ 1. (6.56)

Let us denote by N(p, r, d) the cardinality of {D∈Diveff(Cp,r ), deg(D) = d}.
From Lemma 5.1 we obtain that, for every sufficiently large r,

N(p, r, d) ≤ 2prd. (6.57)

In what follows we shall ease the notation by systematically dropping the indices
y, I∗ , I, and p from the name of the previously introduced functions, since they
may be assumed to remain fixed throughout the proof. Also, we use hp,r to denote
the cardinality of [Pic◦(Cp,r )]. By (6.54), if I∗ is a subset of I such that (4.25)
holds then

lim
r→+∞h

[I\I∗]
p,r p−r

∑
i∈I\I∗〈y,E i〉

=
{

0 if at least one of the inequalities in (4.25) is strict,

1 otherwise.
(6.58)

We first prove part (1) of the proposition. Here I∗ = I and we set

N2(r, (βj )j∈I\I )
def=

∑
E∈Diveff(Cp,r )

I

deg(Ei)≤〈y,E i〉, i∈I

|µX,r (E)|pr[[I\I ]−2+∑
j∈I\I (1−βj )(〈y,Ej〉−deg(Ej))]

×
∏
i∈I

N(r, 〈y, E i〉 − deg(Ei )). (6.59)

Let K be a nonempty subset of I \ I and let j0 ∈K. From (5.37) we deduce the
inequality

N(K, r) ≤ N2

(
r,

(
1

[I \ I ]− 1

)
j �=j0

, (1)j0

)

≤ N2

(
r,

(
1

[I \ I ]− 1

)
j∈I\I

)
. (6.60)

Recall from Remark 2.3 that dim(X) = [I \ I ]−1 and−KX =∑
i∈I E i −D tot.

Thus, thanks to (6.57), for r large enough one has the inequality
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p−r[(1−gC) dim(X)+〈y,−KX〉]N2

(
r,

(
1

[I \ I ]− 1

)
j∈I\I

)

≤ 2[I ]p
r[gC dim(X)−1−〈y,∑j∈I\I 1

[I\I ]−1
Ej−Dtot〉]

×-
(
r, (1)i∈I ,

(
1− 1

[I \ I ]− 1

)
j∈I\I

)
. (6.61)

Owing to (4.21), (6.54), Lemma 5.3, and Remark 5.4, we obtain

lim
r→∞p

−r[(1−gC) dim(X)+〈y,−KX〉]N(K, r) = 0, (6.62)

thus proving part (1) of Proposition 4.5.
Next we prove part (2). Let I∗ be a subset of I such that I∗ \ I is a nonempty

proper subset of I\I andK ⊂ I∗ \I. Then N(K, r) ≤ N(∅, r). Arguing as before,
we obtain the inequality

p−r[(1−gC) dim(X)+〈y,−KX〉]N(K, r)

≤ 2[I∩I◦∗]p
rgC dim(X)−r〈y, ∑

j∈I\(I∪I∗) Ej+ 1
[I∗\I ]

∑
j∈I∗\I Ej−Dtot〉

p−r〈y,
∑
i∈I\I∗ E i〉

× h[I\I∗]
p,r -

(
r, (1)i∈I∗∩I ,

(
1− 1

[I∗ \ I ]

)
j∈I∗\I

)
. (6.63)

Since [I∗ \ I ] ≤ [I \ I ]− 1, we can use (4.21), (6.58), and Lemma 5.3 to obtain

lim
r→∞p

−r[(1−gC) dim(X)+〈y,−KX〉]N(K, r) = 0. (6.64)

The case where I∗ \ I = I\ I andK �= ∅ is similar. If I∗ \ I = ∅, then N(K, r) =
1 and the result is straightforward. This establishes Proposition 4.5(2).

Finally, we prove part (3). Set

ϕ(D, F, G)
def=

〈
y,−D tot +

∑
j∈I\I

Ej

〉
−

∑
j∈I\I

deg(Ej )

+ deg

[
inf
j∈I\I

( ∑
i∈I∩I◦∗

bi,j(Ei +Di )+ Ej

)]
, (6.65)

N0(r)
def= h[I\I∗]

p,r

∑
D∈Diveff(Cp,r )

I∩I◦∗
deg(Di )=〈y,E i〉, i∈I∩I◦∗

pr[([I\I ]−1)(1−gC)+ϕ(D,0,0)], (6.66)

and

N∗
1(r)

def=
∑

E∈Diveff(Cp,r )
I◦∗ \{(0,...,0)}

deg(Ei)≤〈y,E i〉, i∈I

|µX,r (E)|h[I\I∗]
p,r

×
∑

D∈Diveff(Cp,r )
I∩I◦∗

deg(Dj)=〈y,E i〉−deg(Ei), i∈I∩I◦∗

pr[([I\I ]−1)(1−gC)+ϕ(D,F,G)]. (6.67)

We fix a numbering of I \ I and, for j0 ∈ I \ I, set
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N1,j0(r)
def=

∑
E∈Diveff(Cp,r )

I◦∗
deg(Ei)≤〈y,E i〉, i∈I◦∗〈y,Ej0+Ej0+1−Dtot〉≤deg(Ej0 )+deg(Ej0+1)+2gC−2

|µX,r (E)|h[I\I∗]
p,r

×
∑

D∈Diveff(Cp,r )
I∩I◦∗

deg(Dj)≤〈y,E i〉−deg(Ei), i∈I∩I◦∗

pr[([I\I ]−1)+ϕ(y,D,F,G)]. (6.68)

For j0, j1∈ I \ I with j0 �= j1,

Gj0 +Gj1−D tot =
∑
j∈I\I

Ej − ([I \ I ]−1)D tot+
∑

j∈I\(I∪{j0,j1})
(D tot−Ej ). (6.69)

By definition of D tot, we have D tot − Ej ∈ Eff(X). Using (4.21) now yields the
inequality

〈y, Ej0 + Ej1 −D tot〉 ≥ 4gC dim(X). (6.70)

Hence from parts (2) and (3) of Lemma 5.5 we deduce the inequality

|N(∅, r)−N0(r)|
≤ N∗

1(r)+N2

(
r,

(
1

[I \ I ]− 1

)
j∈I\I

)
+

∑
1≤j≤[I\I ]−1

N1,j(r). (6.71)

We first show that

lim
r→+∞p

−r[dim(X)(1−gC)+〈y,−KX〉]N∗
1(r) = 0. (6.72)

The quantity involved in (6.72) equals∑
E∈Diveff(Cp,r )

I◦∗ \{(0,...,0)}
deg(Ei)≤〈y,E i〉, i∈I◦∗

|µX,r (E)|p−r
∑
j∈I\I deg(Ej)

× p−r〈y,
∑
i∈I E i〉h[I\I∗]

p,r a(r, E , (〈y, E i〉 − deg(Ei ))i∈I∩I◦∗ ); (6.73)

here, for d ∈NI∩I◦∗ , we have set

a(r, E , d )
def=

∑
D∈Diveff(Cp,r )

I∩I◦∗
deg(Di )=di, i∈I∩I◦∗

p
r deg[infj∈I\I (

∑
i∈I∩I◦∗ bi,j (Ei+Di )+Ej)]. (6.74)

Setting G(r, E , t)
def= ∑

d∈NI∩I◦∗ a(r, E , d )t d , we have

G(r, E , t) =
∏
v∈C

(0)
p,r

F(v(E),prfv, tfv )

=
∏

i∈I∩I◦∗

Pp,r (ti)

(1− ti)(1− prti)
∏
v∈C

(0)
p,r

F̃(v(E),prfv, tfv ). (6.75)

Hence for r ≥ 1 and E∈Diveff(Cp,r )
I one may write
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G̃(r, E , t)
def=

( ∏
i∈I∩I◦∗

1− prti
)
G(r, E , t) = G̃(r, 0, t)

∏
v∈C

(0)
p,r

v(E)�=0

F̃(v(E),prfv, tfv )

F̃(0,prfv, tfv )
.

(6.76)
We next show that, for every sufficiently small η > 0,

lim sup
r→∞

‖G̃(r, 0, t)‖p−r(1+η) ≤ 1. (6.77)

Indeed, we have

‖G̃(r, 0, t)‖p−r(1+η)

≤
(‖Pp,r‖p−r(1+η)

1− p−r(1+η)
)[I∩I◦∗] ∏

v∈C
(0)
p,r

‖F̃(0,prfv, tfv )‖p−r(1+η) . (6.78)

By (5.51), (6.55), and Lemma 5.2, we are done. It can similarly be shown that

lim
r→∞ G̃(r, 0, (p−r, . . . ,p−r )) = 1. (6.79)

Now, owing to (5.52) and (5.53), for every sufficiently small η > 0 and every suf-
ficiently large r we have

‖G̃(r, E , t)‖pr(−1+η/2)

≤ ‖G̃(r, 0, t)‖pr(−1+η/2)

∏
v∈C

(0)
p,r

v(E)�=0

2c(η)prfv [C(v(E))+ηD(v(E))]. (6.80)

We apply Lemma 5.1 to obtain that, for all d ∈ NI∩I◦∗ , every sufficiently large r,
and every E∈Diveff(Cp,r )

I,

|a(r, E , d )|
≤ pr|d|1+ [I ∩ I◦∗].p−rη

(1− p−rη)[I∩I◦∗]
‖G̃(r, 0, t)‖pr(−1+η/2)

∏
v∈C

(0)
p,r

v(E)�=0

2c(η)prfv [C(v(E))+ηD(v(E))].

(6.81)

Thus p−r[dim(X)(1−gC)+〈y,−KX〉]N∗
1(r) is bounded from above by

1+ [I ∩ I◦∗]p−rη

(1− p−rη)[I∩I◦∗]
‖G̃(0, t)‖pr(−1+η/2)h[I\I∗]

p,r .p−r
∑
i∈I\I∗〈y,E i〉

×
(
−1+

∏
v∈C

(0)
p,r

1+ 2c(η)
∑

e∈{0,1}I◦∗ \(0,...,0)

|µ◦X(e)|prfv [C(e)+ηD(e)−|e|]
)
. (6.82)

Thanks to Assumption 5.7(3) and Lemma 5.2, the last factor in (6.82) tends to 0
as r approaches +∞. Hence, by (6.77) and (6.58), we have proved (6.72).

Next we show that, for j0 ∈ I \ I,
lim
r→+∞p

−r[dim(X)(1−gC)+〈y,−KX〉]N1,j0(r) = 0. (6.83)
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The quantity involved in (6.83) equals

pr dim(X)gC
∑

E∈Diveff(Cp,r )
I◦∗

deg(Ei)≤〈y,E i〉, i∈I◦∗〈y,Ej0+Ej0+1−Dtot〉≤deg(Ej0 )+deg(Ej0+1)+2gC−2

|µX,r (E)|p−r
∑
j∈I\I deg(Ej)

× h[I\I∗]
p,r p−r〈y,

∑
i∈I E i〉a(r, E , (〈y, E i〉 − deg(Ei ))i∈I∩I◦∗ ). (6.84)

Using the last inequality in the description of the summation domain togther with
(6.70), we obtain

−1

4
[deg(Ej0)+ deg(Ej0+1)] ≤ −dim(X)gC + gC

2
− 1

2
; (6.85)

we also see that (6.84) is bounded from above by

p−r(gC/2)
∑

E∈Diveff(Cp,r )
I◦∗

deg(Ei)≤〈y,E i〉, i∈I◦∗

|µX,r (E)|p−r[
∑
j∈I\I deg(Ej)− 1

4 [deg(Ej0 )+deg(Ej0+1)]]

× h[I\I∗]
p,r p〈y,

∑
i∈I E i〉a(r, E , (〈y, E i〉 − deg(Ei ))i∈I∩I◦∗ ). (6.86)

Now arguing as in the case of N∗
1(r), we see that p−r[dim(X)(1−gC)+〈y,−KX〉]N1,j0(r)

is bounded from above by

p−r(gC+1)/2.
1+ [I ∩ I◦∗]p−rη

(1− p−rη)[I∩I◦∗]
‖G̃(r, 0, t)‖pr(−1+η/2)h[I\I∗]

p,r .p−r
∑
i∈I\I∗〈y,E i〉

×
∏
v∈C

(0)
p,r

1+ 2c(η)
∑

e∈{0,1}I◦∗ \(0,...,0)

|µ◦X,I(e)|prfv[C(e)+ηD(e)−|e|+
1
4 (ej0+ej0+1)].

(6.87)

By (6.77), Assumption 5.7(3), Lemma 5.2, and (6.58), this proves (6.83).
Finally we show that

lim
r→+∞p

−r[dim(X)(1−gC)+〈y,−KX〉]N0(r) =
{

1 if I∗ = I,

0 otherwise.
(6.88)

Note that

N0(r) = pr[dim(X)(1−gC)+〈y,−Dtot+
∑
j∈I\I Ej 〉]h[I\I∗]

p,r a(r, 0, (〈y, E i〉)i∈I∩I◦∗ ). (6.89)

We can use Lemma 5.1 to deduce that

|p−r[dim(X)(1−gC)+〈y,−KX〉]N0(r)− h[I\I∗]
p,r p−r

∑
i∈I\I∗〈y,E i〉G̃(r, 0, (p−r, . . . ,p−r ))|

≤ p−r(η/2)

(1− p−r(η/2))[I∩I◦∗]
‖G̃(r, 0, t)‖pr(−1+η/2)h[I\I∗]

p,r p−r
∑
i∈I\I∗〈y,E i〉

×
∑
i∈I∩I◦∗

p−r(η/2)〈y,E i〉. (6.90)

Thanks to (6.77) and (6.58), the right-hand side of (6.90) tends to 0 as r ap-
proaches +∞. By (6.79) this concludes the proof of (6.88), which in turn, by
(6.71), proves Proposition 4.5(3).
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7. Examples

7.1. A Family of Intrinsic Quadrics

There is a family of smooth projective varieties (Xn)n≥3 that satisfies the follow-
ing properties (cf. [Bo4, Sec. 4.3]; the third property is easily deduced from [Bo4,
Rem. 44]).

(1) dim(Xn) = n− 1.
(2) The Cox ring of Xn may be generated by sections {si}0≤i≤2 n with divisors

{E i}0≤i≤2 n and such that (E 0, . . . , En) is a basis of Pic(X); the ideal of rela-
tions in the Cox ring is generated by

∑
1≤i≤n sisi+n and, for i ∈ {1, . . . , n}, we

have E i+n ∼ −E i +∑
0≤i′≤n E i′ .

(3) The maximal subsets J of {0, . . . , n} such that
⋂
i∈J E i �= ∅ are those of the

shape {0, . . . , n} \ {i0, i1}, where i0, i1 are distinct elements of {1, . . . , n}.
Hence X is a linear intrinsic hypersurface with respect to ({0, . . . , 2n}, {0, . . . , n}).
It is straightforward to check that 1

n−1

∑
1≤i≤n E i+n −D tot lies in Eff(X). Yet we

must show that Assumptions 5.7 are satisfied for every I∗ ⊂ {0, . . . , 2n} such that
{n + 1, . . . , 2n} ⊂ I∗ and

⋂
i /∈I∗ E i �= ∅. In view of property (3), the necessary

arguments are contained in the proof of [Bo4, Thm. 47]. Thus we obtain the fol-
lowing statement.

Theorem 7.1. For every n ≥ 3 and every y lying in a trunction of Eff(Xn)∨,
Mor(C,Xn, y, I) is irreducible of the expected dimension and also is dense in
Mor(C,Xn, y).

7.2. Minimal Resolution of Singular del Pezzo Surfaces

If X is an intrinsic hypersurface with a chosen set of generating sections {si}i∈I,
then we shall call a subset I ⊂ I admissible if X is a linear intrinsic hypersurface
with respect to (I, I ). For I admissible, we use CI to denote the dual of the cone
generated by the effective cone and 1

[I\I ]−1

∑
j∈I\I Ej −D tot and use C̃ to denote

the union of the cone CI when I ranges over the admissible subsets of I.
Derenthal [D] classified all the singular del Pezzo surfaces of degree at least 3

whose minimal resolution is an intrinsic hypersurface, giving in each case an ex-
plicit presentation of the Cox ring. There are 21 such surfaces, and among these it
turns out that there are 20 for which there exists at least one admissible subset I
(the exception is one of the cubic surfaces with a D4 singularity). We are inter-
ested in those surfaces for which there exists at least one admissible subset I such
that CI is of maximal dimension (i.e., those surfaces for which—once the ad hoc
assumptions on the combinatoric series are satisfied—there is a “positive propor-
tion” of y for which Theorem 2.4 guarantees that Mor(C,X, y) is irreducible of
the expected dimension; see Remark 2.6). It turns out that these 20 surfaces may
be divided into three classes as follows.

(1) For each subset {i1, i2, i3} of I∗ with cardinality 3, E i1 ∩ E i2 ∩ E i3 is empty.
In this case there are several choices of admissible I, and for each of them CI
has maximal dimension (5 surfaces).
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(2) There is exactly one subset {i1, i2, i3} of I∗ with cardinality 3 such that E i1 ∩
E i2 ∩ E i3 is a point and I = I∗ \ {i1, i2, i3} is admissible. In this case the
only admissible subset for which CI has maximal dimension is I∗ \ {i1, i2, i3}
(6 surfaces).

(3) There is exactly one subset {i1, i2, i3} of I∗ with cardinality 3 such that E i1 ∩
E i2 ∩ E i3 is a point and I = I∗ \{i1, i2, i3} is not admissible. In this case there
are no admissible subsets for which CI has maximal dimension (9 surfaces).

(For some surfaces in the third class, it can certainly be shown that Mor(C,X, y)
is irreducible of the expected dimension for a positive proportion of y; this may
be done by using a similar strategy and a counting lemma akin to the one used in
[Bo4, Sec. 5] to prove the geometric Manin’s conjecture for the sextic del Pezzo
surface with an A2 singularity, which belongs to the third class.)

For each of the surfaces in the first two classes, we use Maple software to check
whether the assumptions on the combinatoric series hold. This happens to be the
case for each of them except one (the other cubic surface with a D4 singularity).
For each of the 10 remaining surfaces, we estimate the “proportion” of those y
for which Theorem 2.4 guarantees that Mor(C,X, y) is irreducible of the expected

dimension by computing the ratio
Vol−KX (C̃)

Vol−KX (Eff(X)∨) , where Vol−KX
is the volume

of the intersection with the affine hyperplane 〈·,−KX〉 = 1. Using the descrip-
tion of the surface as a blowing up of the projective plane, we also compute the

ratio
Vol−KX (CKLO)

Vol−KX (Eff(X)∨) ; here CKLO is a subcone CKLO of Eff(X)∨ described in [KLO]

and such that, according to the main theorem of that paper, Mor(P1,X, y) is irre-
ducible of the expected dimension for every y ∈NS(X)∨ ∩ CKLO. The authors of
[KLO] use deformation-theoretic arguments, and it seems likely that similar ar-
guments could yield the same result in higher genus after replacing CKLO with an
adequate truncation. The results of the computations, for which we benefited from
[F], are presented in Table 1. Each surface is identified by its degree and the type
of the singularity. (Knowing that the minimal resolution of each surface in the
table is an intrinsic hypersurface and having ruled out the case of the D4 singular-
ity in degree 3, this information determines completely the isomorphism class of
the surface according to the results of [D].) We give generators of C∨KLO in terms of
the boundary divisors, for which we use the notation in [D]. Note that the desin-
gularization of the sextic with an A1 singularity is isomorphic to the variety X3 of
Theorem 7.1.

Of course, since the authors of [KLO] address the case of general blow-ups
of projective space, their method covers a wide range of varieties that are not
amenable to our approach. Even so, for the examples in Table 1 (where both meth-
ods apply), the numerical constraints reported here are weaker than theirs (one
can check that this is also true in general for toric varieties that are blow-ups of
a projective space). Cox rings might prove helpful for the understanding of the
geometry of the moduli spaces of morphisms—at least when those rings have
a sufficiently simple presentation. A similar philosophy prevails in the context
of Manin’s conjecture about the asymptotic behavior of rational points/curves of
bounded height /degree.
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Table 1

Degree Singularities Vol(C̃)
Vol(Eff(X)∨ ) Generators of C∨KLO

Vol(CKLO)

Vol(Eff(X)∨ )
Vol(CKLO)

Vol(C̃)

6 A1 1 E1,E2,E3,E4 1 1

5 A1 23/36 E2,E3,E4,E5,E1−E5 1/4 ≈ 0.391

5 A2 3/8 E2,E3,E4,E5,E1−2E5 3/14 ≈ 0.571

4 3A1 31/72 E3,E5,E6,E7,E9, 1/28 ≈ 0.083
E2−E3−3E6

4 A2 + A1 65/288 E1,E4,E6,E7,E9, 3/80 ≈ 0.166
E2−E4−3E9

4 A3 3/32 E2,E3,E4,E5,E8, 1/70 ≈ 0.152
E1−E2−4E5−E8

4 A3 + A1 1/8 E3,E4,E5,E6,E7, 1/35 ≈ 0.228
A1−E3−3E4−6E5−E6

3 2A2 + A1 2567/23760 E1,E2,E5,E6,E7,E10, 1/686 ≈ 0.014
E3−E1−3E6−E7−2E10

3 A3 + 2A1 181/3888 E1,E2,E3,E5,E6,E8, 2/2205 ≈ 0.019
E4−E1−E3−3E5−4E8

3 A4 + A1 5/288 E1,E3,E4,E6,E7,E8, 1/441 ≈ 0.131
A−E1−E3−3E4−6E6−3E8
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