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A Proof of the Gap Labeling Conjecture

Jerome Kaminker & Ian Putnam

1. Introduction

The “gap labeling conjecture” as formulated by Bellissard [3] is a statement—
about the possible gaps in the spectrum of certain Schrödinger operators—that
arises in solid state physics. It has a reduction to a purely mathematical statement
about the range of the trace on a certain crossed-product C∗-algebra (see [13]).
By a Cantor set we mean a compact, totally disconnected metric space without
isolated points. A group action is minimal if every orbit is dense.

Theorem 1.1. Let � be a Cantor set and let � × Z
n → � be a free and min-

imal action of Z
n on � with invariant probability measure µ. Let µ : C(�) →

C and τµ : C(�) � Z
n → C be the traces induced by µ and denote likewise the

induced maps on K-theory. Then

µ(K0(C(�))) = τµ(K0(C(�) � Z
n)).

Note that K0(C(�)) is isomorphic to C(�,Z), the group of integer-valued con-
tinuous functions on�, and that the image underµ is the subgroup of R generated
by the measures of the clopen subsets of �.

We will give a proof of this conjecture in this paper. It was also proved in-
dependently by Bellissard, Benedetti, and Gambaudo [2] and by Benameur and
Oyono-Oyono [4].

The strategy of the proof is to use Connes’s index theory for foliations but in the
form presented in the book by Moore and Schochet [11]. In fact, this approach un-
derlies all three proofs [2; 4]. Thus, one may apply the index theorem to “foliated
spaces”, which are more general than foliations. These are spaces that have a cover
by compatible flow boxes as in the case of genuine foliations, except that the trans-
verse direction is not required to be R

n. In the case at hand it is a Cantor set.
There are two steps in the proof. The main one is to show that

τµ(K0(C(�) � Z
n)) ⊆ µ(K0(C(�))). (1.1)

This will be carried out in Section 4. The reverse containment is easier and is
proved in Section 2. The authors would like to thank Ryszard Nest for several
interesting discussions on this material.
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2. Index Theory for Foliated Spaces

We will work in a general framework based on the diagram below. Let � be a
Cantor set provided with a free, minimal action of Z

n and an invariant measure µ,
and let X = � ×Zn R

n be its suspension—that is, the quotient of � × R
n by the

diagonal action of Z
n. There is a free action of R

n on X defined by [x,w] · v =
[x,w + v].

There is a Morita equivalence (see [14]) between the C∗-algebras associated to
these group actions, C(�) � Z

n and C(X) � R
n, which we will need. It is de-

scribed in more detail in the proof of Proposition 2.1.
Consider the diagram

K0(C(�))
i∗−−→ K0(C(�)�Z

n)
m.e.−−→ K0(C(X)�R

n)
φc←−− Kn(C(X))

ch(n)−−→ Ȟ n(X;R)�µ
�τµ

�τ̃µ
�Cµ

R = R = R = R .

Here, the first horizontal arrow is induced by the inclusion ofC(�) inC(�)�Z
n,

the second is provided by the strong Morita equivalence between C(�)� Z
n and

C(X) � R
n, the third is Connes’s Thom isomorphism, and the fourth is the nth

component of the Chern character. The first vertical arrow is the map induced by
integration against the invariant measure, the second is the trace onC(�)�Z

n ob-
tained from the invariant measure on �, the third is induced by the trace obtained
from the associated invariant transverse measure on X, and Cµ is the homomor-
phism defined via evaluation on the associated Ruelle–Sullivan current. We claim
that this diagram commutes. The left square commutes by definition of the trace,
τµ. In what follows, the other two squares will be shown to commute: the sec-
ond by looking at the strong Morita equivalence and the third by application of the
index theory of foliated spaces.

Proposition 2.1. The diagram

K0(C(�) � Z
n)

m.e.−−→ K0(C(X)� R
n)�τµ �τ̃µ

R = R

(2.1)

commutes.

Proof. This is a standard fact, and a proof is sketched in [1]. We indicate a differ-
ent (but related) justification here.

The equivalence bimodule exhibiting the strong Morita equivalence between
C(�) � Z

n and C(X) � R
n is obtained (see [14]) by completing Cc(X × R

n).

Denote the resulting bimodule by E and the associated linking algebra [5] by A.

Recall that A can be viewed as being made up of 2× 2 matrices of the form[
a x

ỹ b

]
,
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where a ∈C(�)�Z
n, b ∈C(X)�R

n, x ∈ E, and ỹ ∈ E op. This can be completed
to a C∗-algebra, where the multiplication on the generators is given by[

a x

ỹ b

][
a ′ x ′

ỹ ′ b ′

]
=

[
aa ′ + 〈x, ỹ ′ 〉C(�)�Zn ax ′ + xb ′

ỹa ′ + bỹ ′ bb ′ + 〈ỹ, x ′ 〉C(X)�Rn

]
.

The algebra A contains both C(�)� Z
n and C(X)� R

n as full hereditary subal-
gebras, and hence the inclusions i1 : C(�) � Z

n → A and i2 : C(X) � R
n → A

induce isomorphisms on K-theory. The given traces on the subalgebras give rise
to a trace on A via τ

([ a x

ỹ b

]) = τµ(a)+ τ̃µ(b). The verification that this is in fact
a trace requires checking that

τµ(aa
′ + 〈x, ỹ ′ 〉C(�)�Zn)+ τ̃µ(bb ′ + 〈ỹ, x ′ 〉C(X)�Rn)

= τµ(a
′a + 〈x ′, ỹ〉C(�)�Zn)+ τ̃µ(b ′b + 〈ỹ ′, x〉C(X)�Rn).

This, in turn, comes down to showing that

τµ(〈x, ỹ ′ 〉C(�)�Zn) = τ̃µ(〈ỹ ′, x〉C(X)�Rn)

τµ(〈x ′, ỹ〉C(�)�Zn) = τ̃µ(〈ỹ, x ′ 〉C(X)�Rn).

Each of these is a direct computation from the definitions of the pairings and the
map τ̃µ.

It is easy to check that τ(i1∗(a)) = τµ(a) and τ(i2∗(b)) = τ̃µ(b). Since the
isomorphism on K-theory induced by the strong Morita equivalence is given by
i2
−1
∗ i1∗, the result follows.

Since we will be using the theory of foliated spaces in the sense of Moore and
Schochet [11], we make the following observation about the suspension, X.

Proposition 2.2. The suspension X, provided with its canonical R
n-action, is

a compact foliated space with transversal a Cantor set and invariant transverse
measure obtained from µ.

We will have need of Connes’s Thom isomorphism theorem for C(X) � R
n. It

follows from the work of Fack and Skandalis [9] that the isomorphism is induced
by Kasparov product with a KK-element obtained from the Dirac operator along
the leaves of the foliated space X. Denoting Connes’s Thom isomorphism by
φc : K0(C(X)� R

n)→ Kn(C(X)), one has the following description.

Proposition 2.3. The map φc is given by Kasparov product with the element

[/∂]∈KKn(C(X), C(X)� R
n)

obtained from the Dirac operator along the leaves of the foliated space. Thus, for
an element [E ]∈K0(C(X)),

φc([E ]) = Indexan([/∂ ⊗ E ])∈Kn(C(X)� R
n).

Proof. This follows from [9].
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Finally, we shall use the version of Connes’s foliation index theorem as presented
by Moore and Schochet in [11]. The theorem provides a topological formula for
the result of pairing the analytic index of a leafwise elliptic operator with the trace
associated to a holonomy-invariant transverse measure. The topological side is
obtained by pairing a tangential cohomology class with the Ruelle–Sullivan cur-
rent associated to the invariant transverse measure.

The Ruelle–Sullivan current may be viewed as a homomorphism

Cµ : H ∗τ (X)→ R,

where H ∗τ (X) is tangential cohomology [11]. This is essentially de Rham coho-
mology constructed from forms that are smooth in the leaf direction yet are con-
tinuous only transversally. It is related to the Čech cohomology of X by a natural
map r : Ȟ ∗(X)→ H ∗τ (X), which in general is neither injective nor surjective.
However, this allows one to extend Cµ to Ȟ(X) as Cµ � r. Moreover, for a fo-
liated space such as X, there is a tangential Chern character chτ : K∗(C(X)) →
H ∗τ (X) obtained by applying Chern–Weil to a leafwise connection. It is related to
the usual Chern character via r � ch = chτ . With this notation at our disposal, we
have the following result.

Proposition 2.4. Let Cµ be the Ruelle–Sullivan current associated to the in-
variant transverse measure µ, and let ch(n) denote the component of the Chern
character in Ȟ n(X). Then

τ̃µ(Indexan([/∂ ⊗ E ])) = Cµ � r � ch(n)([E ]).

Proof. This is an application of the foliation index theorem [6; 11]. By that theo-
rem it is sufficient to show that the right-hand side is what one obtains by pairing
the index cohomology class with the Ruelle–Sullivan current. In general, the index
class is represented by the tangential form

ch(E) ∧ ch(σ(/∂)) ∧ T d(TF ⊗ C) = ch(E) ∧ Â(TF ).

Note that Â(TF ) is a polynomial in the Pontryjagin forms, obtained from a con-
nection that can be chosen to be flat along the leaves and hence is equal to 1. We
know that r � ch(E)∈H ∗τ (X) and so, taking into account that the homomorphism
induced by the Ruelle–Sullivan current is zero except in degree n, we have

Cµ
(
ch(E) ∧ ch(σ(/∂)) ∧ T d(TF ⊗ C)

) = Cµ � r � ch(n)(E),

as required.

Given the foregoing results, the commutativity of the main diagram follows easily.
Indeed, the commutativity of the right-hand rectangle is precisely the statement in
Proposition 2.4.

We record the following fact, observed previously.

Proposition 2.5. µ(K0(C(�))) ⊆ τµ(K0(C(�) � Z
n)).
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It remains to verify the other containment,

τµ(K0(C(�) � Z
n)) ⊆ µ(K0(C(�))), (2.2)

which will be done in the next section.

3. Construction of a Transfer Map

In this section we will provide the tool that enables the verification of (2.2). To
accomplish this we will use the map (described in Connes’s book [7 p. 120]) that
associates—to a clopen set in a transversal to a foliation—a projection in its foli-
ation algebra:

α : K0(C(�))→ K0(C(X)� R
n).

The modifications necessary to apply to the foliated space in question are routine.
It will be used to relate Bott periodicity for C(�) to Connes’s Thom isomorphism
for C(X) � R

n.

Consider the transversal � × {(
1
2 ,

1
2 , . . . ,

1
2

)} ⊆ X. Let U be a clopen set of �
and let χU be its characteristic function. We recall the description of the associ-
ated projection in C(X) � R

n.

We may define a function

eU : � × [0,1]× R
n→ R,

which will yield an element of C(X) � R
n. Toward this end, let f : R

n → R be
a continuous function with support in the cube of side 1

4 centered at
(

1
2 ,

1
2 , . . . ,

1
2

)
and satisfying ∫

Rn

f(x)2 dx = 1. (3.1)

Set
eU (x, t, s) = χU(x)f

(
t − 1

2

)
f
(
t − 1

2 − s
)
. (3.2)

Then it is easy to check that eU descends to a function on X × R
n that yields an

element of C(X) � R
n satisfying eU = e2

U = e∗U . We then set

α(χU) = eU . (3.3)

Proposition 3.1. The function α induces a homomorphism,

α : K0(C(�))→ K0(C(X) � R
n), (3.4)

for which the following diagram commutes:

K0(C(�))
α−−→ K0(C(X)� R

n)�µ �τ̃µ
R = R .

(3.5)
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Proof. For the relation with the traces, we note that

τ̃µ(eU ) =
∫

Rn

eU (x, t, 0) dµ(x) dt

=
∫

Rn

χU (x)f(t)f(t) dt dµ(x) = µ(U). (3.6)

Showing that α provides a well-defined homomorphism is straightforward.

The main property of α is provided by the following result. Let π : � × R
n →

X be the quotient map. Let L be the union of all hyperplanes parallel to the
coordinate axis and going through points of Z

n, and set A = π(� × L). Let
j : X \A→ X be the inclusion of the open set X \A, which will induce a homo-
morphism j∗ : C0(X \ A)→ C(X). Note that C0(X \ A) ∼= C0(� × (0,1)n) ∼=
C0(�×R

n). We can now relate the map α to Bott periodicity and Connes’s Thom
isomorphism.

Proposition 3.2. There is a commutative diagram,

K0(C(�))
α−−→ K0(C(X) � R

n)�β φc
Kn(C0(X \ A)) j∗−−→ Kn(C(X)),

(3.7)

where φc is Connes’s Thom isomorphism and β is the Bott periodicity map.

Proof. We will deform the action ( : X × R
n → X as follows. Let θr : R

n →
[0,1] be a family of continuous functions that (i) are periodic with respect to trans-
lation by Z

n, (ii) have fundamental domain [0,1]n, and (iii) on that fundamental
domain satisfy:

(a) θr(�v) = 1 on
[

1
4 ,

3
4

]n;
(b) θr(�v) decreases to r on ∂[0,1]n for �v ∈ [0,1]n \ [

1
4 ,

3
4

]n; and
(c) θr(�v) > 0 if �v /∈L.

Set (r([z, �v], �w) = [z, �v − θr(�v) �w]. Here [z, �v] denotes a point in � ×Zn R
n.

Then it is easy to check that the family (r has the following properties:

(i) (1 is the given translation flow on X;
(ii) (r is the given translation flow on

[
1
4 ,

3
4

]n ⊆ X for all 0 ≤ r ≤ 1;
(iii) (0 leaves the subset A ⊆ X pointwise fixed; and
(iv) (0 on X \ A is conjugate to 1× translation on � × R

n.

It will be shown that the map α constructed with the action (0 agrees with φcj∗β,
which will prove the proposition.

The family (r can be used to define an action ([0,1]×X)×R
n→ [0,1]×X

via the formula
((x, r) = (r,(r(x)).
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Consider the following commutative diagram:

K0(C(�))
e0←−− K0(C(� × [0,1]))

e1−−→ K0(C(�))�β �β �β
K0(C0(� × (0,1)n)) e0←−− K0(C0(� × (0,1)n × [0,1]))

e1−−→ K0(C0(� × (0,1)n))�j∗ �j∗ �j∗
K0(C(X))

e0←−− K0(C(X × [0,1]))
e1−−→ K0(C(X))�φc,0

�φc �φc,1

K0(C(X)�(0 R
n)

e0←−− K0(C(X × [0,1])�( R
n)

e1−−→ K0(C(X)�(1 R
n).

The horizontal maps are induced by evaluation at 0 and 1 and are all isomor-
phisms. Moreover, except for the bottom row, the compositions ε1ε

−1
0 are the

identity homomorphism. The vertical maps φc,0, φc, and φc,1 are Connes’s Thom
isomorphism for the respective actions, and β denotes Bott periodicity.

Now, the composition on the left side takes an element [χU] to the element
α([χU]) = [eU]0 for the action (0. Further, since eU is supported where the ac-
tions (r all agree, we have ε1ε

−1
0 ([eU 0 ]) = [eU1]. But then, by commutativity of

the diagram, the result follows.

4. The Gap Labeling Theorem

In this section we will complete the proof of the main theorem. Recall that we
must show the containment

τµ(K0(C(�) � Z
n)) ⊆ µ(K0(C(�))).

As a preliminary step, we look carefully at the following diagram:

K0(C0(X \ A)) j∗−−→ K0(C(X))�ch(n)
�ch(n)

Ȟ n(X/A)
j∗−−→ Ȟ n(X).

(4.1)

We now proceed by first making two observations, as follows.

Proposition 4.1. The map ch(n) : K0(C0(X \ A)) → Ȟ n(X/A) is an isomor-
phism.

Proof. The space (X \ A)+ ∼= (� × R
n)+ is the inverse limit of finite wedges of

n-dimensional spheres. This is because �, as a Cantor set, is the inverse limit of
finite sets. Since chn is an isomorphism on each of the finite wedges, passing to
the limit yields the result.
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Proposition 4.2. The map j ∗ : Ȟ n(X/A)→ Ȟ n(X) is onto.

Proof. The map j ∗ fits into the long exact sequence of the pair (X,A), and the
next term is Ȟ n(A). Recall that the definition of cohomological dimension of a
space X is

dimR(X) = sup{k | Ȟ k(X,B;R) �= 0 for some B ⊆ X}. (4.2)

Thus, it will be sufficient to show that dimR(A) < n (see [8]).
We observe thatA =⋃n

i=1π(�×R
n−1
(i) ),where π : �×R

n→ X is the projec-
tion onto the quotient and R

n−1
(i) denotes the points with ith coordinate zero. Now,

π(� × R
n−1
(i) ) is the total space of a fiber bundle with base T n−1 and fiber a Can-

tor set C. This, in turn, is a finite union of compact sets, each homeomorphic to
Dn−1× C (where Dn−1 is an n− 1 disk) and with dimR(D

n−1× C) = n− 1 for
each set. Thus, dimR(π(� × R

n−1
(i) )) = n− 1 and hence dimR(A) = n−1, since

(again) the latter is a finite union of compact sets with that property. (See [8] for
the properties of cohomological dimension needed in this argument.)

Next we assemble a larger diagram that contains (3.7) and (4.1):

K0(C(�))
α−−→ K0(C(X) � R

n)
τ̃µ−−→ R�β (c

�
Kn(X,A)

j∗−−→ Kn(X) R�ch(n)
�ch(n)


Ȟ n(X,A)

j∗−−→ Ȟ n(X)
Cµ�r−−−→ R .

(4.3)

The top left-hand square commutes by Proposition 3.2, and the bottom left one
does so by naturality of the Chern character. The right-hand rectangle commutes
by the results in Section 2. Note that both vertical maps on the left are isomor-
phisms and that the bottom j ∗ is onto. We will now use this to obtain a proof of
the gap labeling conjecture.

Theorem 4.3. Let Z
n act minimally on a Cantor set �. Consider the diagram

K0(C(�)) −−→ K0(C(�) � Z
n)�µ �τµ

R = R .

(4.4)

Then we have
µ(K0(C(�))) = τµ(K0(C(�) � Z

n)).

Proof. It is sufficient to show that, if λ = τµ(x) for some x ∈ K0(C(�) � Z
n),

then there exists a y ∈ K0(C(�)) with τµ(x) = µ(y). Toward this end, we let
x ′ be the element of K0(C(X) � R

n) such that τ̃µ(x ′) = τµ(x). We will find a
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y ∈K0(C(�)) with τ̃µ(x ′) = µ(y). Because the bottom j ∗ is onto in (4.3), there
is a y ∈K0(C(�)) such that (Cµ � r)j ∗ ch(n)β(y) = τ̃µ(x

′). But by the commuta-
tivity of the diagram we must also have τ̃µ(α(y)) = τ̃µ(x

′). By the basic property
of α this yields that µ(y) = τ̃µ(x

′), which equals τµ(x).

5. A Remark on Tilings and Dynamics

Bellissard’s original formulation of the gap labeling problem was for aperiodic
tiling systems. However, we will show that the setting of the problem as ad-
dressed in this paper (i.e., free, minimal actions of Z

n on Cantor sets) is actually
general enough to encompass many such tiling systems.

The following proof is based on two key ingredients: a result of Sadun and
Williams, and an observation that arose during a stimulating conversation involv-
ing Nic Ormes, Charles Radin, and the second author. For the terminology, please
refer to [10].

Theorem 5.1. Suppose that T is an aperiodic tiling that (a) satisfies the finite
pattern condition and the property of repetitivity and (b) has only finitely many
tile orientations. Suppose that 2 is the continuous hull associated with T, as de-
scribed in [10], together with the natural action of R

n. Then there is a Cantor set
�, with a minimal action of Z

n on it, such that C(2) � R
n and C(�) � Z

n are
strongly Morita equivalent.

Proof. The result of Sadun and Williams [15] states that there is a Cantor set �
provided with a minimal Z

n-action such that the space of the suspended action,
� ×Zn R

n, is homeomorphic to 2. Unfortunately, this homeomorphism is not a
conjugacy of the R

n actions. In order to get around this we will bring in the funda-
mental groupoids (cf. [12]) of each of these spaces. It is easy to see that the homeo-
morphism between the spaces induces an isomorphism between the C∗-algebras
of their fundamental groupoids.

Consider the fundamental groupoid of2,which we denote by3(2). There is a
map of the groupoid 2×R

n into 3(2) defined by sending a pair (T, x) to the ho-
motopy class of the pathα(t) = T+tx for t ∈ [0,1]. It follows from the structure of
the space2 that this map is an isomorphism of topological groupoids and hence in-
duces an isomorphism between their C∗-algebras. An analogous argument shows
that the same result holds for � ×Zn R

n. Thus, we have that C(�)� Z
n is strong

Morita equivalent to C(� ×Zn R
n)� R

n, which is isomorphic to C(2)� R
n.

6. Final Remarks

The three proofs of the gap labeling theorem have similarities. In particular, they
all make use of index theory for foliated spaces in various guises. There is even
a stronger parallel between the present proof and that of Benameur and Oyono-
Oyono [4]. Indeed, the fundamental difference appears when proving the existence
of an element of K0(C(�)) whose trace has the required value. We do this via
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noncommutative topological methods, while in [4] an analysis based on more tra-
ditional algebraic topology is used. The latter has the potential of providing more
detailed information, but this is not necessary for the present result.
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