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On the Generalized Chen’s Conjecture
on Biharmonic Submanifolds

Ye-Lin Ou & Liang Tang

1. Biharmonic Submanifolds and the
Generalized Chen’s Conjecture

The generalized Chen’s conjecture on biharmonic submanifolds asserts that any
biharmonic submanifold of a nonpositively curved manifold is minimal. In this
paper, we prove that this conjecture is false by constructing foliations of proper
biharmonic hyperplanes in a 5-dimensional conformally flat space with negative
sectional curvature. Many examples of proper biharmonic submanifolds of non-
positively curved spaces are also given.

All manifolds, maps, and tensor fields studied in this paper are assumed to be
smooth. A biharmonic map is a map ϕ : (M, g) → (N,h) between Riemannian
manifolds that is a local solution of the fourth-order partial differential equations

τ 2(ϕ) := Traceg(∇ ϕ∇ ϕ − ∇ ϕ

∇M )τ(ϕ) − Traceg RN(dϕ, τ(ϕ)) dϕ = 0; (1)

here RN denotes the curvature operator of (N,h) defined by

RN(X,Y )Z = [∇N
X , ∇N

Y ]Z − ∇N
[X,Y ]Z,

τ(ϕ) = Traceg ∇ dϕ is the tension field of ϕ, and τ(ϕ) = 0 means that the map
ϕ is harmonic. Clearly, it follows from (1) that any harmonic map is biharmonic.
We refer to nonharmonic biharmonic maps as proper biharmonic maps.

A submanifold M of (N,h) is called a biharmonic submanifold if the inclusion
map i : (M, i∗h) → (N,h) is a biharmonic isometric immersion. It is well known
that an isometric immersion is minimal if and only if it is harmonic. Hence a mini-
mal submanifold is trivially biharmonic, and we refer to a nonminimal biharmonic
submanifold as a proper biharmonic submanifold.

Among the fundamental problems in the study of biharmonic maps are the
following.

• Existence problem. Given two model spaces (e.g., some “good” spaces, such as
spaces of constant sectional curvature or more general symmetric or homoge-
neous spaces), does there exist a proper biharmonic map from one space into
another?
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• Classification problem. Classify all proper biharmonic maps between two model
spaces where the existence is known.

A typical and challenging classification problem is the following.

Chen’s Conjecture [Ch]. Any biharmonic submanifold in a Euclidean space
is minimal.

The conjecture has been proved for biharmonic surfaces in R
3 (by Jiang [J2] and

independently by Chen and Ishikawa [ChIs]) and for biharmonic hypersurfaces in
R

4 [HV]. Dimitrić [D] showed that the conjecture is also true for any biharmonic
curve, any biharmonic submanifold of finite type, any pseudo-umbilical bihar-
monic submanifold Mm ⊂ R

n with m �= 4, and any biharmonic hypersurface in
R

n with at most two distinct principal curvatures. However, the conjecture is still
open in general.

In the same direction of classifying proper biharmonic submanifolds of nonpos-
itively curved manifolds, Caddeo, Montaldo, and Oniciuc [CMO2] proved that
any biharmonic submanifold in hyperbolic 3-space H 3(−1) is minimal and that
any pseudo-umbilical biharmonic submanifold Mm ⊂ Hn with m �= 4 is mini-
mal. In [BMO1] it is shown that any biharmonic hypersurface of Hn with at most
two distinct principal curvatures is minimal. All these results suggest the following
generalized Chen’s conjecture on biharmonic submanifolds, which was proposed
in [CMO1].

The Generalized Chen’s Conjecture. Any biharmonic submanifold of
(N,h) with RN ≤ 0 is minimal (see, e.g., [B1; B2; BMO1; BMO2; BMO3;
CMO1; IInU; MO; Ou1; Ou2]).

The goal of this paper is to prove that the generalized Chen’s conjecture for bihar-
monic submanifolds is false. We accomplish this by using the idea of constructing
foliations of proper biharmonic hyperplanes in the conformally flat space given
in [Ou1]. The idea is to determine a conformally flat metric on R

m+1 such that a
foliation by the hyperplanes defined by the graphs of linear functions becomes a
proper biharmonic foliation. It turns out that when m = 4 the system of bihar-
monic equations reduces to a single equation that has infinitely many solutions—
including counterexamples to the generalized Chen’s conjecture.

2. Foliations of Conformally Flat Spaces
by Biharmonic Hyperplanes

Since conformally flat spaces play a central role in this paper, in this section we
summarize some basic definitions and the relations between various curvatures of
two Riemannian manifolds that are conformally related. Two Riemannian met-
rics g and ḡ on M are conformally equivalent if ḡ = e2σg for some function σ

on M. A map ϕ : (M, g) → (N,h) between Riemannian manifolds is conformal
if ϕ∗h = e2σg for some function σ on M. We say that two Riemannian manifolds
(M, g) and (N,h) are conformally diffeomorphic if there exists a conformal dif-
feomorphism from one space into the other. A Riemannian manifold (Mm, g) is
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a conformally flat space if for any point of M there exists a neighborhood that is
conformally diffeomorphic to the Euclidean space R

m. It is well known that any
2-dimensional Riemannian manifold is conformally flat owing to the existence of
isothermal coordinates. For m = 3, (Mm, g) is conformally flat if and only if the
Schouten tensor H satisfies (∇XH )(Y,Z) = (∇YH )(X,Z) for any vector fields
X, Y, and Z on M. For m ≥ 4, (Mm, g) is conformally flat if and only if the Weyl
curvature vanishes identically. It is easy to see that a space of constant sectional
curvature is conformally flat yet there exist many conformally flat spaces that are
not of constant sectional curvature.

Let ∇, R, Ric, and K (resp., ∇, R, Ric, and K) denote the Levi–Civita connec-
tion, Riemannian curvature, Ricci curvature, and sectional curvature of the Rie-
mannian metric g (resp., ḡ = e2σg). Then, it is not difficult to verify (cf. [Ha;
W]) the following relations between the connections and curvatures of the two
Riemannian metrics that are conformally equivalent:

∇XY = ∇XY + (Xσ)Y + (Yσ)X − g(X,Y ) gradg σ (2)

for all X,Y ∈ TM;
R(W,Z,X,Y )

= e2σ{R(W,Z,X,Y ) + g(∇X∇σ,Z)g(Y,W)

− g(∇Y∇σ,Z)g(X,W) + g(X,Z)g(∇Y∇σ,W)

− g(Y,Z)g(∇X∇σ,W) + [(Yσ)(Zσ) − g(Y,Z)|∇σ|2]g(X,W)

− [(Xσ)(Zσ) − g(X,Z)|∇σ|2]g(Y,W)

+ [(Xσ)g(Y,Z) − (Yσ)g(X,Z)]g(∇σ,W)} (3)

for any W,Z,X,Y ∈ TM.

With respect to local coordinates {xi} and the natural frame
{

∂
∂xi

= ∂i
}
, equa-

tion (3) is equivalent to

e−2σR ijkl = R ijkl + gilσjk − gik σjl + gjkσil − gjlσik

+ (gilgjk − gikgjl)|∇σ|2, (4)

where we have used the notation σjl = ∇l σj − σlσj = ∇l∇j σ − σlσj . Contracting
(4) now yields

Rjk = Rjk − (n − 2)σjk − gjk[�σ + (n − 2)|∇σ|2], (5)

where � and ∇ denote (respectively) the Laplacian and the gradient operator de-
fined by the metric g.

Let P be a section spanned by an orthonormal basis X,Y with respect to g

(hence X̄ = e−σX, Ȳ = e−σY form an orthonormal basis with respect to ḡ). Then
we may express the relationship between sectional curvatures with respect to met-
rics ḡ and g as

e2σK(P ) = K(P ) − (g(∇X∇σ,X) + g(∇Y∇σ,Y ))

− (|∇σ|2 − (Xσ)2 − (Yσ)2). (6)
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We also need the following theorem, which will be used to prove our main the-
orem about biharmonic hypersurfaces in a conformally flat space.

Theorem 2.1 [Ou1]. Let ϕ : Mm → Nm+1 be an isometric immersion of codi-
mension 1 with mean curvature vector η = Hξ. Then ϕ is biharmonic if and only if

�gH − H |A|2 + H RicN(ξ, ξ) = 0,

2A(gradg H ) + m

2
gradg H

2 − 2H(RicN(ξ))� = 0.
(7)

Here �g and gradg are (respectively) the Laplacian and gradient operators of
the hypersurface, RicN : TqN → TqN denotes the Ricci operator of the ambient
space defined by 〈RicN(Z),W 〉 = RicN(Z,W), and A is the shape operator of
the hypersurface with respect to the unit normal vector ξ.

Now we are ready to prove one of the main theorems of this paper.

Theorem 2.2. For a positive integer m ≥ 2, let ai (i = 1, 2, . . . ,m) and c

be constants. Then, for h = f −2(z)
(∑m

i=1 dx 2
i + dz2

)
and ϕ(x1, . . . , xm) =(

x1, . . . , xm,
∑m

i=1 ai xi + c
)
, the isometric immersion ϕ : R

m → (Rm+1,h) into
the conformally flat space is biharmonic if and only if one of the following three
cases occurs:

(i) f ′ = 0, in which case ϕ is minimal (actually, totally geodesic); or
(ii) m = 4 and f is a solution of the equation

4∑
i=1

a2
i f

2f ′′′ +
(

4 −
4∑

i=1

a2
i

)
ff ′f ′′ − 4

(
2 +

4∑
i=1

a2
i

)
(f ′)3 = 0; (8)

or
(iii) ai = 0 for i = 1, . . . ,m and f(z) = 1

Az+B
, where A and B are constants.

In this case each hyperplane is a proper biharmonic hypersurface. (This re-
covers a result (Theorem 3.1) obtained in [Ou1].)

Proof. Using the notation ∂i = ∂
∂xi

(i = 1, 2, . . . ,m) and ∂m+1 = ∂
∂z

, we can eas-
ily check that {ēα = f(z)∂α , α = 1, 2, . . . ,m+1} constitute an orthonormal frame
on the conformally flat space (Rm+1,h). One can also check that

ϕ(∂i) = 1

f
(ēi + ai ēm+1), i = 1, 2, . . . ,m,

η = 1

f

( m∑
j=1

aj ēj − ēm+1

) (9)

constitute a natural frame adapted to the hypersurface, where η is a normal vector.
Applying Gram–Schmidt orthonormalization to the natural frame

ēi + ai ēm+1, i = 1, 2, . . . ,m,
m∑

j=1

aj ēj − ēm+1

(10)

or by a straightforward checking, one can verify the following claim.
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Claim I. Let ki = 1/
√

1 + ∑ i
l=1 a

2
l for i = 1, . . . ,m with k0 = 1 and a0 = 0.

Then the vector fields

ei = −aikiki−1

i−1∑
l=1

alēl + ki

ki−1
ēi + aikiki−1ēm+1, i = 1, 2, . . . ,m,

em+1 =
m∑
l=1

alkmēl − kmēm+1

(11)

form an orthonormal frame adapted to the hypersurface z = ∑m
i=1 ai xi +c, where

ξ = em+1 is the unit normal vector field.
Let h̄ = ∑m

i=1 dx 2
i + dz2 denote the Euclidean metric on R

m+1. Then h =
e−2σh̄ with σ = ln f(z). It follows that

gradh σ = ēm+1(σ)ēm+1 = f ′ēm+1. (12)

Using that ∇∂α ∂β = 0 for all α,β = 1, 2, . . . ,m + 1 together with the equality

∇XY = ∇XY + (Xσ)Y + (Yσ)X − h(X,Y ) gradh σ,

we can compute the Levi–Civita connection ∇ of the conformally flat metric h

with respect to the orthonormal frame {ēi} to obtain

(∇ēα ēβ) =




f ′ēm+1 0 · · · 0 −f ′ē1

0 f ′ēm+1 · · · 0 −f ′ē2
...

...
. . .

...
...

0 0 · · · f ′ēm+1 −f ′ēm
0 0 · · · 0 0



(m+1)×(m+1)

. (13)

A further computation using (13) yields

∇ei ei = k2
i k

2
i−1∇(−ai

∑ i−1
l=1 al ēl+(1/k2

i−1)ēi+ai ēm+1)

(
−ai

i−1∑
l=1

alēl + 1

k2
i−1

ēi + ai ēm+1

)

= k2
i k

2
i−1f

′
[(

a2
i

i−1∑
l=1

a2
l + 1

k 4
i−1

)
ēm+1 + a2

i

i−1∑
l=1

alēl − ai

k2
i−1

ēi

]
, (14)

∇ei em+1 = ∇(−aikiki−1
∑ i−1

l=1 al ēl+(ki/ki−1)ēi+aikiki−1ēm+1)

( m∑
l=1

alkmēl − kmēm+1

)

= kmf
′
[
aikiki−1ēm+1 + ki

ki−1
ēi − aikiki−1

i−1∑
l=1

alēl

]

= kmf
′ei, (15)

and

∇em+1em+1 = ∇∑
m
l=1 alkmēl−kmēm+1

( m∑
l=1

alkmēl − kmēm+1

)

= (1 − k2
m)f

′ēm+1 +
m∑
l=1

alk
2
mf

′ēl . (16)
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On the other hand, one can use the relations ei = Cα
i ēα = fCα

i ∂α and ξ =
Cα

m+1ēα = fCα
m+1∂α along with the Ricci curvature (5) to verify the following

claim.

Claim II. For a hypersurface in the conformally flat space (Rm+1,h), where h =
e−2σ

(∑m
i=1 dx 2

i + dz2
)
, we have

Ric(ξ, ξ) = �σ + (m − 1)[Hess(σ)(ξ, ξ) − (ξσ)2 + |gradh σ|2], (17)

(Ric(ξ))T = (m − 1)[gradg(ξσ) − ξ(σ) gradg σ + A(gradg σ)]; (18)

here gradg is the gradient defined by the induced metric on the hypersurface.
Substituting

�σ =
m+1∑
α=1

[ēαēα(σ) − (∇ēα ēα)(σ)] = ff ′′ − m(f ′)2,

Hess(σ)(ξ, ξ) = em+1em+1(σ) − (∇em+1em+1)(σ)

= k2
mff

′′ − (1 − k2
m)(f

′)2,

gradh σ = f ′ēm+1, |gradh σ|2 = (f ′)2, ξ(σ) = −kmf
′

into (17), we obtain

Ric(ξ, ξ) = �σ + (m − 1)[Hess(σ)(ξ, ξ) − (ξσ)2 + |gradh σ|2]

= [1 + (m − 1)k2
m]ff ′′ − m(f ′)2. (19)

Given that ξ = em+1 is the unit normal vector field, we can easily compute the
components of the second fundamental form to get

h(ei, ei) = 〈∇ei ei, em+1〉 = −〈∇ei em+1, ei〉 = −kmf
′,

h(ei, ej ) = 〈∇ei ej , em+1〉 = −〈∇ei em+1, ej〉 = 0, i �= j.

From this we conclude that each hyperplane z = ∑m
i=1 ai xi + c is a totally um-

bilical hypersurface in the conformally flat space and that all principal normal
curvatures are equal to

H = ξ(σ) = −kmf
′. (20)

It follows that

[Ric(ξ)]T = (m − 1)[gradg(ξσ) − ξ(σ) gradg σ + A(gradg σ)]

= (m − 1) gradg H, (21)

and the norm of the second fundamental form is given by

|A|2 =
m∑
i=1

〈∇ei ξ, ∇ei ξ〉2 = mk2
m(f

′)2. (22)

A further computation yields
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ei(H ) =
(
−aikiki−1

i−1∑
l=1

alēl + ki

ki−1
ēi + aikiki−1ēm+1

)
(−kmf

′)

= −aikiki−1kmff
′′,

gradg H =
m∑
i=1

ei(H )ei = −
m∑
i=1

aikiki−1kmff
′′ei, (23)

eiei(H ) = −ei(aikiki−1kmff
′′)

= −a2
i k

2
i k

2
i−1km(f

2f ′′′ + ff ′f ′′), (24)

(∇ei ei)(H ) = −k2
i k

2
i−1kmf

′
(
a2
i

i−1∑
l=1

alēl − ai

k2
i−1

ēi

)
(f ′)

= a2
i k

2
i k

2
i−1kmff

′f ′′, (25)
and

�MH =
m∑
i=1

[eiei(H ) − (∇M
ei
ei)(H )] (by the Gauss formula)

=
m∑
i=1

[eiei(H ) − (∇ei ei)(H ) + h(ei, ei)ξ(H )]

= −
m∑
i=1

a2
i k

2
i k

2
i−1km[(2 − m)ff ′f ′′ + f 2f ′′′ ]

= −(1 − k2
m)km[(2 − m)ff ′f ′′ + f 2f ′′′ ]. (26)

The last equality in (26) is obtained via the identity
m∑
i=1

a2
i k

2
i k

2
i−1 = (1 − k2

m), (27)

which can be proved by mathematical induction on m ≥ 2.
Substituting (19), (20), (21), (22), (23), (26), and A(gradg H ) = H gradg H

into the biharmonic equation (7) allows us to conclude that the isometric immer-
sion ϕ is biharmonic if and only if

−(1 − k2
m)f

2f ′′′ − [3 − m + (2m − 3)k2
m]ff ′f ′′ + m(1 + k2

m)(f
′)3 = 0,

(m − 4)ff ′f ′′ai = 0, i = 1, 2, . . . ,m.
(28)

The second equality in (28), and hence the system (28) itself, can be solved by
considering the following three cases.

Case 1: f ′ = 0 (which implies H = −kmf
′ = 0) gives the trivial solution. In

this case, ϕ is actually totally geodesic because its image is a hyperplane in a space
that is homothetic to a Euclidean space.

Case 2: aiff ′′ = 0 for i = 1, 2, . . . ,m (which, together with (23), implies that
gradg H = 0). In this case we can use �MH = 0 and (26) to reduce the first
equality in (28) to
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[1 + (m − 1)k2
m]ff ′′ − m(1 + k2

m)(f
′)2 = 0. (29)

If ff ′′ = 0 then equation (29) reduces to f ′ = 0, which again gives the trivial solu-
tion (i.e., the hypersurfaces are minimal). If ff ′′ �= 0 then, for all i = 1, 2, . . . ,m,
we have ai = 0 and hence km = 1. Thus (29) reduces to ff ′′ − 2(f ′)2 = 0, which
has solutions f(z) = 1

Az+B
for constants A and B.

Case 3: m = 4. In this case the biharmonic equation (28) reduces to

−(1 − k2
4)f

2f ′′′ − (5k2
4 − 1)ff ′f ′′ + 4(1 + k2

4)(f
′)3 = 0,

from which we obtain equation (8).

Theorem 2.2 follows when we combine the preceding results.

3. The Generalized Chen’s Conjecture on
Biharmonic Submanifolds Is False

In this section we show that equation (8) has many solutions, including counter-
examples to the generalized Chen’s conjecture.

Lemma 3.1. Let A > 0, B > 0, and c be constants, let

R
5
+ = {(x1, . . . , x4, z)∈ R

5 : z > 0}
be the upper half-space, and let f : R

5+ → R with f(x1, . . . , x4, z) = f(z) =
(Az+B)t. Then, for any t ∈ (0,1/2) and any (a1, a2, a3, a4)∈ S3

(√
2t/(1 − 2t)

)
,

the isometric immersion

ϕ : R
4 →

(
R

5
+ , h = f −2(z)

[ 4∑
i=1

dx 2
i + dz2

])
(30)

with ϕ(x1, . . . , x4) = (
x1, . . . , x4,

∑4
i=1 ai xi + c

)
is proper biharmonic into the

conformally flat space.

Proof. We seek special solutions of (8) that have the form f(z) = (Az + B)t. In
this case, we have f ′ = tA(Az +B)t−1, f ′′ = t(t − 1)A2(Az +B)t−2, and f ′′′ =
t(t − 1)(t − 2)A3(Az + B)t−3. Making these substitutions in (8) and assuming
that A,B > 0, we have

(t − 1)(t − 2)
4∑

i=1

a2
i +

(
4 −

4∑
i=1

a2
i

)
t(t − 1) − 4t 2

(
2 +

4∑
i=1

a2
i

)
= 0,

which is equivalent to
4∑

i=1

a2
i = 2t

1 − 2t
. (31)

Solving the inequality 2t/(1 − 2t) > 0, we conclude that any t ∈ (0,1/2) and
(a1, a2, a3, a4)∈ S3

(√
2t/(1 − 2t)

)
will solve equation (31) and hence the bihar-

monic equation (8). From this we obtain the lemma.
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Example 1. Let A > 0, B > 0, and c be constants, and let t = 1/6 and(√
2/4,

√
2/4,

√
2/4,

√
2/4

) ∈ S3
(√

2/2
)
. Then, by Lemma 3.1, we have a proper

biharmonic isometric immersion

ϕ : R
4 →

(
R

5
+ , h = (Az + B)−1/3

( 4∑
i=1

dx 2
i + dz2

))

with ϕ(x1, . . . , x4) = (
x1, . . . , x4,

(√
2/4

)
(x1 + x2 + x3 + x4) + c

)
.

Lemma 3.2. For constants A,B > 0 and t ∈ (0, 1), the conformally flat space(
R

5+ , h = (Az + B)−2t
(∑4

i=1 dx 2
i + dz2

))
has negative sectional curvature.

Proof. Let f(z) = (Az + B)t. As in the proof of Theorem 2.2, we use
ēi = f(z)∂i, i = 1, . . . , 5, to denote the orthonormal frame on

(
R

5+ , h =
(Az + B)−2t

(∑4
i=1 dx 2

i + dz2
))
. Let P be a plane section at any point, and

suppose that P is spanned by an orthonormal basis X,Y. Then, we have X =∑5
i=1 ai ēi, Y = ∑5

i=1 bi ēi . Using the sectional curvature relation (6) and given
that the sectional curvature K(p) of

(
R

5+ , h̄ = ∑4
i=1 dx 2

i + dz2
)

vanishes identi-
cally, we find the sectional curvature of the conformally flat space to be

K(P ) = (h(∇X∇σ,X) + h(∇Y∇σ,Y )) + (|∇σ|2 − (Xσ)2 − (Yσ)2)

= X(Xσ) + Y(Yσ) − (∇XX)(σ) − (∇YY )(σ)

+ (|∇σ|2 − (Xσ)2 − (Yσ)2),

where σ = ln f(z). A straightforward computation now gives

Xσ =
5∑

i=1

ai ēi(σ) = a5f
′,

X(Xσ) =
5∑

i=1

ai ēi(a5f
′) =

5∑
i=1

ai ēi(a5)f
′ + a2

5ff
′′,

∇XX = ∇∑5
i=1 ai ēi

( 5∑
j=1

aj ēj

)

=
5∑

i=1

ai ēi

( 5∑
j=1

aj

)
ēj +

4∑
i=1

a2
i f

′ē5 −
4∑

i=1

aia5f
′ēi,

(∇XX)(σ) =
5∑

i=1

ai ēi(a5)f
′ +

4∑
i=1

a2
i (f

′)2,

X(Xσ) − (∇XX)(σ) = a2
5ff

′′ −
4∑

i=1

a2
i (f

′)2.

Similarly, we have
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Y(Yσ) = b5f
′, (∇YY )(σ) =

5∑
i=1

bi ēi(b5)f
′ +

4∑
i=1

b2
i (f

′)2,

Y(Yσ) − (∇YY )(σ) = b2
5ff

′′ −
4∑

i=1

b2
i (f

′)2,

from which we derive

K(P ) = X(Xσ) + Y(Yσ) − (∇XX)(σ) − (∇YY )(σ)

+ (|∇σ|2 − (Xσ)2 − (Yσ)2)

= (a2
5 + b2

5)ff
′′ − (f ′)2.

For f = (Az+B)t we have f ′ = tA(Az+B)t−1 and f ′′ = t(t−1)A2(Az+B)t−2,
so it follows that

K(P ) = (a2
5 + b2

5)ff
′′ − (f ′)2

= A2(Az + B)t−2[(a2
5 + b2

5)t(t − 1) − t 2],

which is strictly negative because [(a2
5 + b2

5)t(t − 1)− t 2] < 0 for 0 < t < 1 and
A2(Az + B)t−2 > 0 for z > 0. From this we obtain the lemma.

Combining Lemma 3.1 and Lemma 3.2 yields our next theorem.

Theorem 3.3. Let A > 0, B > 0, and c be constants, let R
5+ = {(x1, . . . , x4, z)∈

R
5 : z > 0} be the upper half-space, and let f : R

5+ → R with f(z) = (Az+B)t.

Then, for any t ∈ (0,1/2) and any (a1, a2, a3, a4) ∈ S3
(√

2t/(1 − 2t)
)
, the iso-

metric immersion

ϕ : R
4 →

(
R

5
+ , h = f −2(z)

[ 4∑
i=1

dx 2
i + dz2

])
(32)

withϕ(x1, . . . , x4) = (
x1, . . . , x4,

∑4
i=1 ai xi+c

)
gives a proper biharmonic hyper-

surface into the conformally flat space with strictly negative sectional curvature.
These solutions provide infinitely many counterexamples to the generalized Chen’s
conjecture on biharmonic submanifolds.

The following corollary can be used to construct proper biharmonic submanifolds
of any codimension in a nonpositively curved manifold.

Corollary 3.4. For any positive integer k there exists a proper biharmonic sub-
manifold of codimension k in a nonpositively curved space. Thus, the generalized
Chen’s conjecture is false.

Proof. Let

ϕ : R
4 →

(
R

5
+ , h = f −2(z)

[ 4∑
i=1

dx 2
i + dz2

])
, (33)



On the Generalized Chen’s Conjecture on Biharmonic Submanifolds 541

with ϕ(x1, . . . , x4) = (
x1, . . . , x4,

∑4
i=1 ai xi +c

)
, be one of the proper biharmonic

hypersurfaces given in Theorem 3.3; letψ : R
n → R

n×R
k−1 ≡ (Rn+k−1,h0), with

ψ(y) = (y, 0), be the totally geodesic embedding of a subspace into a Euclidean
space. Then the isometric embedding φ : R

4 × R
n → (R5+ × R

n+k−1,h + h0)

with φ(x, y) = (ϕ(x),ψ(y)) gives a submanifold of codimension k. Since φ is
biharmonic with respect to each variable separately and is proper biharmonic with
respect to x (by Theorem 3.3), we can use [Ou2, Prop. 2.1] to conclude that φ
is a proper biharmonic embedding. Thus, the image of φ provides a proper bi-
harmonic submanifold of codimension k. By Lemma 3.2, the conformally flat
space

(
R

5+ , h = (Az + B)−2t
(∑4

i=1 dx 2
i + dz2

))
has negative sectional curva-

ture and the Euclidean space (Rn+k−1,h0) has zero curvature; hence their product
(R5+ × R

n+k−1,h + h0) gives a space of nonpositive curvature, which proves the
corollary.
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