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Arithmetic of a Singular K3 Surface

Matthias Schütt

1. Introduction

This paper investigates the arithmetic of a particular singular K3 surfaceX over Q,
the extremal elliptic fibration with configuration [1,1,1,12, 3∗]. First of all, we de-
termine the corresponding weight-3 form (cf. [Li, Ex. 1.6]) explicitly. For this, we
calculate the action of Frobenius on the transcendental lattice by counting points
and applying the Lefschetz fixed point formula. The proof is based on our previ-
ous classification of complex multiplication (CM) forms with rational coefficients
in [S1]. In fact, we only have to compute one trace.

Then we compute the zeta-function of the surface. This is used to study the re-
ductions of X modulo some primes p. We emphasize that we are able to find a
model with good reduction at 2. We subsequently verify conjectures of Tate and
Shioda. The conjectures will be recalled in Section 4 and verified in Sections 5–7.

The final section is devoted to the twists of X. We show that these produce all
newforms of weight 3 that have rational coefficients and CM by Q

(√−3
)
.

2. The Extremal Elliptic K3 Fibration

There is a unique elliptic K3 surfaceX with a section and singular fibres I1, I1, I1,
I12, and I ∗

3 . The configuration is listed as [1,1,1,12, 3∗] under No. 166 in [ShiZ]
and [S3, Tab. 2]. Since the fibration arises as cubic base change of the extremal
rational elliptic surface Y with singular fibres I ∗

1 , I4, and I1, we shall start by study-
ing this surface.

In [MP], an affine Weierstrass equation of this fibration was given as

Y ′: y2 = x3 − 3(s − 2)2(s2 − 3)x + s(s − 2)3(2s2 − 9). (1)

It has discriminant
� = 16 · 27(s − 2)7(s + 2),

so the singular fibres are I ∗
1 above 2, I1 above −2, and I4 above ∞.

We shall look for a model of Y over Q that has everywhere good reduction.
The fibre of Y ′ at ∞ has nonsplit multiplicative reduction, so H2

ét(Y
′, Q�) is rami-

fied. Therefore we twist equation (1) over the splitting field Q
(√−3

)
. Performing

some elementary transformations (cf. [S2, IV.1]), we obtain the equation
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Y : y2 + sxy = x3 + 2sx 2 + s2x. (2)

This elliptic surface has discriminant� = s7(s+16) and everywhere good reduc-
tion. In particular, all components of reducible fibres are defined over Q. (For I ∗

1 ,
this can be derived from Tate’s algorithm [Si, IV, Sec. 9].) Upon reducing mod-
ulo 2, we obtain the equation from [Ito]. Then Y inherits only the two singular
fibres of types I4 and I ∗

1 with wild ramification at the latter fibre.
We now come to the singular K3 surface X. Consider the cubic base change

π : s 	→ s 3.

Via pull-back from Y, this gives rise to an extremal elliptic K3 surface. The result-
ing Weierstrass equation reads

y2 + s2xy = x3 + 2sx 2 + s2x. (3)

This Weierstrass model has a D7 (resp. A11) singularity in the fibre above 0 (resp.
∞). By X, we denote the minimal desingularization. This elliptic fibration has
configuration [1,1,1,12, 3∗]. The reducible singular fibres I ∗

3 and I12 sit at 0 and
∞. The three fibres of type I1 can be found at the cube roots of −16.

By construction, the absolute Galois group Gal(Q̄/Q) acts trivially on the triv-
ial lattice V of X generated by the 0-section and the fibre components. Since X
is extremal, tensoring V with Q gives the corresponding statement for NS(X).

The elliptic surface Y has everywhere good reduction. Furthermore, the base
change π is nowhere degenerate upon reducing. Hence, the pull-back X can have
bad reduction only at the prime divisors of the degree of π (i.e., at 3). Modulo 3,
the Weierstrass model (3) obtains an additional A2 singularity, so the reduction is
in fact bad (cf. Section 5).

In terms of H2
ét(X, Q�), the ramification is reflected in the contribution of the

transcendental latticeTX, the orthogonal complement of NS(X) in H2(X, Z). Here
we consider it as a two-dimensional �-adic Galois representation ρ. The reduction
properties of X imply that ρ is ramified only at 3 and at the respective prime �.
This agrees with the discriminant d = dTX ofX, which is 3. To see this, recall that

dTX = −dNS(X),

since H2(X, Z) is unimodular. Consider the trivial lattice V of X. Let U denote
the hyperbolic plane—that is, Z2 with intersection form

(
0 1
1 0

)
. Then

V = A11 ⊕D7 ⊕ U

has discriminant dV = −12 · 4 = −48. The Néron–Severi group NS(X) is ob-
tained from V by adding the sections. Here, X is extremal, so the Mordell–Weil
group MW(X) is finite. Hence

dNS(X) = dV

|MW(X)|2 .
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Explicitly, we have MW(X) ∼= MW(Y ), consisting of four elements (cf. Sec-
tion 6). We obtain dNS(X) = −3 and dTX = 3. Then the (reduced) intersection
form on TX can only be (

2 1
1 2

)
.

3. The Associated Newform

By a result of Livné [Li, Ex. 1.6], X (or TX resp. ρ) has an associated newform of
weight 3 with CM by Q

(√−3
)
. Our aim is to determine this newform explicitly.

Let p be a prime of good reduction; that is, let p �= 3. Then

det ρ(Frobp) =
(
p

3

)
p2. (4)

To find the trace of ρ, we use the Lefschetz fixed point formula. We have already
seen that Gal(Q̄/Q) operates trivially on NS(X). Hence, the Lefschetz fixed point
formula gives

#X(Fp) = 1 + 20p + tr ρ(Frobp)+ p2.

Using a computer program, we calculated the following traces at the first good
primes.

p 2 5 7 11 13 17 19 23 29 31 37

tr ρ 0 0 −13 0 −1 0 11 0 0 −46 47

By inspection, these traces coincide with the Fourier coefficients of the newform
f = ∑

n anq
n of level 27 and weight 3 from [S1, Tab. 1]. We shall now prove that

this holds at every prime.

Proposition 3.1.
L(TX, s) = L(f , s).

Proof. The proof makes use of Livné’s modularity result for X. Let g denote
the associated newform. Since g has CM by Q

(√−3
)
, it is a twist of f by [S1,

Thm. 3.4]. In our special situation, g is unramified outside 3 (i.e., it has level 3r ),
sinceX has good reduction elsewhere. Hence we need only compare the few pos-
sible newforms with such a level.

Let ψf denote the Größencharakter of conductor 3 that corresponds to f , and
analogously for ψg. Then [S1, Prop. II.11.1]—and, in particular, the reasoning of
[S1, Sec. II.11.4]—show that there are three possibilities in total:

ψg = ψf or ψg = ψf ⊗
(

3

·
)

3

or ψg = ψf ⊗
(

3

·
)2

3

. (5)

Since the third residue symbol evaluates nontrivially at the factors of p = 7, it suf-
fices to compare the Fourier coefficients (or traces) at 7. Thus f = g. A priori,
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this guarantees only that all but finitely many traces coincide. But here, the asso-
ciated Galois representations ρ and ρf are simple, since their traces are not even.
Hence Proposition 3.1 follows.

Corollary 3.2. The zeta-function of X is

ζ(X, s) = ζ(s)ζ(s − 1)20L(f , s)ζ(s − 2).

Proof. We verify the corollary at every local Euler factor. On the one hand, at all
primes p �= 3, this follows from Proposition 3.1 and ρ(X/Q) = 20. On the other
hand, the reduction X3 at 3 is singular. Hence, the local Euler factor can be de-
fined only via the number of points of this singular variety over the fields F3r , since
the Lefschetz fixed point formula is not available.

The idea is that, with respect to the number of points,X3 looks like P2 blown up
in 19 rational points. Let us explain what we mean by this. We compare X3 to Y3,
the reduction of Y modulo 3. The base change π is purely inseparable modulo 3.
Hence, over any finite field F3r , the smooth fibres of X3 have the same number of
points as the corresponding fibres of Y3. On the other hand, X3 has ten additional
P1s in the singular fibres at 0 and ∞. These are all defined over F3. Thus

#X3(F3r ) = #Y3(F3r )+ 10 · 3r.

Recall that Y3 is P2 blown up in nine points. These points are all rational over F3,
since the absolute Galois group operates trivially. We deduce that

#X3(F3r ) = #(P2(19))(F3r ).

This gives the local Euler factor

ζ3(X, T ) = 1

(1 − T )(1 − 3T )20(1 − 32T )
.

The level 27 implies L3(f , s) = 1 by classical theory. This can also be read off
from [S1, Tab. 2] and the nebentypus χ−3 = (·/3) of f. This completes the proof
of Corollary 3.2.

4. The Conjectures for the Reductions

In this section, we shall discuss conjectures of Tate, Shioda, and Artin for smooth
projective surfaces over finite fields. In particular, these conjectures apply to
(supersingular) reductions of varieties defined over number fields.

Corollary 3.2 will be very useful: If X has good reduction at p, then the corol-
lary gives the local ζ -function of the smooth variety X/Fp. Explicitly, let p �= 3.
We obtain

P2(X/Fp, T ) = det(1 − Frobp T ; H2
ét(X/F̄p, Q�))

= (1 − pT )20(1 − apT + χ−3(p)p
2T 2).

This is exactly where the Tate conjecture enters. To formulate it, consider a fi-
nite field k and a smooth projective variety Z/k. Define the Picard number of Z
over k:
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ρ(Z/k) = rk NS(Z)Gal(k̄/k).

We employ the convention ρ(Z) = ρ(Z/k̄) when the field of definition of Z is
understood.

Conjecture 4.1 [T1, (C); T2]. Let q = pr and let Z/Fq be a smooth projec-
tive variety. Denote the order of the zero of P2(Z/Fq , T ) at T = 1/q by u. Then
u = ρ(Z/Fq).

The Tate conjecture is known for elliptic K3 surfaces with a section in character-
istic p > 3 [T2, Thm. (5.6)].

We can consider the Weierstrass model (3) over any Fq , q = pr. Denote the
minimal resolution of the An and Dm singularities by X/Fq . This surface coin-
cides with the reduction Xp of X if and only if p is a good prime (i.e., iff p �= 3).
On the other hand, X3 contains an A2 singularity, so it is not smooth. The desin-
gularization X/F3 will be sketched in the next section.

Proposition 4.2. Let p be a prime. Consider X/Fp. Then

ρ(X/Fp) =
{

20 if p ≡ 1 mod 3,

21 if p ≡ 0, 2 mod 3.

If p > 3, Proposition 4.2 follows from the (known) Tate conjecture. The proofs
for p = 2 and 3 will be given in the next three sections. We will also verify the
following conjecture of Shioda.

Let L be a number field and Z a singular K3 surface over L. If p is a prime of
L, denote the residue field of L at p by Lp. We call p supersingular if and only
if Z/Lp is supersingular (i.e., iff ρ(Z/L̄p) = 22).

Shioda’s conjecture concerns the surface Z/Lp at a supersingular prime p. We
can compare two lattices of rank 2: On the one hand, we have the transcendental
lattice TZ of Z/L; on the other hand, we can use the natural embedding

NS(Z/L̄) ⊆ NS(Z/L̄p)

to define the orthogonal complement

Tp = NS(Z/L̄)⊥ ⊂ NS(Z/L̄p).

Conjecture 4.3 [Sh2, Conj. 4.1]. Let Z be a singular K3 surface over a num-
ber field L and let p be a supersingular prime. Then the two lattices TZ and Tp

are similar.

In other words, the claim is that Tp is isomorphic to TZ(−m) for some m∈ Q>0.

We will verify this conjecture for the extremal elliptic K3 fibrationX at the primes
2 and 3 in the next three sections. This will be achieved by finding explicit gen-
erators of the respective Tp. As a by-product, we will thus verify the following
theorem.

Theorem 4.4 [A, (6.8)]. Let Z be a supersingular K3 surface over a finite field
k of pr elements. If r is odd, then Gal(k̄/k) operates nontrivially on NS(Z).
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At the time of this paper, the Brauer group Br(Z), if finite, was only known to
have cardinality a square or twice a square. Hence, Artin was able to prove this
theorem only for odd p. Recently, the second alternative has been ruled out in
[LLoR]. Hence, Artin’s argumentation in [A, Sec. 6] also applies to p = 2.

Note that Theorem 4.4 agrees perfectly with Proposition 4.2 for our surface X.
In fact, the known part of Tate’s Conjecture 4.1 shows that at a supersingular prime
p > 3 (i.e., at p ≡ −1 mod 3),

ρ(X/Fp2 ) = 22.

5. X/F3

In this section, we shall consider X/F3. This will be special because π is purely
inseparable modulo 3. As a consequence, the base change X/F3 from Y/F3 via π
has only three singular fibres. They have types I ∗

3 , I12, and I3. In particular, the el-
liptic fibration X/F3 is extremal (cf. the classification of [Ito]) and supersingular.
By construction, it also is unirational. We emphasize that the reduction X3 is not
smooth.

We shall now verify Tate’s and Shioda’s conjectures for X/F3. Consider the
4-torsion sections of X/F3 that come from X/Q upon reducing (see Section 6 for
a detailed study). These sections meet the O-component of the I3 fibre. Denote
the other components of the I3 fibre (not meeting O) by '1 and '2. By construc-
tion, they also do not meet the generators of the trivial latticeV ofX/Q (embedded
into NS(X/F3)). Hence, they are orthogonal to NS(X/Q) ⊂ NS(X/F̄3). In the
next lemma we claim that this is already all of NS(X/F̄3).

Lemma 5.1. Let A2 denote the root lattice generated by '1 and '2. Then

NS(X/F̄3) ∼= NS(X/Q)⊕ A2.

The proof of this lemma will be directly derived from the following classical result.

Theorem 5.2 (Artin; Rudakov–Šafarevič). Let X be a supersingular K3 sur-
face over a field of characteristic p. Then

discr NS(X) = −p2σ0 for some σ0 ∈ {1, . . . , 10}.
Here, σ0 is called the Artin invariant.

As a consequence, in our situation we have discr NS(X/F̄3) = −32σ0 for some
σ0 ∈ {1, . . . ,10}. But then the previous sublattice NS(X/Q) ⊕ A2 of NS(X/F̄3)

has rank 22 and discriminant −9. Since this is the maximal possible discriminant,
we deduce the equality of the two lattices. This proves Lemma 5.1.

Corollary 5.3. The supersingular K3 surfaceX/F3 has Artin invariant σ0 = 1.

We shall now prove Proposition 4.2 for p = 3. Since ρ(X/Q) = 20, the reduc-
tion of NS(X/Q) is clearly generated by divisors over F3. Using Lemma 5.1, we
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only have to study the field of definition of the two further generators '1,'2 of
NS(X/F3).

For this, consider the elliptic curve over F3(s) given by equation (3). It has non-
split multiplicative reduction at s = −1. More precisely, the components '1 and
'2 are conjugate in F3

(√−1
)
. In particular, their sum is defined over F3, while

the difference has eigenvalue −1 with respect to the conjugation. Hence, we de-
duce the claim of Proposition 4.2 that ρ(X/F3) = 21. This agrees with the Tate
conjecture and Theorem 4.4. We also see that ρ(X/F9) = 22.

Finally, we come to Shioda’s conjecture. By Lemma 5.1, we have

T3 = NS(X/Q)⊥ = A2 ⊂ NS(X/F̄3).

SinceA2 has intersection matrix
(−2 1

1 −2

)
, we deduce the validity of Conjecture 4.3

with m = 1.

6. NS(X)

To verify the conjectures for the reduction X2, we need a better knowledge of
NS(X) = NS(X/Q̄). To be precise, we want to express the sections of the origi-
nal fibration X over Q in terms of V ⊗Z Q. This is possible because the fibration
is extremal such that

MW(X) ∼= NS(X)/V

is only torsion. In terms of equation (3), the sections of the elliptic fibration X are
given by

MW(X) ∼= Z/4 = 〈P 〉 = 〈(−s, 0)〉 = {(−s, 0), (0, 0), (−s, s 3),O}.
They can be derived from the sections of Y ′, as given in [MP], by following them
through the base and variable changes. We will later see that MW(X) gives all
torsion sections of X/F̄2 upon reducing.

We want to express the sectionP as a Q-divisor inV⊗Z Q. This can be achieved
by determining the precise components of the singular fibres that P intersects.

In the I12 fibre above ∞, we number the components cyclically'0, . . . ,'11 such
that '0 meets O. The fibre of type I ∗

3 above 0 is sketched in Figure 1. As usual,
C0 denotes the component meeting O. The components Di have multiplicity 2.
The freedom of renumbering components is killed by the following elementary
observation.

�
�
�
�
�
� C3

�
�
�
�
�
�C2

❉
❉
❉
❉
❉
❉

❉
❉
❉
❉
❉
❉ C1C0

�
�

�
�

�
�

❅
❅

❅
❅

❅
❅

D3D0 D1 D2

Figure 1 The fibre of type I ∗
3 at 0
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Lemma 6.1. Up to renumbering, the section P meets the componentsC3 and '9.

Lemma 6.1 enables us to describe P in terms of the generators of the trivial lattice
V. Since P is given by polynomials (of low degree), it does not meet O. We will
use the Q-divisors

A = 1
4 ('1 + 2'2 + · · · + 9'9 + 6'10 + 3'11) and

B = 1
4 (2C1 + 4D0 + 6D1 + 8D2 + 10D3 + 5C2 + 7C3).

Corollary 6.2. In V ⊗Z Q, the section P is given as

P = O + 2F − A− B.

Proof. Since 4P ≡ 0 modulo V, it suffices to check the following intersection
numbers:

(P.O) = 0, (P.F ) = 1, (P.'i) = δi,9,

(P.Dj ) = 0, (P.Cj ) = δj,3, (P 2) = −2.

7. X/F2

In this section, we shall consider the elliptic K3 surfaceX/F2. This coincides with
the reduction X2 of X at 2. Reducing equation (3) modulo 2, we obtain the affine
equation

X/F2: y2 + s2xy = x3 + s2x. (6)

Recall that this has only two singular fibres. They sit at 0 and ∞ and have types
I ∗

3 and I12. Since 2 remains inert in Q
(√−3

)
, the local L-factor is given by

P2(X/F2, T ) = (1 − 2T )21(1 + 2T )

because of Corollary 3.2. In accordance with the Tate conjecture, we shall prove
that X is a supersingular K3 surface. To be precise, we claim the following.

Proposition 7.1. X/F2 is a supersingular K3 surface with Picard numbers

ρ(X/F2) = 21 and ρ(X/F4) = 22.

This proposition completes the proof of Proposition 4.2. It will be established
by finding explicit generators for NS(X/F̄2). In addition to the reduction of
NS(X/Q), we need two generators. By the formula of Shioda–Tate, these can
be given as sections of the elliptic fibration X/F̄2.

In detail, we compute some additional sections of X/F̄2 that are not derived
from MW(X/Q) by way of reduction. Then we determine two among them that
supplement NS(X/Q) to generate NS(X/F̄2). Let α be a generator of F4 over F2;
that is, α2 + α + 1 = 0. Among others, we found the following sections. Here,
the inverse refers to the group law on the generic fibre.
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Section Inverse

Q = (1,1) (1,1 + s2)

(s2, s2) (s2, s2 + s4 )

(s + s 3, s 3 + s4 ) (s + s 3, s4 + s 5)

R = (s + αs 3, α2s4 + αs 5) (s + αs 3, s 3 + α2s4 )

(1 + s4, 1 + αs2 + α2s6) (1 + s4, 1 + α2s2 + αs6)

We shall now prove that MW(X/F̄2) has rank 2 and can be generated by the sec-
tions Q and R together with the torsion section P. This will be achieved with the
help of the height pairing on the Mordell–Weil group, as introduced by Shioda in
[Sh1]. Let V denote the trivial lattice ofX/F2. This is exactly the reduction of the
trivial lattice of X/Q. The height pairing is defined via the orthogonal projection

ϕ : MW(X/F̄2) → V ⊥ ⊗Z Q ⊂ NS(X/F̄2)⊗Z Q.

This projection uses only the information concerning which (simple) component
of a reducible fibre a section meets.

Let (·.·) denote the intersection form on NS(X/F̄2)⊗Z Q. Shioda’s height pair-
ing is defined by

〈·, ·〉 : MW(X/F̄2) × MW(X/F̄2) → Q
P Q 	→ −(ϕ(P).ϕ(Q)).

The height pairing is symmetric and bilinear. It induces the structure of a posi-
tive definite lattice on MW(X/F̄2)/MW(X/F̄2)tor (the Mordell–Weil lattice). For
P, Q ∈ MW(X/F̄2), Shioda shows that

〈P, Q〉 = χ(OX)− (P.Q)+ (P.O)+ (Q.O)−
∑
v

contrv(P, Q).

Here the sum runs over the cusps, and contrv can be computed strictly in terms of
the components of the singular fibres that P and Q meet [Sh1, Thm. 8.6] (cf. [Sh1,
(8.16)]). The following lemma is easily checked.

Lemma 7.2. Q meets C0 and '8 while R intersects C3 and '1.

We are now in a position to compute the projections ϕ(Q) and ϕ(R). However,
we will postpone their explicit calculation, since we will need this only for the ex-
plicit verification of Shioda’s Conjecture 4.3. Here, we can use Shioda’s results
from [Sh1] to prove that NS(X/F̄3) is generated by the trivial lattice V and the
sections P, Q, and R.

Lemma 7.3. Let Q and R be the sections of X/F4 as specified before. Then( 〈Q,Q〉 〈Q,R〉
〈Q,R〉 〈R,R〉

)
= 1

3

(
4 2
2 4

)
.
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Proof. Since they are given by polynomials (of low degree), Q and R do not meet
O. For the self-intersection numbers, we thus miss only the contributions from the
singular fibres. These are derived from [Sh1, (8.16)] with the help of Lemma 7.2:

〈Q,Q〉 = 4 − 4 · 8

12
= 4

3
,

〈R,R〉 = 4 − 7

4
− 11

12
= 4

3
.

For the remaining entry, we must furthermore analyze the intersection of Q and
R. We need to find the common zeroes of

αs 3 + s + 1 = α(s + α2)(s2 + α2s + 1) and

αs 5 + α2s4 + 1 = α(s + 1)(s + α2)(s 3 + α2s + 1).

The elements of this factorization are irreducible over F4. Hence, the only common
zero is s = α2. Since this occurs with multiplicity 1, the intersection is transversal.
Hence, we deduce

〈Q,R〉 = 2 − 1 − 1 · 4

12
= 2

3
.

This finishes the proof of Lemma 7.3.

Proposition 7.4. NS(X/F̄2) has discriminant −4. It is generated by the triv-
ial lattice V and the sections P, Q, and R, so MW(X/F̄2) = MW(X/F4) =
〈P,Q,R〉.
Proof. Consider the lattice N generated by the trivial lattice V and the sections
P, Q, and R. Clearly, this is a sublattice of NS(X/F̄2). We can identify N ′ =
〈V,P 〉 ∼= NS(X/Q) ⊂ N. Recall that this sublattice has discriminant −3.

Next we use the orthogonal projection ϕ from NS(X/F̄2) to V ∨ ⊗Z Q. Since
P ∈V ⊗Z Q, it follows that

discrN = (discrN ′) det

(
(ϕ(Q).ϕ(Q)) (ϕ(Q).ϕ(R))

(ϕ(Q).ϕ(R)) (ϕ(R).ϕ(R))

)
.

By Lemma 7.3, the matrix has determinant 4
3 . Hence,N has discriminant −4 and in

particular rank 22. Since both values are the maximal possible (cf. Theorem 5.2),
we obtain N = NS(X/F̄2). The claim MW(X/F̄2) = 〈P,Q,R〉 then follows
from the formula of Shioda–Tate. This proves Proposition 7.4.

Proposition 7.4 implies Proposition 7.1. It verifies the Tate conjecture for X/F2r

with any r ∈ N. We also deduce the validity of Theorem 4.4. Furthermore, we
have seen that X2 has Artin invariant σ0 = 1.

We conclude this section by verifying Conjecture 4.3 for X/Q and its reduc-
tion at 2. Note that it suffices to consider NS(X/Q) and NS(X/F4). The dual of
NS(X/Q) will always refer to the embedding into NS(X/F4).

To give the explicit form of ϕ(Q) and ϕ(R), recall the Q-divisorsA and B from
Section 6. The projections are easily computed as
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ϕ(Q) = Q−O − 2F + 1
3 ('1 + 2'2 + · · · + 8'8 + 6'9 + 4'10 + 2'11),

ϕ(R) = R −O − 2F + B + 1
12 (11'1 + 10'2 + · · · +'11).

Since the denominators are divisible by 3, it follows that ϕ(Q),ϕ(R) /∈ NS(X/F4).

In other words,

〈ϕ(Q),ϕ(R)〉 � NS(X/Q)⊥ ⊇ 〈3ϕ(Q), 3ϕ(R)〉. (7)

We claim that

NS(X/Q)⊥ = 〈3ϕ(Q),ϕ(Q)+ ϕ(R)〉 = 〈3ϕ(R),ϕ(Q)+ ϕ(R)〉. (8)

Since the ranks are 2, the inequality of (7) implies that the claim is equivalent to

ϕ(Q)+ ϕ(R)∈ NS(X/F4).

Since P ≡ −A− B moduloV, it suffices to show that

ϕ(Q)+ ϕ(R) ≡ A+ B mod 〈V,Q,R〉.
Explicitly, we have

ϕ(Q)+ ϕ(R) = Q+ R − 2O − 4F + 1

12
(11'1 + 10'2 + · · · +'11)

+ B + 1

3
('1 + 2'2 + · · · + 8'8 + 6'9 + 4'10 + 2'11)

≡ B + 1

12

∑
j

(12 − j)'j + 1

3

∑
j

j'j

= B + 1

12

∑
j

(12 − j + 4j)'j

≡ B + 1

4

∑
j

j'j ≡ A+ B mod 〈V,Q,R〉.

This proves claim (8). We shall now verify Conjecture 4.3 for X/Q and its reduc-
tion at 2. Here T2 = 〈3ϕ(Q),ϕ(Q)+ ϕ(R)〉 with intersection form(

(3ϕ(Q).3ϕ(Q)) (3ϕ(Q).ϕ(Q)+ ϕ(R))

(3ϕ(Q).ϕ(Q)+ ϕ(R)) (ϕ(Q)+ ϕ(R).ϕ(Q)+ ϕ(R))

)

= −
(

12 6
6 4

)
= −2

(
6 3
3 2

)
∼ −2

(
2 1
1 2

)
.

Hence, Conjecture 4.3 holds with m = 2.

Remark 7.5. In [DK], Dolgachev and Kondō give several models of the super-
singular K3 surface in characteristic 2 with Artin invariant σ0 = 1. The most
natural might be the quasi-elliptic fibration

Z : y2 = x3 + t 2x + t11.

The only exceptional fibre of this fibration has type I ∗
16. This shows that
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NS(Z) = U ⊕D20.

We realize a F̄2-isomorphic fibration with the preceding exceptional fibre in terms
of our model X/F2 by giving an effective divisor L of type I ∗

16. Denote by ιR the
conjugate of the section R in F4 and by [3P ] the section (−s, s 3) (the inverse of P
with respect to the group law on the fibre). Recall that both R and ιR meet C3 and
'1 and that [3P ] meets C2 and '3 (see Figure 2 in Section 8). Thus the required
divisor L (over F2) is given by

L = R + ιR + 2('1 +'0 +'11 +'10 +'9 +'8 +'7 +'6 +'5 +'4

+'3 + [3P ] + C2 +D3 +D2 +D1 +D0)+ C0 + C1.

8. Twisting

This section concludes the investigation of the extremal elliptic K3 surface X by
commenting on twisting. Our aim is to show that the twists of the associated new-
form f with rational coefficients are in correspondence with twists of X. This is
nontrivial, since f admits cubic twists.

For the quadratic twisting, this is well known. For instance, it follows from
point counting that the twist of X over Q

(√
d

)
corresponds to the quadratic twist

f ⊗ (d/·). Note that there is a model of this twist over Q with bad reduction ex-
actly at 3 and the primes dividing the discriminant of Q

(√
d

)
.

We now come to the cubic twists. For X, they can be achieved by considering
the base change

πd : s 	→ ds 3

instead of the original π. Here, we can restrict to positive cube-free d. Let X(d )

denote the pull-back from the rational elliptic surface Y by πd. An affine model is
given by

X(d ): y2 + d 2s2xy = x3 + 2sx 2 + s2x. (9)

Of course, X(d ) has the same configuration of singular fibres as X and also in-
herits the trivial action of Gal(Q̄/Q) on NS(X(d )). By construction, it has bad
reduction exactly at the prime divisors of 3d.

For instance, consider the twist X(3). Since this has good reduction away from
3, the arguments of Section 3 apply to determine the associated newform. Recall
the Größencharakter ψf associated to the newform f. Counting points modulo 7,
we find thatX(3) corresponds to the twist ψf ⊗ (3/·)3 (with trace 11 at 7). We now
give the general statement.

Theorem 8.1. X(d) corresponds to the twist ψf ⊗ (d/·)3; that is, L(TX(d ) , s) =
L(ψf ⊗ (d/·)3, s).

The proof of this theorem is organized as follows. We exhibit another extremal el-
liptic fibration on the surfaces X(d ). This will have fibres with CM by Q

(√−3
)

such that we can perform the twisting fibrewise. Then the claim will follow.
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We want to give an elliptic fibration onX(d ) with the componentD0 as a section.
Therefore, we work with the affine equation of the first blow-up of the Weierstrass
model (9) at the D3 singularity:

y ′2 + d 2s2x ′y ′ = sx ′(x ′ + 1)2. (10)

Then D0 = {s = y ′ = 0}, so the fibration is the affine projection on the x ′-
coordinate. We employ the usual notation, replacing x ′ by t and likewise for s and
y ′. Then equation (10) becomes

y2 + d 2 tx 2y = t(t + 1)2x.

In order to obtain a projective model for this, we first homogenize

s 3y2z+ d 2s2 tx 2y = t(t + s)2xz2.

Then the change of variable y 	→ t+s
s
y gives

X(d ): s(t + s)y2z+ d 2stx 2y = t(t + s)xz2. (11)

This has six singularities, two in each fibre above 0, −1, and ∞. Their resolution
produces three fibres of type IV∗. These can be read off directly from the original
fibration. We sketch this in Figure 2.

Figure 2 The fibration on X(d ) with three fibres of type IV∗
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The sections of the new fibration areD0,'3, and'9, and the remaining compo-
nents form the three singular fibres of type IV∗. In particular, they are all defined
over Q, as we have already seen.

The smooth fibres of this new fibration are elliptic curves with CM by Q
(√−3

)
.

However, the impact of twisting on the associated newforms is not visible so far.
Therefore, we transform equation (11) into Weierstrass form. The procedure from
[C, Sec. 8] gives

X(d ): y2 + d 2s2 t 2(s + t)2y = x3.

By [IRo, 18, Thm. 4], the Größencharaktere associated to the smooth fibres are
twisted by (d/·)3 upon moving from X(1) to X(d ). Using the Lefschetz fixed point
formula, we can express the trace of Frobenius on TX(d ) as the sum of the traces
on the smooth fibres. Hence Theorem 8.1 follows.

Remark 8.2. From the classification of [S1], it follows that any newform of
weight 3 with rational coefficients and CM by Q

(√−3
)

can be realized geomet-
rically by some twist of X.

For the only other CM field with nonquadratic twists, Q
(√−1

)
, the correspond-

ing statement can be established using the Fermat quartic in P3.

Corollary 8.3. Up to the bad Euler factors, we have

ζ(X(d ), s) � ζ(s)ζ(s − 1)20L

(
ψf ⊗

(
d

·
)

3

, s

)
ζ(s − 2).
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