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The Finer Geometry and Dynamics of
the Hyperbolic Exponential Family

Mariusz Urbański & Anna Zdunik

1. Introduction

Givenλ∈C \ {0}, let the entire functionfλ : C→ C be defined by the formula

fλ(z) = λez.
McMullen [Mc] proved that the Hausdorff dimension of the set of points escaping
to infinity under forward iterates offλ is equal to 2. In this paper we thoroughly
investigate the geometric (fractal) and dynamical structure of the complement (in
the Julia setJ(fλ)) of this set, which will be denoted in the sequel byJr(fλ).
Although our results apply to all functionsfλ with attracting periodic cycles, we
perform our analysis in great detail assuming thatλ ∈ (0,1/e) and treat the gen-
eral case briefly in Section 6. (In a forthcoming paper we treat in the same spirit a
large class of nonhyperbolic functionsfλ, including the case whenλ∈ [1/e,∞).)
Sincef is periodic with period 2πi, it is natural to identify points that differ by
2kπi and to consider (instead off ) the mapF, our main technical device, defined
on some stripP of height 2π. Armed with the mapF and the concept of tight-
ness, we prove the existence and uniqueness of a probability conformal measure
m (with an exponent greater than 1) forF and aσ -finite conformal measure forf.
This powerful tool enables us in turn to prove thathλ, the Hausdorff dimension of
the setJr(fλ), is less than 2, that thehλ-dimensional Hausdorff measure ofJr(fλ)
is positive and finite on each horizontal strip, and that thehλ-dimensional packing
measure ofJr(fλ) is locally infinite at each point ofJr(fλ).

The fact thathλ < 2 shows in particular that the equality of the hyperbolic di-
mension and the Hausdorff dimension, conjectured in the theory of iteration of
rational functions, fails in the context of transcendental entire functions.

Turning toward dynamics, we prove the existence and uniqueness of a Borel
probabilityF -invariant ergodic measure equivalent with the conformal measure
m. We do this by applying first the method of M. Martens to show the existence of
a σ -finite F -invariant conservative ergodic measure equivalent with the measure
m and then checking that this measure is finite.

Our paper is organized as follows. In Section 2 we prove that, for everyλ,

the Hausdorff dimension of the setJbd(fλ) = {z ∈ J(fλ) : {f n(z)} is bounded}
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228 Mariusz Urbański & Anna Zdunik

is larger than 1. This does not require any assumption about hyperbolicity. We
need this fact (which seems interesting in its own right) in Sections 2 and 6 for the
proof of the existence of a conformal measure and in Section 5 for the existence
of a Borel probabilityF -invariant ergodic measure equivalent with the conformal
measure. Notice that Theorem 2.1 was already proved in [Ka] for the case of an
attracting fixed point withλ real. In Sections 3–5 we give detailed proofs of the
result just described in the case whenfλ has an attracting fixed point andλ is real.
In Section 6 we show how to modify our arguments to make them work in the
general case of an attracting periodic orbit. In the Appendix (Section 7) we pro-
vide an alternative direct proof of the fact that the Hausdorff dimension of the set
Jr(fλ) is less than 2 without using the concept of conformal measures.

2. Bounded Orbits

Let
fλ(z) = λez, λ 6= 0.

We shall prove the following.

Theorem 2.1. If Jbd(fλ) is the set of all pointsz ∈ J(f ) such that{f nλ (z)}n≥0,

the forward orbit ofz, is bounded, thenHD(Jbd(fλ)) > 1.

Proof. Let logλ be the logarithm ofλ satisfying Im logλ ∈ (−π, π]. Fix R > 0
and consider the square

SR = (R, 2R)× (R, 2R).
Let5 = {z ∈C : 0 ≤ Arg(z) ≤ π/2} be the first quadrant. For everyk ∈Z con-
siderlk : 5→ C, the holomorphic branch of the map inverse to the mapz 7→ λez

given by the formula

lk(z) = −logλ+ log|z| + iArg(z)+ 2πik, 0 ≤ Arg(z) ≤ π/2.

If R > e|logλ| andk ≥ 1 thenlk(SR) ⊂ 5 and, for everyj ∈Z,
Re(lj(lk(z))) = log|lk(z)| − log|λ|

= log|−logλ+ log|z| + iArg(z)+ 2πik| − log|λ|.
Define the setIR to be

IR =
{
k ≥ 1 : R < log

(−|logλ| + ∣∣log
(√

2R
)+ 2πik

∣∣)− log|λ|

< log

(
|logλ| +

∣∣∣∣log
(
2
√

2R
)+ 5π

2
ik

∣∣∣∣)− log|λ| < 2R

}
and, for everyk ∈ IR, put

IR,k = {j ≥ 1 : R + 2π ≤ 2πj < 2R − 2π}.
Notice that for everyk∈IR, j ∈Z, andz∈SR, we haveR < Re(lj(lk(z))) < 2R;
if j ∈ IR,k, then
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cl(lj B lk(SR)) ⊂ SR.
We have produced in this way the finite family of maps

GR = {lj B lk : SR → SR}k∈IR,j∈IR,k .
Each mapg ∈ GR mapsSR conformally onto some topological disk whose clo-
sure is contained inSR. Moreover, there exists a neighborhoodV ⊃ SR such that
each mapg ∈GR extends conformally toV, and it is easy to see that

cl((lj B lk)(SR)) ∩ cl((lj ′ B lk ′)(SR)) = ∅
if (j, k) 6= (j ′, k ′). Indeed, applying (for variousk ∈ IR) lk to SR, we obtain a
collection of topological disks each of which is an image of the other by a trans-
lation z 7→ z + 2mπi for somem ∈ Z. Each of these disks is contained in some
horizontal strip of heightπ/2. It is therefore obvious that they are disjoint and that
there exists a neighborhoodV ⊃ SR such that thelk extend conformally toV and
lk(V ) ∩ lk ′(V ) = ∅. The setslj(lk(V )) ∩ lj ′(lk ′(V )) are disjoint fork 6= k ′ be-
causelk(V ) andlk ′(V ) were already disjoint. Also,lj(lk(V )) ∩ lj ′(lk(V )) = ∅
for j 6= j ′ becauselj andlj ′ are different branches off −1

λ . We define the compact
setJR as follows:

JR =
⋂
n≥0

⋃
gn

gn(SR),

where we take the union over all possible compositions

gn = gi1 B · · · B gin , gi1, . . . , gin ∈GR.
The mapfλ|JR : JR → JR is a conformal expanding repellor. In addition, it is

easy to see thatJR is a Cantor set. For everyt ∈R the topological pressurePR(t)
of the potential−t log|f ′λ| with respect to the repellorfλ|JR : JR → JR can be cal-
culated as follows:

PR(t) = lim
n→∞

1

n
log

∑
gn

‖(gn)′‖t ,

where once again we sum up over all possible compositions

gn = gi1 B · · · B gin , gi1, . . . , gin ∈GR.
It is well known (see [PU]; cf. [Bo]) that the Hausdorff dimensiont = HD(JR)

of JR is determined as the uniquet ∈R for whichPR(t) = 0. Since the function
t 7→ PR(t) is strictly decreasing, in order to prove that HD(JR) > 1 it is enough
to show thatPR(1) > 0. Indeed, forz∈ SR and allk ∈ IR, j ∈ IR,k, we have

|(lj B lk)′(z)| = 1

|lk(z)| · |z| ≥
1

2
√

2R|−logλ+ log|z| + iArg(z)+ 2kπi|
≥ 1

2
√

2R(|logλ| + |log|z| + iArg(z)+ 2kπi|)
≥ 1

2
√

2R
(|logλ| + ∣∣log|z| + 5

2kπi
∣∣) . (2.1)



230 Mariusz Urbański & Anna Zdunik

Let |(lj B lk)′| = inf{|(lj B lk)′(z)| : z∈ SR}. Fix t ≥ 0. Then, by (2.1),

PR(t) ≥ log
∑
k∈IR

∑
j∈IR,k
|(lj B lk)′|t

≥ log
∑
k∈IR

(
1

2
√

2R

)t
#IR,k

∣∣∣∣|logλ| + log
(
2
√

2R
)+ 5

2
πik

∣∣∣∣−t

≥ t log

(
1

2
√

2

)
− t logR + log

(
R

4π

)
+ log

∑
k∈IR

(
|logλ| +

∣∣∣∣log
(
2
√

2R
)+ 5

2
πk

∣∣∣∣)−t ,
where we have used the inequality #IR,k ≥ R/4π, which is true for allR large
enough. It follows from the definition ofIR that

(|logλ|+∣∣log
(
2
√

2R
)+ 5

2πik
∣∣) ≤

4πk, min(IR) ≤ e5R/4, and max(IR) ≥ e3R/2 for all R sufficiently large. Hence

PR(t)

≥ t log

(
1

2
√

2

)
− t logR + logR − log(4π)+ log

e3R/2∑
k=e5R/4

(4πk)−t

= t log

(
1

2
√

2

)
− log(4π)+ logR − t logR − t log(4π)+ log

e3R/2∑
k=e5R/4

k−t .

Therefore,

PR(1) ≥ log

(
1

2
√

2

)
− 2 log(4π)+ log

e3R/2∑
k=e5R/4

k−1

≥ log

(
1

2
√

2

)
− 2 log(4π)+ log( loge3R/2 − loge5R/4 − C)

= log

(
1

2
√

2

)
− 2 log 4π + log

(
1

4
R − C

)
,

whereC > 0 is a universal constant. ThusPR(1) > 0 for R large enough and,
consequently, HD(JR) > 1. By the definition of the setJR we haveJR ⊂ {z :
f 2n
λ (z) ∈ SR for all n ≥ 0}. Since|ez| = eRe(z), we conclude that the forward or-

bit of each point inJR is bounded for everyR > 0. SinceJR is contained in the
closure of fixed points (which are necessarily contracting) of all compositions of
maps forming the systemGR, it follows thatJR is also contained in the closure
of repelling periodic points off, which in turn is contained inJ(f ). HenceJR ⊂
J(f ) and so HD(Jbd(fλ)) > 1.

We should like to point out that this result overlaps with those proven in [Ka].
More precisely, it follows from Theorem 2 in [Ka] (even though it is not stated
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explicitly there) that forλ∈ (0,1/e)we have HD(Jbd(fλ)) > 1. Unlike [Ka], how-
ever, we do not assume thatλ is real and belongs to(0,1/e) nor that there exists
an attracting fixed point off.

The following observation, which concludes this section, can be deduced from
[Ka, Thm. 2].

Corollary 2.2. If λ∈ (0,∞), then

lim
λ→0

HD(Jbd(fλ)) = 1.

3. Existence of Conformal Measure

From now on until the last section we assume thatλ∈ (0,1/e). Thenf = fλ has
a unique attracting fixed point 0∈ Aλ, the basin of its immediate attraction, and
fλ|R has another (positive, repelling) fixed point, which we denote byq = qλ.

Standard straightforward calculations show that

{z : Re(z) < qλ} ⊂ Aλ.
Let

P = {z∈C : −π < Im(z) ≤ π}
and let

P+ = {z∈C : Re(z) ≥ q and Im(z)∈ (−π, π]}.
Fix M > qλ and set

PM = {z∈P : qλ ≤ Re(z) ≤ M}.
Let

π0 : C→ P

be the projection given byπ0(z) = w if and only ifw ∈P andez = ew. We define
the mapF = Fλ : P → P that we intend to work with by the formula

F(z) = π0(f(z)). (3.1)

In this section we construct a conformal measure for the mapF : P ∩ J(f )→
P ∩ J(f ). Recall that a Borel measurem is calledt-conformal(with t > 0) if,
for any Borel setA ⊂ P on whichF is injective, we have

m(F(A)) =
∫
A

|F ′|t dm.
We shall frequently use the following obvious fact without explicitly invoking it.

Theorem 3.1. For any conformal measurem for F : J(F ) → J(F ) and any
nonempty open subsetU of J(F ) (in the relative topology onJ(F )), m(U) > 0.

Here, instead of the rectanglePM, we consider a slightly modified rectangle. In-
deed, notice that there exists ap < q so close toq that, for everyM > q, the
set

P̃M =
{
z∈P : − 3

4π < Im z < 3
4π, p < Rez < M

}



232 Mariusz Urbański & Anna Zdunik

is disjoint from the forward orbit of 0 under iterates off. Consider the preimage
F −1(P̃M). This set is a union of infinitely many topological disksQi contained in
the strip−π

2 < Im z < π
2 (recall that the pointsz ∈ P such that|Im z| > π

2 are
mapped into the region Rez < 0, thus outsideP̃M). Moreover,

Qi ∩Qj = ∅.
Now we consider the finite family of disksQM

i whose closures are contained in
P̃M. In this way we obtain the finite iterated function system

φi : P̃M → QM
i ,

whereφi is an appropriate holomorphic branch ofF −1. Let JM be the limit set of
this system and letmM be the unique conformal measure. In this case this is simply
the normalized Hausdorff measure with the exponenthM equal to the Hausdorff
dimension ofJM.

Remark 3.2. We haveJM ⊂ JM+1 for all M large enough. In order to see this,
takeQM

i and letQM+1
i be the preimage of̃PM+1 under the same holomorphic

branchF −1∗ of F −1. Then, obviously,QM+1
i ⊃ QM

i . SinceF(QM+1
i \ QM

i ) ⊂
{z ∈ P̃M+1 : M < Rez ≤ M + 1} and since the derivative ofF −1∗ on {z ∈
P̃M+1 : M < Rez ≤ M +1} is bounded from above byC1M

−1, we conclude that
diam(QM+1

i \QM
i ) ≤ C2M

−1 for some appropriate constantsC1 andC2. Since
QM
i ⊂ {Rez ≤ M}, this implies that

QM+1
i ⊂ {Rez ≤ M +1}

for all M large enough. Hence, eachQM+1
i ⊃ QM

i is (see the definition) used in
the construction ofJM+1. Thus, the corresponding limit setJM+1 containsJM.

Remark 3.3. We haveJbd(f ) ∩ P = ⋃∞N=[q]+1JN and so, reasoning as in Re-
mark 3.2, it follows from that remark and Theorem 2.1 that there existh0 > 1 and
M0 such that, for everyM > M0, hM = HD(JM) > h0.

Proposition 3.4. The sequence of measuresmM (M ∈ N) is tight; that is, for
everyε > 0 there exists anM so large that, for everyN,

mN({z∈P : Rez > M}) < ε.

Proof. Fix ε > 0, M > 0, andN ≥ q. We shall estimate separately the measure
mN of two sets, which cover{z∈P : Rez > M}. First, we have

mN({x ∈ JN : ReF(x) ≥ M})
=
∑
k∈Z

mN({x ∈ JN : f(x)∈ [M,N ] × (−π, π] + 2kπi}).

If x ∈ JN andf(x)∈ [M,N ] × [−π, π] + 2kπi, then

|F ′(x)| = |f(x)| ≥ 1
2(M + π|k|) ≥ 1

2(M + |k|),
which gives
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mN({x : ReF(x) ≥ M}) ≤ 2
∞∑
k=0

mN({x : M ≤ Rex ≤ N}) · 2hN

(M + k)hN

≤ 2hN+1
∞∑
k=0

1

(M + k)hN , (3.2)

where, let us recall,hN is the exponent of the measuremN. By Remark 3.3 and
Remark 3.2 there exists aT > q such thathN ≥ hT > 1 for allN ≥ T . If N ≤
M, then

mN({z∈P : Rez > M}) = 0. (3.3)

If M ≥ T andN > M, then it follows from (3.2) that

mN({x : ReF(x) ≥ M}) ≤ 23

hN −1
M1−hN ≤ 23

hT −1
M1−hT . (3.4)

KeepingM ≥ T andN > M, we now estimate the measure of the second set:

mN({x : M < Rex < N and ReF(x) < M}).
If Rex > M, then |f(x)| > λeM and therefore|Im f(x)| ≥

√
λ2e2M −M 2.

Thus,

mN({x : M < Rex < N and ReF(x) < M})

≤ const.
∞∑

k≥(2π)−1
√
λ2e2M−M 2

(2πk)−hN

≤ const.· 1

hN −1
eM(1−hN )

≤ const.

hT −1
eM(1−hT ). (3.5)

Combining this with (3.3) and (3.4) yields

mN({x : Rex > M}) < ε

for all N and allM large enough.

Since the sequencemN is tight, it follows from Prochorov’s theorem that there
exists an increasing-to-infinity sequence{Ni}∞i=1 such that the sequence{mNi}∞i=1
weakly converges to some limit probability measurem. This is the measure we
are looking for. Put

J(F ) = P ∩ J(f ).
We shall prove the following.

Theorem 3.5. The measurem is h-conformal, whereh = lim i→∞ hNi and
m(J(F )) = 1.

Proof. SinceJM ⊂ J(F ), J(F ) is closed, andmM(JM) = 1 for everyM > p,

it immediately follows from the definition of the measurem thatm(J(F )) = 1.



234 Mariusz Urbański & Anna Zdunik

In view of Remark 3.2, the sequence{hN} is eventually nondecreasing and hence
the limit limN→∞ hN exists. Notice that each measuremN is hN -conformal for
F |JN but not forF itself (the setJN is not backward invariant). However, ifN is
large enough then, for every Borel setA ⊂ {z : Rez < N − 1} such thatF |A is
one-to-one, we have

mN(F(A)) =
∫
A

|F ′|hN dmN. (3.6)

To verify this, first we claim that

F(A) ∩ JN = F(A ∩ JN). (3.7)

Indeed,F(A ∩ JN) ⊂ F(A) ∩ F(JN) ⊂ F(A) ∩ JN . To see the opposite inclu-
sion, letx ∈F(A)∩JN . Takey ∈A such thatF(y) = x. LetQ be the component
of F −1(P̃N) containingy. We claim thatQ is entirely contained inP̃N , in other
words, thatQ is one of componentsQN

i used in the construction ofJN . Suppose,
to the contrary, thatQ intersects the line Rez = N. Then for somez ∈ Q we
have|f(z)| = |F ′(z)| = λeN . This means thatQ is contained in a component of

f −1(P++2kπi),wherek ≥ (2π)−1
√
λ2e2N −N 2. If N is large, this implies that

diam(Q) ≤ C N

λeN
< 1.

But Q contains a pointy ∈ A andA ⊂ PN−1. This contradiction shows thatQ
is entirely contained inP̃N , that is,Q is one of componentsQN

i used in the con-
struction ofJN . Sincex = F(y)∈ JN, this implies thaty ∈ JN . The formula (3.7)
is proved. Using (3.7), we can write

mN(F(A)) = mN(F(A) ∩ JN) = mN(F(A ∩ JN))
=
∫
A∩JN
|F ′|hN dmN =

∫
A

|F ′|hN dmN.

Since the sequence{mNi} converges weakly tom, we have

mNi(A)→ m(A)

for every Borel setA such thatm(∂A) = 0. In particular, this holds for every
bounded BorelA such thatm(∂A) = 0 andm(∂F(A)) = 0. For these setsA,
using (3.6) yields

m(F(A)) = lim
i→∞mNi(F(A)) = lim

i→∞

∫
A

|F ′|hNi dmNi

=
∫
A

|F ′|h dmNi +
∫
A

(|F ′|hNi − |F ′|h) dmNi .

The first summand converges to
∫
A
|F ′|h dm. The second summand can be esti-

mated by supA(|F ′|hNi − |F ′|h). This tends to zero, since|F ′| is bounded onA
andhNi → h. Hence

m(F(A)) =
∫
A

|F ′|h dm. (3.8)
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Now take an arbitrary Borel setA such thatF |A is injective; we can assume
thatA is bounded. SinceJ(F ) ⊂ {z : π/2 ≤ Im z ≤ π/2} and thus (in the ter-
minology of [DU1]) Sing(F : J(F ) → J(F )) = ∅, and sincem(J(F )) = 1, in
order to verify the equalitym(F(A)) = ∫

A
|F ′|h dm it is enough to invoke [DU1,

Lemma 2.4] and then apply (3.8).

The existence of a conformal measure leads to the following straightforward
corollary.

Corollary 3.6. There exists aσ -finite measurem̃, which ish-conformal for
f |J(f ).
Proof. Definem̃ on each stripPk = P + 2kπi asm B π, where (we recall)π is
the natural projection ofPk ontoP. Checking thatm̃ is f -conformal is straight-
forward. Indeed, assume first thatA ⊂ Pn for somen∈Z and thatf |A is injective.
LetZk = f −1(Pk) ∩ P for everyk ∈Z and letÃ = A− 2πin. Then

m̃(f(A)) = m̃(f(Ã)) =
∑
k∈Z

m̃(f(Ã ∩ Zk)) =
∑
k∈Z

m(π B f(Ã ∩ Zk))

=
∑
k∈Z

m(F(Ã ∩ Zk)) =
∑
k∈Z

∫
Ã∩Zk
|F ′|h dm =

∑
k∈Z

∫
Ã∩Zk
|f ′|h dm

=
∫
Ã

|f ′|h dm =
∫
A

|f ′|h dm̃.

Now letA ⊂ C be an arbitrary Borel set on whichf is injective, and letAk =
A ∩ Pk. SinceAk ∩ Aj = ∅ for k 6= j, we obtain

m̃(f(A)) =
∑
k∈Z

m̃(f(Ak)) =
∑
k∈Z

∫
Ak

|f ′|h dm̃ =
∫
A∈Z
|f ′|h dm̃.

This ends the proof.

Let
I∞(F ) =

{
z∈P : lim

n→∞F
n(z) = ∞

}
,

that is,I∞(F ) is the set of points escaping to infinity under forward iterates ofF.

Analogously define

I∞(f ) =
{
z∈P : lim

n→∞ f
n(z) = ∞

}
.

Let
Jr(F ) = J(F ) \ I∞(f ) and Jr(f ) = J(f ) \ I∞(F ),

and notice thatI∞(f ) ∩ P = I∞(F ).
Letm be theh-conformal measure constructed in Theorem 3.5. We shall prove

the following.
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Proposition 3.7. There exists anM > 0 such that, form-a.e.x,

lim inf
n→∞ ReF n(x) ≤ M.

In particular,m(I∞(F )) = 0 or equivalentlym(Jr(F )) = 1.

Proof. Put
YM = {z∈P : Rez > M}

and letB ⊂ YM be an arbitrary Borel set. We shall estimate from above the mea-
surem(B ∩ F −1(B)). We have

m(B ∩ F −1(B)) ≤ m(F −1(B)) =
∑
k∈Z

m(x : f(x)∈B + 2kπi)

If f(x)∈B + 2kπi, then

|F ′(x)| = |f ′(x)| = |f(x)| > (M 2 + k2)1/2.

Therefore,

m({x : F(x)∈B}) < 2
∞∑
k=0

m(B) · 1

(M 2 + k2)h/2
< const.·m(B)M1−h.

We thus obtain, in particular, that

m(B ∩ F −1(B)) <
C

Mh−1
m(B) (3.9)

for every Borel setB ⊂ YM and for some constantC independent ofM andB.
SinceB ∩ F −1(B) ⊂ YM, one can now use the estimate (3.9) to get inductively

m(B ∩ F −1(B) ∩ · · · ∩ F −n(B)) < (CM1−h)nm(B).

This implies that, for allM large enough,

m

( ∞⋂
n=0

F −n(YM)
)
= 0

and consequently

m

( ∞⋃
k=0

F −k
( ∞⋂
n=0

F −n(YM)
))
= 0.

The proof is finished.

Let us now show that the estimates used in Proposition 3.7 and Proposition 3.4
lead to the following.

Corollary 3.8.
m(YM) < Ce(1−h)M

for some constantC and allM ≥ 0 large enough.
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Proof. It follows from the proof of Proposition 3.7 that

m({x ∈ YM : F(x)∈ YM}) < m(YM)CM
1−h,

and by the proof of Proposition 3.4 (formula (3.5)), withmN replaced bym, we
have that

m({x ∈ YM : ReF(x) ≤ M}) < Ce(1−h)M.

These two sets cover the entire setYM. The first inequality says that (for allM
sufficiently large) the first set covers less than, say, half the measure ofYM. Thus,

m(YM) ≤ 2m({x ∈ YM : ReF(x) ≤ M}) < 2Ce(1−h)M

and the proof is complete.

4. Conformal, Hausdorff, and Packing Measures;
Hausdorff Dimension

Let againf = fλ, q = qλ, andF = Fλ. Recall that

J(F ) = J(f ) ∩ ([q,∞)× [−π, π]) = J(f ) ∩ ([q,∞)× [−π/2, π/2]).

Recall also that

P+ = {z∈C : Re(z) ≥ q and Im(z)∈ (−π, π]}.
Fix someR > q. Consider a countable partitionα = {An : n ≥ 0} of P+ de-

fined as follows:

A0 = {z∈P+ : Rez ≤ R},
A1= {z∈P+ : R < Rez ≤ R +1},
An = {z∈P+ : R + n−1< Rez ≤ R + n} for n ≥ 1.

We start this section with two technical lemmas.

Lemma 4.1. If the constantR is large enough(depending onλ), then for every
k ≥ 0 we have

F(Ak) ⊃ A0 ∪ A1∪ · · · ∪ Ak+1.

Proof. Let k ≥ 1. Thenf(Ak) is an annulus centered at 0 and bounded by two
circles of radiiλeR+k−1 andλeR+k.

Let z0 be the point in the outer circle such that Rez0 = λeR+k−1 and Imz0 >

0. A straightforward geometrical argument shows that ifR > 0 is taken so large
that

λeR+k−1
(√
e2 −1−1

)
> 4π for all k ≥ 1,

thenf(Ak) contains some rectangle

0< Rez < Rez0, Im z0 − 4π < Im z < Im z0.

If, moreover,R > 0 is taken so large that Rez0 = λeR+k−1 > k +1+ R, then
this rectangle contains some component of the setπ−1

0 (A0 ∪ · · · ∪ Ak+1). So, by
definition,
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F(Ak) ⊃ A0 ∪ · · · ∪ Ak+1.

It remains to check the case whenk = 0. But f(A0) is the annulus of inner radius
q and outer radiusλeR. If R is large, then this set containsA0 ∪ A1 = {z ∈ P :
q ≤ Rez < R +1}.
From now on in this section, fix the partitionα satisfying the statement of Lem-
ma 4.1. As an immediate consequence of this lemma we have the following.

Corollary 4.2. For everyk ≥ 0,

lim
n→∞m(F

n(Ak)) = 1.

Lemma 4.3. For everyx ∈ J(F ) and everyr > 0,

lim
n→∞m(F

n(B(x, r))) = 1.

Proof. For everyk ≥ 0, letAk(x) be the element of partitionα containingF k(x).

Denote byBk(x) the component ofF −k(Ak(x)) containingx. Since diameters
of Ak are bounded and sinceF is expanding on its Julia set, it follows that
diam(Bk(x))→ 0 ask →∞. Hence for somek ∈N we haveB(x, r) ⊃ Bk(x).
Thus, for everyn ≥ 0,

F n+k(B(x, r)) ⊃ F n+k(Bk(x)) ⊃ F n(Ak),

and the lemma follows from Corollary 4.2.

Let us now prove the following.

Theorem 4.4. Theh-conformal measurem is a uniquet-conformal measure for
F with t > 1. In addition, it is conservative and ergodic.

Proof. Suppose thatν is at-conformal measure forF with somet > 1. The same
proof as in the case of the measurem shows thatν(I∞(F )) = 0. Let Jr,N(F ) be
the subset ofJr(F ) defined as follows:z∈ Jr,N(F ) if the trajectory ofz underF
has an accumulation point in{Rez < N}. Obviously,

⋃
N Jr,N(F ) = Jr(F ) and,

by Proposition 3.7, there exists anM > 0 such thatν(Jr,M(F )) = m(Jr,M(F )) =
1. Fix z∈ Jr,N(F ). Then there existy ∈ J(F ) such that Rey < N and an increas-
ing sequence{nk}∞k=1 such thaty = lim k→∞ F nk(z). Now consider (fork large
enough) the setsF −nkz (B(y, π/4)) andF −nkz (B(y, π/(4K))), whereF −nkz is the
holomorphic inverse branch ofF nk defined onB(y, π/2) and sendingF nk(z) to
z; then, using conformality of measuresm andν along with Koebe’s distortion
theorem, we easily deduce that

BN(ν)
−1|(F nk )′(z)|−t ≤ ν(B(z, c|(F nk )′(z)|−1)) ≤ BN(ν)|(F nk )′(z)|−t (4.1)

and

BN(m)
−1|(F nk )′(z)|−h ≤ m(B(z, c|(F nk )′(z)|−1))

≤ BN(m)|(F nk )′(z)|−h (4.2)
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for all k ≥ 1 large enough, whereK = 16 is the constant appearing in the Koebe
distortion theorem and ascribed to the scale 1/2 and whereBN(ν) is some con-
stant depending onν andN. LetM be fixed as before. Fix nowE, an arbitrary
bounded Borel set contained inJr(F ), and letE ′ = E∩Jr,M(F ). Sincem is reg-
ular, for everyx ∈ E ′ there exists a radiusr(x) > 0 of the form from (4.1) such
that

m

( ⋃
x∈E ′

B(x, r(x))
∖
E

)
< ε. (4.3)

By the Besicoviˇc theorem (see [G]) we can now choose a countable subcover
{B(xi, r(xi))}∞i=1, r(xi) ≤ ε, from the cover{B(x, r(x))}x∈E ′ of E of multiplic-
ity bounded by some constantC ≥ 1 that is independent of the cover. Hence, by
(4.1), (4.2), and (4.3) we obtain

ν(E ′) = ν(E) ≤
∞∑
i=1

ν(B(xi, r(xi))) ≤ BM(ν)
∞∑
i=1

r(xi)
t

≤ BM(ν)BM(m)
∞∑
i=1

r(xi)
t−hm(B(xi, r(xi)))

≤ BM(ν)BM(m)Cεt−hm
( ∞⋃
i=1

B(xi, r(xi))

)
≤ CBM(ν)BM(m)εt−h(ε +m(E ′))
= CBM(ν)BM(m)εt−h(ε +m(E)). (4.4)

In the case whent > h, letting ε ↘ 0 yields ν(E) = 0 and consequently
ν(J(F )) = 0, which is a contradiction. We obtain a similar contradiction assum-
ing thatt < h and switching in (4.4) the roles ofm andν. Thust = h and, letting
ε ↘ 0, we obtain from (4.4) thatν(E) ≤ CBM(ν)BM(m)m(E). Exchangingm
andν, we obtainm(E) ≤ CBM(ν)BM(m)ν(E). These two conclusions, along
with the already mentioned fact thatm(Jr(F )) = ν(Jr(F )) = 1, imply that the
measuresm andν are equivalent with Radon–Nikodym derivatives bounded away
from zero and infinity.

Let us now prove that anyh-conformal measureν is ergodic. Indeed, suppose
to the contrary thatF −1(G) = G for some Borel setG ⊂ J(F )with 0< m(G) <

1. But then the two conditional measures

νG(B) = ν(B ∩G)
ν(G)

and νJ(F )\G(B) = ν(B ∩ J(F ) \G)
ν(J(F ) \G)

would beh-conformal and mutually singular; a contradiction.
If now ν is again an arbitraryh-conformal measure, then by a simple compu-

tation (based on the definition of conformal measures) we see that the Radon–
Nikodyn derivativeφ = dν/dm is constant on grand orbits ofF. Therefore, by
ergodicity ofm, we conclude thatφ is constantm-almost everywhere. Since both
m andν are probability measures, this implies thatφ = 1 a.e. and henceν = m.
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It remains to show thatm is conservative. We shall prove first that every for-
ward invariant(F(E) ⊂ E) subsetE of J(F ) is either of measure 0 or 1. Indeed,
suppose to the contrary that 0< m(E) < 1. Sincem(I∞(F )) = 0, it suffices to
show that

m(E \ I∞(F )) = 0.

Denote byZ the set of all pointsz∈E \ I∞(F ) such that

lim
r→0

m(B(z, r) ∩ (E \ I∞(F )))
m(B(z, r))

= 1. (4.5)

In view of the Lebesgue density theorem (see e.g. [Fe, Thm. 2.9.11]),m(Z) =
m(E). Sincem(E) > 0 we find at least one pointz ∈ Z. Sincez ∈ J(F ) \
I∞(F ), there existx ∈ J(F ) and an increasing sequence{nk}∞k=1 such thatx =
lim k→∞ F nk(z). Let

δ = min{π/8, q/4}.
Suppose thatm(B(x, δ) \ E) = 0. By conformality ofm, m(F(Y )) = 0 for all
Borel setsY such thatm(Y ) = 0. Hence,

0= m(F n(B(x, δ) \ E)) ≥ m(F n(B(x, δ)) \ F n(E))

≥ m(F n(B(x, δ)) \ E) ≥ m(F n(B(x, δ))−m(E) (4.6)

for all n ≥ 0. By Lemma 4.3, limn→∞m(F n(B(x, δ)) = 1. Then (4.6) implies
that 0≥ 1−m(E), which is a contradiction. Consequentlym(B(x, δ) \E) > 0.
Hence, for everyj ≥ 1 large enough,m(B(F nj(z),2δ) \E) ≥ m(B(x, δ) \E) >
0. Therefore, sinceF −1(J(F )\E) ⊂ J(F )\E, a standard application of Koebe’s
distortion theorem shows that

lim sup
r→0

m(B(z, r) \ E)
m(B(z, r))

> 0,

which contradicts (4.5). Thus eitherm(E) = 0 orm(E) = 1.
Conservativity is now straightforward. We need to show that, for every Borel

setB ⊂ J(F ) with m(B) > 0, we havem(G) = 0, where

G =
{
x ∈ J(F ) :

∑
n≥0

χB(F
n(x)) < +∞

}
.

Indeed, suppose thatm(G) > 0 and, for alln ≥ 0, let

Gn =
{
x ∈ J(F ) :

∑
k≥n

χB(F
n(x)) = 0

}
= {x ∈ J(F ) : F k(x) /∈B for all k ≥ n}.

SinceG =⋃n≥0Gn, there exists ak ≥ 0 such thatm(Gk) > 0. Since all the sets
Gn are forward invariant, we conclude thatm(Gk) = 1. But on the other hand, all
the setsF −n(B), n ≥ k, are of positive measure and are disjoint fromGk. This
contradiction finishes the proof.
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In the proof of the following theorem (as well as in the proofs of Proposition 4.8
and Theorem 4.9) we use various forms of the converse Frostman’s type lemmas
(see e.g. [DU3; PU, Chap. 6]).

Theorem 4.5. If λ∈ (0,1/e), then theh-dimensional Hausdorff measureHh of
Jr(F ) is finite, the measureHh of Jr(fλ) is σ -finite, and

hλ = HD(Jbd(fλ)) = HD(Jr(fλ)) < 2,

wherehλ is the exponent of the conformal measurem = mλ (see Theorem 3.5 and
Theorem 4.4).

Proof. Fix λ∈ (0,1/e). Putf = fλ andh = hλ. By the definition of the numbers
hN (see the beginning of Section 4) and Theorem 3.5,h ≤ HD(Jbd(f )). It follows
from (4.1) applied with the measurem that theh-dimensional Hausdorff measure
Hh(Jr,M(F )) is finite. Sincem(JN,r (F ) \ Jr,M(F )) = 0, we deduce in a similar
way (using again (4.1)) that Hh(Jr,N(F ) \ Jr,M(F )) = 0 for all N > M. Since⋃
N≥M Jr,N(F ) = Jr(F ), we thus conclude that Hh(Jr(F )) = Hh(Jr,M(F )) <

∞ and consequently HD(Jr(F )) ≤ h.
SinceJr(f ) =⋃n∈Z(Jr(F )+2πin),we thus conclude that Hh|Jr (f ) isσ -finite

and that HD(Jr(f )) ≤ h. It therefore remains to demonstrate that HD(Jr(F )) <
2. For otherwise, it would follow from (4.1) and (4.4), with the measureν replaced
bym andm replaced by planar Lebesgue measure, that the planar Lebesgue mea-
sure ofJr(F ) is positive. This would, however, contradict McMullen’s result
[Mc], which finishes the proof.

An alternative direct proof—not using the concept of conformal measures—of
the fact that HD(Jr(fλ)) < 2 is provided in Corollary 7.3. Recall that in [DU2]
(cf. [PU]) the dynamical dimension, proven in [PU] to be equal to the hyper-
bolic dimension, was defined as the supremum of Hausdorff dimensions of all
probability-invariant ergodic measures with positive entropy. It has been conjec-
tured that, in the case of rational functions, the dynamical dimension and the Haus-
dorff dimension of the Julia set coincide. Since each Borel probabilityfλ-invariant
measure is (by Poincaré’s recurrence theorem) supported onJr(f ), as an immedi-
ate consequence of Theorem 4.5 we get the following corollary, which disproves
this conjecture in the case of transcendental entire functions.

Corollary 4.6. If λ∈ (0,1/e), then the supremum of Hausdorff dimensions of
all probabilityfλ-invariant ergodic measures is less than the Hausdorff dimension
of the Julia set offλ.

Theorem 4.7. The functionλ 7→ HD(Jr(fλ)) is continuous in the interval
(0,1/e).

Proof. Fix λ ∈ (0,1/e) and a sequnceλn ∈ (0,1/e) converging toλ. Since there
exist quasiconformal conjugacies between the mapsfλn andfλ with dilation con-
stants converging to 1 whenn→∞, the required fact follows.
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Let Ph be theh-dimensional packing measure (see [TT]; cf. e.g. [PU] for its defi-
nition and some basic properties). The last three results of this section provide (in
a sense) a complete description of the geometrical structure of the setsJr(F ) and
Jr(f ), and they also exhibit the geometrical meaning of theh-conformal mea-
surem.

Proposition 4.8. We havePh(Jr(f )) = ∞; in fact,Ph(G) = ∞ for every open
nonempty subset ofJr(f ).

Proof. Sincem(Jr(F )∩(P \PM)) > 0 for everyM ∈R, it follows from Birkhoff ’s
ergodic theorem and Theorem 5.2 (whose proof is obviously independent of the
results proven in the remainder of this section) that there exists a setE ⊂ Jr(F )
such thatm(E) = 1 and

lim sup
n→∞

ReF n(z) = ∞ (4.7)

for everyz∈E. Fix z∈E andn ≥ 1, and consider the ballB(z,K−1|(F n)′(z)|−1),

whereK = 16 is the Koebe constant corresponding to the scale 1/2. Then

B(z,K−1|(F n)′|(z)|−1) ⊂ F −nz (B(F n(z),1)),

whereF −nz : B(F n(z),1) → C is the analytic inverse branch ofF n mapping
F n(z) to z. Applying Koebe’s distortion theorem, conformality of the measurem,

and Corollary 3.8, we obtain

m(B(z,K−1|(F n)′(z)|−1)

≤ Kh|(F n)′(z)|−hm(B(F n(z),1))

≤ K2h(K−1|(F n)′(z)|−1)hm(YReF n(z)−1)

≤ K2hC exp((1− h)(ReF n(z)−1))(K−1|(F n)′(z)|−1)h.

Hence, using (4.7), we conclude that

lim inf
r→0

m(B(z, r))

r h
= 0.

Sincem(G ∩ Jr(F )) > 0 for every nonempty open subset ofJr(F ), this im-
plies (see an appropriate converse Frostman’s type lemma in [DU3] or [PU]) that
Ph(G) = ∞. SinceJr(f ) =⋃k∈Z(Jr(F )+ 2πik), we are therefore done.

Theorem 4.9. 0< Hh(Jr(F )) <∞.
Proof. We know from Theorem 4.5 that Hh(Jr(F )) <∞, so we need only show
that Hh(Jr(F )) > 0. We havem(Jr(F )) = 1 and thus it suffices to demonstrate
that, for everyz∈ Jr(F ) and allr > 0 sufficiently small (depending onz),

m(B(z, r)) ≤ Crh
for some constant 0≤ C <∞ independent ofz andr. Indeed, put

θ = min{π,dist(J(F ), {f k(0) : k ≥ 0})}.
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Fix z∈ Jr(F ), 0< r ≤ θ(32|f ′(z)|)−1. SinceF : J(F )→ J(F ) is an expanding
map, there exists a largestn ≥ 1 such that

r|(f n)′(z)| ≤ θ

32
. (4.8)

Thus

r|(f n+1)′(z)| > θ

32
. (4.9)

It follows from the definition ofθ that the holomorphic inverse branchf −nz :
B(f n(z), θ) → C of f n, sendingf n(z) to z, is well-defined. Sincef |B(f n(z),θ)
is one-to-one and since, by Koebe’s1

4-theorem,f(B(f n(z), θ)) ⊃ B
(
f n+1(z),

1
4θ |f ′(f n(z))|

)
, we conclude that the holomorphic inverse branchf −(n+1)

z :
B
(
f n+1(z), 1

4θ |f ′(f n(z))|
)→ C of f n+1,mappingf n+1(z) to z, is well-defined.

Since

4r|(f n+1)′(z)| = 4r|(f n)′(z)| · |f ′(f n(z))| = θ( 32
θ
r|(f n)′(z)|) · 1

8|f ′(f n(z))|
and since, by (4.8),32

θ
r|(f n)′(z)| ≤ 1, we conclude that

4r|(F n+1)′(z)| ≤ 1
8θ |f ′(f n(z))|.

Applying Koebe’s1
4-theorem again, we see that

f −(n+1)
z (B(f n+1(z),4r|(f n+1)′(z)|)) ⊃ B(z, |(f n+1)′(z)|−1r|(f n+1)′(z)|)

= B(z, r).
The ballB(f n+1(z),4r|(f n+1)′(z)|) intersects at most12π 4r|(f n+1)′(z)| + 1 ≤
r|(f n+1)′(z)| horizontal strips of the form 2πik + P (k ∈ Z); therefore, using
Koebe’s distortion theorem,h-conformality of the measurẽm, and (4.9), we obtain

r−h(m(B(z, r))

≤ r−hKh|(f n+1)′(z)|−h(r|(f n+1)′(z)|)m(π0(B(f
n+1(z),4r|(f n+1)′(z)|)))

≤ r−hKh|(f n+1)′(z)|−h(r|(f n+1)′(z)|)
= Kh(r|(f n+1)′(z)|)1−h ≤ Kh

(
32
θ

)h−1
,

whereK = 16 is the Koebe constant corresponding to the scale 1/2. We are done
by applying an appropriate converse Frostman’s type lemma.

As an immediate consequence of this theorem we obtain the following.

Corollary 4.10. Theh-dimensional Hausdorff measure of the setJr is positive.

5. Invariant Measures

In order to proveTheorem 5.2, we must apply a general sufficient condition (proven
in [Ma]) for the existence ofσ -finite absolutely continuous invariant measure. In
order to formulate this condition, supposeX is aσ -compact metric space,ν a Borel
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probability measure onX that is positive on open sets, and that a measurable map
T : X → X is given with respect to which the measureν is quasi-invariant, that
is, ν B T −1� ν. Moreover, we assume the existence of a countable partitionα =
{An : n ≥ 0} of subsets ofX that are allσ -compact and of positive measureν.
We also assume thatν

(
X
∖ ⋃

n≥0An
) = 0, and if there exists ak ≥ 0 such that

ν(T −k(Am) ∩ An) > 0 for all m, n ≥ 1,

then the partitionα is calledirreducible. Martens’s result reads as follows.

Theorem 5.1 [Ma, Prop. 2.6, Thm. 2.9]. Suppose thatα = {An : n ≥ 0} is an
irreducible partition forT : X → X, and suppose thatT is conservative and er-
godic with respect to the measureν. If for everyn ≥ 1 there existsKn ≥ 1 such
that for all k ≥ 0 and all Borel subsetsA ofAn we have

K−1
n

ν(A)

ν(An)
≤ ν(T −k(A))
ν(T −k(An))

≤ Kn ν(A)
ν(An)

,

thenT has aσ -finite T -invariant measureµ that is absolutely continuous with
respect toν. In addition,µ is equivalent withν, conservative and ergodic, and
unique up to a multiplicative constant. Moreover, for every Borel setA ⊂ X,

µ(A) = lim
n→∞

∑n
k=0 ν(T

−k(A))∑n
k=0 ν(T

−k(A0))
.

The main result of this section is the following.

Theorem 5.2. There exists a probabilityF -invariant measureµ that is abso-
lutely continuous with respect toh-conformal measurem. In addition,µ is equiv-
alent withm and ergodic.

Proof. Let us first prove that there exists aσ -finite ergodicF -invariant measure
µ that is equivalent withm. Let α be the partition constructed at the beginning of
Section 4 with the constantR > 0 sufficiently large (as required in Lemma 4.1).
In view of Koebe’s distortion theorem, there exists a constantK ≥ 1 such that,
if F −n∗ : P → P is a holomorphic branch ofF −n, then for everyk ≥ 0 and all
x, y ∈Ak we have

|(F −n∗ )′(y)|
|(F −n∗ )′(x)| ≤ K. (5.1)

We thus obtain, for all Borel setsA,B ⊂ Ak with m(B) > 0 and alln ≥ 0, that

m(F −n∗ (A))

m(F −n∗ (B))
=
∫
A
|(F −n∗ )′|h dm∫

A
|(F −n∗ )′|h dm ≤

supAk{|(F −n∗ )′|h}m(A)
infAk{|(F −n∗ )′|h}m(B) ≤ K

hm(A)

m(B)
.

Therefore,

m(F −n(A)) =
∑
∗
m(F −n∗ (A)) ≤

∑
∗
Khm(F −n∗ (B))

m(A)

m(B)

= Khm(F −n(B))
m(A)

m(B)
, (5.2)
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where the summation is taken over all holomorphic inverse branches ofF n. In
view of Lemma 4.3, for everyk ≥ 0 and everyl ≥ 0 there existnk,l ≥ 0 such that

F nk,l (Ak) ⊃ Al. (5.3)

Applying now (5.2) and (5.3) along with Theorem 4.4 and Theorem 5.1 concludes
the proof of the existence of the requiredσ -finite measureµ.

It only remains to show thatµ is finite. And indeed, fix 0< p < q with the
same requirements as in the definition ofP̃M in the beginning of Section 4. Each
holomorphic branchF −j∗ : P → P of F −j restricted to the setA0 ∪ A1 · · · ∪ An
extends in a holomorphically univalent fashion to the set{z ∈ C : p < Rez <
R + n + 1 and−2nπ ≤ Im z ≤ 2nπ}; hence it follows from Koebe’s distortion
theorem that there exists a constantC1 ≥ 1 such that, for everyn ≥ 0, all x ∈A0,

and ally ∈An, we have

|(F −j∗ )′(y)|
|(F −j∗ )′(x)| ≤ C1(Rn)

3.

Therefore, using Lemma 3.8, we obtain

m(F
−j
∗ (An))

m(F
−j
∗ (A0))

≤ C1(Rn)
3m(An)

m(A0)
≤ C1(Rn)

3Cm(A0)
−1e(1−h)Rn.

Hence
m(F −j(An))
m(F −j(A0))

≤ C1(Rn)
3Cm(A0)

−1e(1−h)(R+n−1)

and consequently, for everyk ≥ 0,∑k
j=0m(F

−j(An))∑k
j=0m(F

−j(A0))
≤ C1(Rn)

3Cm(A0)
−1e(1−h)(R+n−1).

Thus, applying Theorem 5.1 yields

µ(An) = lim
k→∞

∑k
j=0m(F

−j(An))∑k
j=0m(F

−j(A0))
≤ C1(Rn)

3Cm(A0)
−1e(1−h)(R+n−1).

SinceR > 0, we finally getµ(J(F )) =∑n≥0 µ(An) <∞. We are done.

6. General Hyperbolic Case

In this section we outline the argument showing that the phenomenon described
previously holds also for every mapfλ = λez such thatfλ has an attracting peri-
odic orbit.

We decided to write the details of the proof for the particular case of the attract-
ing fixed point because the dynamics is very simple in this case. On the other hand,
the extension of the arguments for the general hyperbolic case is rather straight-
forward, but it requires some extra information about the structure of the Julia set
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(see [BD]). So, in what follows we rely on the description given in [BD] as well
as the notation of that paper. We recall it briefly:z0, . . . , zn = z0 is an attract-
ing cycle off. Assume that the singular value 0 is contained in the domainA1,

the immediate basin of attraction ofz1. The topological diskBn+1 containingz1

is chosen so that 0∈ Bn+1 andf n(Bn+1) ⊂ Bn+1. ThenBn is defined asBn =
f −1(Bn+1). The setBn contains some half-plane Rez < −M andz0 ∈Bn.

For j = 1, . . . , n, let Bn−j be the connected component off −1(Bn−j+1) con-
tainingzn−j . Observe thatB1 is contained in the immediate basin of attraction of
z1 and thatBn+1⊂ B1. The setB0 containsBn, andf n(B0) = Bn.

For i < n, Bn−i is a simply connected unbounded set that is bounded by a sim-
ple curve—a “finger” in the terminology of [BD]. The setB0 is a complement of
a union of infinitely many such fingersFi. In order to build an appropriate dynam-
ics, we fix one component (finger)F0 of the complement ofB0 (obviously,Fi =
F0 + 2kπi; see [BD, Fig. 3]). Let

P = F0 \ π−1

( n−1⋃
i=1

Bi

)
,

whereπ is the natural projectionπ :
⋃
Fi → F0. Then

f(P ) ⊃
⋃
k

(P + 2kπi)

and, modifying the setP slightly, we can actually require that

f(P ) ⊃
⋃
k

(P + 2kπi).

Now,F : P ∩ f −1(π−1(P ))→ P is defined asF = π B f.
Let

J(F ) = {z∈P : F n is defined for alln ≥ 0}.
One can easily see that

J(f ) ∩ P = J(F ).
The whole construction given in previous sections can now be repeated. We omit
the details and summarize the results as follows.

Theorem 6.1. Assume that the mapf(z) = λez has an attracting periodic or-
bit. Denote by

Jr = {z∈ J(f ) : f n(z) does not tend to∞}.
Thenh = HD(Jr) < 2. Moreover, there exists ah-conformal measurem for the
mapF : J(F )→ J(F ) and aσ -finite conformal measurẽm for f : J(f )→ J(f )

satisfyingm̃(I∞(f )) = 0. Theh-dimensional Hausdorff measure ofJ(F ) is finite,
whereas theh-dimensional packing measure is infinite. There exists a probability
ergodicF -invariant measureµ that is equivalent tom.
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7. Appendix

Our main goal in this appendix is to provide an alternative direct proof—without
using the concept of conformal measures—of the fact that the Hausdorff dimen-
sion of the setJr(fλ) is less than 2. Let

Jru(fλ) =
{
z∈ J(fλ) : lim inf

n→∞ |f
n
λ (z)| <∞ and lim sup

n→∞
|f nλ (z)| = ∞

}
.

We start with the following lemma.

Lemma 7.1. If λ∈ (0,∞), then

lim sup
λ→0

HD(Jru(fλ)) ≤ 1.

Proof. Fix λ∈ (0,1/e). Given an integerk ≥ 2, consider the set

Jk(M) = {z∈PM ∩ J(fλ) : Re(f k(z)) ≤ M
and Re(f j(z)) > M for all j = 1, . . . , k −1}

and define the mapFk : Jk(M)→ PM by the formula

Fk(z) = π0(f
k(z)) = F k(z).

If z ∈ Jk(M), then Re(f k−1(z)) > M and therefore|f k(z)| > λeM. Since
Re(f k(z)) ≤ M, this implies that|Im(f k(z))| >

√
λ2e2M −M ≥ λeM/2 for all

M large enough. Since also Re(f j(z)) > M for everyz ∈ Jk(M) and allj =
0,1, . . . , k −1, we may conclude that, for everyw ∈Fk(Jk(M)) and everyt > 1,∑

z∈F−1
k
(w)

|F ′k(z)|−t ≤
∑

|n|≥λeM/4π

(
1

2π|n|
)t( +∞∑

n=−∞

1

(M 2 + (2πn)2)t/2

)k−1

≤ (4π)
t−1

t −1
λ1−t(M1−t6t )

k−1, (7.1)

where

6t = 1

2π

∫ +∞
−∞

1

(1+ u2)t/2
du.

Since all the setsJk(M), k ≥ 2, are mutually disjoint, puttingJ∞(M) =⋃
k≥2 Jk(M) allows us to define the mapF∞ : J∞(M)→ PM by the requirement

thatF∞|Jk(M) = Fk. It then follows from (7.1) that, for everyw ∈ J(f ) ∩ PM,∑
z∈F−1∞ (w)

|F ′∞(z)|−t ≤
(4π)t−1

t −1
(λeM)1−t

∞∑
j=1

(6tM
1−t )j

= (4π)t−1

t −1
(λeM)1−t6tM

1−t 1

1−6tM1−t

≤ 26t

(4π)t−1

t −1
(λeM)1−tM1−t (7.2)
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for all M sufficiently large. Fix nowk ≥ 1 and define

Ek(M) = {z∈PM ∩ J(f ) : Re(f j(z)) ≤ M for all j = 0,1, . . . , k −1

andF k−1(z)∈ J∞(M)}.
PutE∞(M) =⋃k≥1Ek(M). Since the setsEk(M), k ≥ 1, are mutually disjoint,
we can define the mapG : E∞(M)→ PM by setting

G(z) = F∞(F k−1(z))

if z∈Ek(M).
Note thatE1(M) = J∞(M) andG|E1(M) = F. Since Re(f j(z)) ≥ qλ for all

z∈ J(fλ) and allj ≥ 0, it follows that for allw ∈PM ∩ J(fλ) we have∑
z∈G−1(w)

|G′(z)|−t

≤
(

26t

(4π)t−1

t −1
(λeM)1−tM1−t

) ∞∑
k=1

( +∞∑
n=−∞

1

(q2
λ + (2πn)2)t/2

)k−1

≤ 26t

(4π)t−1

t −1
(λeM)1−tM1−t

∞∑
k=0

(q1−t
λ 6t )

k.

Fix now λ > 0 so small thatqλ is so large thatq1−t
λ 6t < 1/2. Then, for allw ∈

PM ∩ J(fλ), we obtain ∑
z∈G−1(w)

|G′(z)|−t ≤ Ct(MeM)1−t (7.3)

for some constantCt depending ont and independent ofM. Now there exist 0<
pλ < qλ such that{z ∈ C : Re(z) > pλ} ∩ {f nλ (0) : n ≥ 0} = ∅. Cover the set
QM = {z ∈C : pλ ≤ Re(z) ≤ M + 1} by the family<M of nonoverlapping rect-
angles intersectingG(E∞(M)) of the form1× [− 3

2π,
3
2π
]

with the lengths of1
equal to1. For every elementR ∈<M, fix one elementwR ∈R∩G(E∞(M)). Then
the family{G−1

z (R) : R ∈<M, z∈G−1(wR)} coversE∞(M),whereG−1
z : QM →

C is the holomorphic branch ofG sendingw to z. It follows from Koebe’s distor-
tion theorem and (7.3) that, ifR ∈<M andv ∈R, then

∑
z∈G−1(wR)

|(G−1
z )
′(v)|t ≤

C ′t (MeM)1−t for some constantC ′t that is independent ofM. Consequently,∑
R∈<M

∑
z∈G−1(wR)

diamt(G−1
z (R))) ≤

∑
R∈<M

∑
z∈G−1(wR)

|(G−1
z )
′(vz)|t diamt(R)

≤ (3π +1)tC ′t
∑
R∈<M

(MeM)1−t

≤ (3π +1)tC ′t (M +1)(MeM)1−t ,
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wherevz ∈R is chosen so that|(G−1
z )
′(vz)| = supv∈R{|(G−1

z )
′(v)|}. Since

Jru(fλ) ∩ {z∈C : −π ≤ Im(z) ≤ π} ⊂
⋃
M≥N

E∞(M) for all N ≥ 1,

∑
M≥N

∑
R∈<M

∑
z∈G−1(wR)

diamt(G−1
z (R)) ≤ (3π +1)tC ′t

∞∑
M=N

(M +1)(MeM)1−t ,

and limN→∞
(
(3π +1)tC ′t

∑∞
M=N(M +1)(MeM)1−t

) = 0, we conclude that

HD(Jru(fλ) ∩ {z∈C : −π ≤ Im(z) ≤ π}) ≤ t.
Since

Jru(fλ) =
⋃
n∈Z
(Jru(fλ) ∩ {z∈C : −π ≤ Im(z) ≤ π} + 2πin),

we conclude that HD(Jru(fλ)) ≤ t. The proof is finished.

Let
Jr(fλ) =

{
z∈ J(fλ) : lim inf

n→∞ |f
n
λ (z)| <∞

}
.

SinceJr(fλ) = Jbd(fλ)∪Jru(fλ), combining Lemma 7.1 and Corollary 2.2 yields
the following theorem.

Theorem 7.2. If λ∈ (0,∞), then

lim
λ→0

HD(Jr(fλ)) = 1.

Corollary 7.3. If |λ| < 1/e andλ 6= 0, thenHD(Jr(fλ)) < 2.

Proof. We use the following theorem, proven in [As, Cor. 1.3] (cf. [GL, Thm. 5,
p. 13]).

Theorem 7.4. If f : �→ �′ is aK-quasiconformal homeomorphism andE ⊂
� is a compact set, then

HD(f(E)) ≤ 2K HD(E)

2+ (K − 1)HD(E)
.

Although Astala’s result is stated for compact setsE only, it actually holds for
all subsetsE of �. Indeed, assuming first that̄E ⊂ G and that the closurēE is
compact, we see that [LV, Thm. II.8.1] applies and so Astala’s proof goes through
step by step. Now, it suffices to observe that the Hausdorff dimension isσ -stable
and that each subset of� is a countable union of sets whose closures are compact
subsets of�. In particular, quasiconformal maps send sets whose Hausdorff di-
mension is less than 2 into sets with Hausdorff dimension less than 2. Since all
the mapsfλ with |λ| < 1/e andλ 6= 0 are mutually quasiconformally conjugate,
combining Theorem 7.2 and Theorem 7.4 yields our corollary.



250 Mariusz Urbański & Anna Zdunik

References

[As] K. Astala,Area distortion of quasiconformal mappings,Acta Math. 173 (1994),
37–60.

[BD] R. Bhattacharjee and R. Devaney,Tying hairs for structurally stable exponentials,
Ergodic Theory Dynam. Systems 20 (2000), 1603–1617.

[Bo] R. Bowen,Hausdorff dimension of quasi-circles,Inst. Hautes Études Sci. Publ.
Math. 50 (1979), 11–25.

[DU1] M. Denker and M. Urba´nski, On the existence of conformal measures,Trans.
Amer. Math. Soc. 328 (1991), 563–587.

[DU2] , On Sullivan’s conformal measures for rational maps of the Riemann
sphere,Nonlinearity 4 (1991), 365–384.

[DU3] , Geometric measures for parabolic rational maps,Ergodic Theory
Dynam. Systems 12 (1992), 53–66.

[Fe] H. F. Federer,Geometric measure theory,Springer-Verlag, New York, 1969.
[GL] F. P. Gardiner and N. Lakic,Quasiconformal Teichmüller theory,Amer. Math.

Soc., Providence, RI, 2000.
[Gu] M. Guzmán,Differentiation of integrals inRn, Measure theory (Proc. Conf.,

Oberwolfach, 1975), Lecture Notes in Math., 541, pp.181–185,Springer-Verlag,
Berlin, 1976.
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