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1. Introduction and Statement of Results

In 1867, Riemann [19] found a 1-parameter family of complete minimal surfaces in
the 3-dimensional Euclidean spdg#that are fibered by circles and straight lines

in parallel planes. Riemann also proved that these are the only surfaces (besides
the catenoid) with this property. In 1870, Enneper [3] proved that if a minimal sur-
face inE? is foliated by pieces of circles, then the planes containing these circles
are actually parallel and so the surface is a piece of either a Riemann example or
a catenoid. Nowadays, we know more general uniqueness theorems for Riemann
minimal examples (see e.g. [4; 10; 14]).

In this paper we deal with the same kind of questions for maximal spacelike
surfaces in Lorentz—Minkowski 3-dimensional spaceA smooth immersion of
a surface irlL2 is calledspacelikeif the induced metric on the surface is a Rie-
mannian metric. A spacelike surfacelifis maximal provided its mean curvature
vanishes. Spacelike maximal surface&.frepresent a maximum for the area in-
tegral [1]. Itis known that the only complete maximal spacelike surfaces are planes
(see [1] and [2] for arbitrary dimension). Hence, it is natural to consider nonflat
maximal spacelike immersions with singularities. These singularities correspond
to either curves of points where the immersion is not spacelike or to isolated branch
points.

Some properties of minimal surfacesiA have an analogous version for maxi-
mal spacelike surfacesit’. For example, they admit a Weierstrass representation
closely related to that of minimal surfacesii As a matter of fact, there is a nat-
ural method of constructing maximal surface&.ffrom minimal ones ifE3, and
vice versa.

Inspired by the works of Riemann and Enneper just cited, we classify maximal
spacelike surfaces ib? that are foliated by pieces of circles. Rotational maximal
surfaces irL2 have been studied in [7]. As in the minimal caseFif) a maxi-
mal spacelike surface ih® is foliated by circles in parallel planes if and only if a
Shiffman-type function vanishes at any point of the surface. This function lies in
the kernel of the Lorentzian Jacobi operator of the surface. In this work we prove
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Figure 1 A piece of a maximal surface that is bounded by two spacelike straight
lines and containing two cone points of a Riemann-type surface in the f&nilhe
whole surface is invariant under the translation determined by a half of the vector
joining orthogonally the two boundary straight lines.

a version of Shiffman’s theorem (see [20]) for maximal spacelike annuli bounded
by circles in parallel spacelike planes.

This paper is organized as follows. In Section 2, we introduce the concept of
circle in I3 and recall the Weierstrass representation for spacelike maximal sur-
faces. In Section 3, we determine the family of spacelike maximal surfaces fo-
liated by pieces of circles in parallel planes. To be more precise, we prove the
following.

Let M be a spacelike maximal surfacelif. If M is foliated by pieces
of circles in parallel planes, thei is one of the surfaces described in

Theorem 1, if the planes are spacelike
Theorem 2, if the planes are timelike
Theorem 3, if the planes are lightlike.

This space of maximal surfaces it is related to a particular family of singly
periodic minimal annuli inE® with parallel embedded ends of Riemann type
(see [10]). Itincludes, besides the catenoid, a 1-parameter family of singly pe-
riodic examplesk (see Remark 3) foliated by circles in parallel spacelike planes
whose set of singularities is mapped under the immersion on a discrete subset
of R3. In particular, the foliating curves, except the singular ones, are spacelike.
Therefore, these curves are eitkempletecircles orcompletestraight lines, and
any surface inR is like a Riemann minimal example iR®. See Figure 2 and
Figure 3.

Since maximal spacelike surfacesdlif are stable, we have obtained easily the
following version of Shiffman’s theorem.
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Figure 2 A piece of a singly periodic Riemann-type surface whose level curves
are circles or straight lines with two singular points in parallel spacelike planes. The
immersion folds back at the singular points and so the foliation curvgsiecesof
circles or straight lines. The surface also contains singular cone points.

Figure 3 A piece of a singly periodic Riemann-type surface whose level curves
are pieces of circles or straight lines with two singular points in parallel spacelike
planes. At these singular points, the immersion folds back. In this case there are no

singular cone points.

A compact maximal spacelike annulugifwhose boundary consists of
two circles in parallel spacelike planes is a piece of either a Lorentzian
catenoid or a surface in the famify.

In fact, we prove a slightly more general version of this theorem for annuli with
singularities of cone type. In Section 4 we prove the following Enneper-type re-
sult for maximal spacelike surfaceslin.
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If a maximal spacelike surface Io® is foliated by pieces of circles ly-
ing in a1-parameter family of planes, then the planes in the family are
actually parallel.

Finally, we mention that some interesting results on constant mean curvature
hypersurfaces foliated by spheres in different ambient spaces have been recently
obtained by Jagy [5; 6]; see also [11; 12; 13; 16].

AckNOWLEDGMENTS. We would like to thank A. Ros for helpful discussions re-
lated to the main results in this paper. We are also grateful to F. Martin for drawing
our figures. This paper was prepared while the third author was visiting the De-
partamento de Geometria y Topologia, Universidad de Granada. The third author
wishes to thank this institution for its hospitality.

2. Preliminaries

Throughout this paper.? will denote the 3-dimensional Lorentz—Minkowski
space(R3, (., -)), where

(-,-) = dx? +dx3 — dxs

We will also denote the Euclidean metriclit by (-, -)o = dx? + dx3 + dx3 and
labelE3 = (R3, (-, -)o).

We say that a vectar € R® — {0} is spacelike, timelike, or lightlike if and only
if (v, V) is positive, negative, or zero (respectively). The vebt® spacelike by
definition. A plane inL3 is spacelike, timelike, or lightlike if and only if its Eu-
clidean unit normals are (resp.) timelike, spacelike, or lightlike. A curve is called
spacelike, timelike, or lightlike if and only if the tangent vector at any point is
spacelike, timelike, or lightlike. A surface ib® is spacelike, timelike, or light-
like if and only if the tangent plane at any point is (resp.) spacelike, timelike, or
lightlike.

2.1. Circles inL3

We shall first determine which planar curveslif play the same role as circles
in Euclidean spacE2. To do this, it is necessary to describe the family of planar
spacelike curves with nonzero constant curvaturgdn_et us examine the con-
cept of nonzero curvature for a regular planar curveinConsiderTI a plane in

L2 and lete = a(s) be a spacelike curve i, wheres denotes the arc-length pa-
rameter ofx in L3, Lett(s) = «/(s) be the unit tangent vector to Since we want
nonzero curvature, we assume thi@t) never vanishes. The causal character of
the plan€ll leads to three possibilities as follows.

ITis spacelike.In this case(IT, (-, -)) is a Riemannian plane and the definition
of curvature is the Riemannian one. Hence, given an orthonormal{leass} in
I1, the curves i1 with constant positive curvatukeare given by

a(s) =c+ %(cos(ks)el + sin(ks)ey), cell. @
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ITistimelike. Since(t’, t) = 0, itfollows thatt’ is a timelike vectorinI1, (-, -)).
By definition, the curvature of « is the numbek = \/—(t’,t’). Thus, if{e;, €5}
is an orthogonal basis @1 such that(e;, e;) = — (e, &) = —1, then the space-
like curves inIT with constant curvaturk > 0 are given by

a(s) =c+ %(cosr(ks)el + sinh(ks)ep), cell. (2)

ITis lightlike. Sincet’ # 0 andt is not lightlike, the equatiofit’, t) = O im-
plies thatt’ is a lightlike vector inIl. Fix a constantlightlike field n on«. Then
t” = kn. Obviously, the functiom depends on the choice of However, the fact
thatk is a honzero constant does not depend on this choice. In other woisls,
constant if and only it’ is a nonzero constant field @n Therefore, a spacelike
curve with constant nonzero curvaturez O in IT is given by

k
a(s) =C+ser+ 5s%,, cell, ®)

wheree, = n is a fixedconstantlightlike field on IT ande; is a constant unit
spacelike vector field on the curee

These planar curves can be described from the Euclidean point of view as fol-
lows. Up to a linear isometry if.3, assume thall is the plandl, = {x € R®:
(x,V)o = 0} and thatv is one of the next vectors: = (0,0,1), v= (1,0, 0), or
v=%@q—n

1. Letv = (1, 0,0). Labele; = (1,0,0) ande, = (0,1, 0). Then the spacelike
curves inIl, of curvaturek > 0 are

a(s)=c+ %(cos(ks), sin(ks), 0) (4)

(see (1)), where € I,. These curves are Euclidean circles in horizontal planes.
2. Letv = (1,0, 0). Labele; = (0, 0,1) ande, = (0,1, 0). Then, ifk > 0, the
curves (2) are given by

a(s) =c+ %(O, sinh(ks), cosh(ks)), (5)

wherec € I1,. These curves are Euclidean hyperbolas in vertical planes.
3. Letv = \ifz(l, 0, —1). If we choose thdixedbasis ofT1, given bye; = (0, 1, 0)
ande, = (1, 0, 1), then the curves in (3) are given by

k k
a(s) =c+ (Merész,s,uerEsz), (6)

wherec € Iy, 1 € R, andx # 0. They are Euclidean parabolas — ¢;) =
%(y —2)? 4+ u(y — ¢2), c1, c2 € R, in the planell,.

We may summarize as follows.

DEerINITION 1. A circle in L2 is a planar curve with nonzero constant curvature.
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There is another approach to the concept of circle. /L a straight line i3

and consideG = {Ry; 0 € R}, the 1-parameter group of linear isometriedi

that leavd pointwise fixed. This group is called the grouprotationswith axis!.
Let p be a point lying inl.® — I, and consider the curve determined by the orbit of
p under the action of;. This planar curve has nonzero constant curvature, and it
is contained in a plane orthogonalitdHence, an equivalent definition of circle in
L2 is (see [12] for details) the following.

DEeFINITION 2. A curvea in L2 is a circle if there exists a straight liden L3
such thatr describes the nonlinear orbit of a popt I3 — [ under the action of
the 1-parameter group of motionsli that fix pointwisel.

2.2. The Weierstrass Representation of Maximal Spacelike Surfakés in

We end this section with a few words about the Weierstrass representation of max-
imal spacelike surfaces in® Let X: M — L2 be a spacelike maximal immer-
sion of an orientable surfadé in 3-dimensional Lorentz—Minkowski space. The
Gauss mapV of X assigns to each point @ff a point of the spacelike surface
H? = {(x1, x2, x3) € R®: xZ + x2 — x3 = —1}, which has constant intrinsic cur-
vature —1 with respect to the induced metric. Note tfit has two connected
components, one on whicly > 1 and one on whichks < —1.

Throughout this papef;* denotes the extended complex pl&he {oo}. De-
fine a stereographic projectienfor H? as follows:

(—2 Re(z) —2Im(z) |z|2+l>

% bl bl bl

lz[2 =17 [z2 =1 " |z]>—1

whereo (0c0) = (0, 0,1). Using isothermal parameter®, has in a natural way a

conformal structure, and up to a suitable choice of the orientation, thegrﬁgp
oo N is meromorphic.
Moreover, there exists a holomorphic 1-fornon M such that the 1-forms

o:C*—{z] =1} » H?

i 1
P1=on—g?, ®o=-onl+g?, Ps=ng (7)

are holomorphic o/ and without common zeroes. Furthermore, the 1-fodms
(j = 1,2, 3) have no real periods, and the immersi®ris determined, up to a
translation, by

X = Re/(CDL D3, O3). 8
The induced Riemannian metds? on M is given by
Inl :
ds® = |®1)* + |@2]* — |®3]” = (%(1— |g|2)> : ©)
Conversely, let, g, andn be (resp.) a Riemann surface, a meromorphic map on

M, and a holomorphic 1-form on M, such that:|g(P)| # 1 for all P € M; and
the 1-forms defined in (7) are holomorphic, have no common zeroes, and have no
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real periods. Then (8) defines a conformal spacelike maximal immersithiof
L3, and its Gauss map iso g. If we allow that the sef|g| = 1} # @, we say that
X: M — 18 is a maximal spacelike immersion with singularities. We also say
thatX (M) is a maximal spacelike surface with singularitie.th In this case, the
immersionX is not regular at the nodal set of the harmonic function(|lgy.

We call (M, &4, ®,, 3) (or simply (M, g, n)) the Weierstrass representation
of X (see e.g. [7] for more details).

REMARK 1. The transformatioM, ®,, ®,, ®3) — (M, idP4, iD,, ®3) converts
Weierstrass data of maximal spacelike surfacés’imto Weierstrass data of min-
imal surfaces iR3 and vice versa. For more details about theory of minimal
surfaces, see [18].

Throughout this paper, we say that a maximal immersiohiis complete if
and only if the corresponding minimal onelR¥ is. If the set of singularities of
a maximal immersion consists of cone points (see Definition 3), then this concept
of completeness agrees with the natural one (that divergent curves have infinite
length).

3. Existence of Maximal Surfaces of Riemann Type

In this section we classify the family of maximal spacelike surfacés’ithat are
foliated by pieces of circles in parallel planes. The main tool used is the Weier-
strass representation of maximal spacelike surfade3 it the end of the section,
we will introduce thel orentzianShiffman-type functions on a maximal surface
and then prove a version of Shiffman’s theorem (see [20]) for maximal spacelike
surfaces irl.3,

Let X: M — L3 be a spacelike conformal nonplanar maximal immersion of a
Riemann surface/. We denote by, g) the Weierstrass representationdaind
defined = (1, ®,, ®3) as in (7). Letds? denote the Riemannian metric M
induced byX and(-, -). See equations (7), (8), and (9) for details.

Let v be a nonzero vector iiR3 and denote by, the plane{x e R3 :

(x, V)o = 0}. The vectow can be timelike, spacelike, or lightlike. Hence, and up
to linear isometries irl.3, we will assume that = (0,0,1), v= (1, 0,0), orv =
510, -0).

Throughout this section, we suppose thad ) is foliated by curves of nonzero
constant curvature (circles i) in parallel planes with normal vecterin E2. In
casev = (0,0, 1), this means thak (M) is foliated by pieces of Euclidean cir-
cles in horizontal planes. However, in cases (1, 0, 0) andv = %(L 0, -1,
it means that the surfacé(M) is foliated by pieces of Euclidean hyperbolas and
parabolas, respectively. See the preceding section.

The following three theorems describe, up to linear isometrigés ghe Weier-
strass representation of the immerskrSince these results are local, we will sup-
pose thatV is simply connected and th&Re(d (P)), V)o + i(Im(P(P)), V)o #

0 for all P € M. Moreover, we will assume that the holomorphic function
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7z = (X, V)o + i{X,V)o" is a conformal parameter aif, where (X, v)o* is the
harmonic conjugate ofX, v)o.

3.1. Maximal Spacelike Surfaces Foliated by Pieces of Circles

We shall prove the following theorem.

Tueorem 1. If X (M) isfoliated by pieces of Euclidean circles in parallel planes
with normal Euclidean vector = (0, 0, 1), then, up to scaling and linear isome-
tries in L3, the stereographic projectiog of the Gauss map ok satisfies

d
1. d—i =g;or

2. (Z_i)z = g(g%2 + 2rg +1), wherer e R.

Proof. Consider the conformal parametee= (X, Vo + i(X, V)o" = X3+ iX3.
From (7), (8), and (9), we have:

P .
X(P) = Re(/ (’5 (% — g) dz, —%G + g) dz, dz)>; (10)
—1g[2\2
o (0

Let a(r) be a curve in(M, ds?) parameterized by the arc length such that
X3(a(®)) = C (i.e., R&z(x(t))) = C), whereC is a constant. For the sake
of simplicity, write z(t) = z(x(?)), X(t) = X(x(?)), andg(t) = g(a(t)). Then

1-Ig /2| i &
we have 5[ 4| = 1, and since RE) = 0 we deduce thafe = +:=£;. Up

to the changg — 1/g (which corresponds to the linear isometrylifidefined by
the symmetry with respect to the planeg= 0), ®3 does not change, and we can
assume that

dz 2i|g|

i — 11
dt lgl2—1 (11

Since X is spacelike andd = (0, 0, 1), the vectorscfl—’f and% are spacelike.
Hence, from (10) and (11), it is not hard to check that the planar curvaitiref
the curveX(¢) is given by

2 2 2 2
e - X -]
dr?’ dr? dr?’ di? [, dt
Since®3 = dz, this 1-form does not vanish at any pointi and the same holds
for the mapg. Thus, up to a choice of the branch, the map(l9gis holomor-
phic and well-defined oM. For simplicity, we writeu = Re(log(g)) andv =
Im(log(g)).

At this point, we introduce the new parametér) determined (up to an addi-
tive constant) by the equatio‘jg} = Observe that equation (11) gives

1
sinh(u(a(t)) *
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&) — j and so, for any constait, we can choose(t) = Im(z(r)). On the
other hand, it is clear that

e dv/d
k(s) & k(1(s)) = #h(:)

and sincek(s) is constant we have
d?v  dudv

— — ——cot =0.
ds? dsds hw)

If we define
d(log<g>)>2 3lgl* -1 (d2g> 1)
S1=1Im —|—= |- 12
' (( dz ) 20gP-1 \d2)g 12
and take into account thafr) = Im(z(¢)), we obtain

S1=0. (13)

In particular, the function Irth;) is harmonic, where

_((d%\1 (d(og() VY,
e (o) () e

and thus P
2 u-Eoo (14)
gl g
whereir; e Randu € C. In particular, Imz;) = —Im(jig). On the other hand,
labeling

_(d%\1 (d(log(g)
e=2(55), - (0

from (13) we deduce that Ith,) = Im(k;) and thus

ha+jig+ 12 =0, (15)
wherexr, € R.
From equations (14), (15), and their derivatives, it is not hard to see that
dg\? _
A=A, <d_g> + g(ugz +2xrg+wn) =0.
z 2

Up to a rotation about thes-axis (which is a linear isometry ih® that substitutes

g forog, |9 = 1), we can suppose thate R andu < 0. Furthermore, up to a ho-
mothety inlL3 (which corresponds to a homothetical change of variable kz,

k e R), we can puiu = —2, provided thajx # 0. This leads to case 2 of the the-
orem. In casex. = 0, we deduce that, # 0 (recall thatX is nonplanar); hence
we can assume thay = £1. Taking into account that(z) = Im(z(?)), k(s) =
constant£ 0, and the preceding expression fqe(s)), we deduce that; = 1

Up to the changg — 1/g once again if necessary, we obtain case 1. This con-
cludes the proof. O
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REMARK 2. Following the proof of Theorem 1, it is easy to see g/ ) is foli-
ated by pieces of straight lines in planes parall@litov = (0, 0, 1), if and only if
n=0andr = —1(i.e., j—i = ig). In this case X (M) is a piece of the complete
maximal spacelike surface with Weierstrass data

' 1-¢? i1+g% 1
((C,q)l: 2 2 d q)z—ng, (D3=—l§dg .

Up to the change of variablgs= ¢, these meromorphic data determine, follow-
ing (8), a well-defined maximal spacelike surface with singularities imthkane.
This surface is the one associated to the helicoid according to Remark 1.

Let us now determine the surfaces arising from cases 1 and 2 in Theorem 1. In
case 1 and from (10), we derive th¥&tM) is a piece of the complete maximal
spacelike surface with singularities determined by the Weierstrass data

i 1— o2 11
o o= 118 g g, — 11HET <1>3——dg
2 g? 2 g?

This rotational surface is the one associated, following Remark 1, to the catenoid
with vertical normal vector at the ends.

To discuss case 2, consider the compact Riemann susfaee{(u, w) : w? =
u(u? + 2ru + 1)} and observe that, except in the degenerate cése 1, this
surface is homeomorphic to a torus. When= 1, N, is the Riemann sphere.
Assume that? # 1. Then define the Weierstrass data

N, =N, — w0 Uuo0)), g=u, ng=du/w,

with ®; (j =1, 2, 3) asin (7). However, these meromorphic data do not define a
maximal immersion because the 1-fordis have real periods on certain homol-
ogy curves (see (8)). Indeed, first observe that the 1-fbiris exact. Lef denote
a closed real interval in the-plane whose limit points lie in(w=(0)) U {00} and
w|l < 0, and lety be any closed curve iy, in the same homology class of the
lift to N, of 1. If ¥ is any closed curve with’ # my, m € Z (e.g., a curve in
the same class of homology of the lift of a closed real intefvial the u-plane as
before, but sat|sfy|ngu|l > 0), thenitis easy to see that the penﬁdCD does
not vanish forj = 2, 3. Furthermore, ifp: N, — N, is the covering that satisfies
p(H1(N,, Z)) = {my : m € Z}, then the lift toN, of the Weierstrass data just
listed gives new Weierstrass data without real periods and also determines a com-
plete singly periodic maximal spacelike surface with singularitidsiirSinceN,
is conformally equivalent t@*, the lift M, of N, to N, is conformally diffeomor-
phic toC* minus infinitely many points, which are just the lifts of the two ends of
N,. Sincedz = du/w, itis clear from (10) tha (M) is a piece of this surface.

If ¥2 < 1 then the associated minimal surfaces, according to Remark 1, have
been recently studied in [9] and [8].

In the degenerated case we have- +1, and up to the change — v?itis
straightforward to check thatf(M) is a piece of the maximal spacelike surface
with singularities associated to the following Weierstrass data:
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2 (1
<<c— (0.iVEL —iVEL), &= —i- D gy,
v
vi+1 2
Pp=m—— O T gy By=— g
2T T 22+ (1) U 3T 2 (1) ”)

Note that in case = —1, the periods ofp; (j =1, 2, 3) are imaginary and so the
immersion given in (8) is well-defined af_; = C — {0,1, —1}. In caser = 1,
this does not occur and the immersion is well-defined in a suitable covéfing
of C — {0, i, —i}.

REMARK 3. Ifr <1, itis not hard to see that any level curvge= C with C e R

is either noncompact or nonspacelike (i.e., it contains singular points lying in the
set{|g| = 1}). See Figures 2 and 3. For the 1-parameter family of surf&ces

{M, : r > 1}, the sef{|g| = 1} has infinitely many connected component34n,

all of them homeomorphic t8%, and the image under the immersion of this set
of singularities is a discrete subsetlof. Indeed, any connected componerf

{lg| = 1} is a lift to M, of one of the two closed curves ¥, defined byju| = 1
These two curves are pointwise invariant under the antiholomorphic transforma-
tion in N, given byT(u, w) = (1/i, w/u) that satisfied *(®;) = —31- for j =

1,2, 3. Hence, it is not hard to conclude that the pointg afe mapped under the
immersion on the same poii. € I.> and that the maximal surface is symmet-
ric with respect toP. (see Definition 3). In particular, = x?:l(X3(PC)) andc C

{lg| = 1} are the only singular level curves; the other level cutwves- C, C ¢
{x3(P.) : ¢ C {|lg| = 1}}, are spacelike (i.e., they are either complete circles or
straight lines). See Figure 1.

3.2. Maximal Spacelike Surfaces Foliated by Pieces of Hyperbolas

Let us study the case= (1, 0, 0). In this case, the metric induced by -) onTI,
is given bydx? — dx2.
We adapt the Weierstrass representatign,) of X to this new frame as fol-

lows. Define o+l 5
—1

g =< . 16
g—1 (—ign +p2" (16)

8&h = Nn =

and observe that

1 =gumn, o= 31— gHm, P3=—31+gdHm. @7
Recall that in this caséz; = ;.

THEOREM 2. If X(M) is foliated by pieces of Euclidean hyperbolas in parallel
planes with normal Euclidean vector= (1, 0, 0), then, up to scaling and linear
isometries inL3 the meromorphic map, defined in(16) of X satisfies

L () =0

dgnp\2
2. (F2)" ==*en(an — s
3. % —igy; or

4, (”’dﬂ)2 = gn(g? + 2rgy +ro), wherer e R andrg € {1, —1}.
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Proof. Note that{X, v)o = X1 and so, from (16), (8), and (9), we have:

P
X(P) = Re(/ <dz, }<i - gh> dz, —}<i + gh> dz)); (18)
2\ gn 2\ gn

Let «(r) be a curve in(M, ds?) parameterized by the arc length such that
X1(x(2)) = C (i.e., Rez(a(t))) = C), whereC is a constant. We write(t) =

z(a(t)), X(t) = X(a(1)), andg,(t) = gn(x(1)). Then we havé'"lqgf—gﬂdﬂ =

and since REZ) = 0 we deduce thaft = +i m'f;;'h) Up to the change, — —g»

(which corresponds to the linear isometrylibdetermined by the reflection about
thex;-axis), ®; does not change, and we can assume that

d_Z_l. ||
dt — Im(gy)’

(19)

SinceX is spacelike and = (1, 0, 0), the vector% andddX are spacelike and
timelike, respectively. Therefore, from (18) and (19), the planar curvatuyeof
the curveX(¢) is given by

d?X d?X dlog(grn)
k(t) = [—(—5, — ) = Re| ——=22 ).
® < dr?’ dr? > e< dt )
Becauseb; = dz, the mapg; never vanishes oM. Thus, up to a choice of the
branch, the map lag;,) is holomorphic and well-defined ai. For simplicity,
we writeu = Re(log(gy)) andv = Im(log(gy)).
At this point, we introduce the new parametér) determined (up to an addi-

tive constant) by the equatloéjﬁL &l Opserve thaM = i; hence we

im(gn)*
can choose(t) = Im(z(¢)) for any constan€. On the other hand, it is clear that
def du/ds
k = k(t =
(s) = k(t(s)) = Sin@)’
and sincek(s) is constant we have
d%u  dudv
— — cot(v) = 0.
ds?  ds ds

If we define

_ oof [ d0og(gn) 2( ~ iRe(gh>) ~ (dzgh> 1 )
Sz_Re(( dz ) 1 2 imien dz2 ) g (20)

and take into account thatr) = Im(z(z)), it follows that

S, =0. (21)

In particular, the function Irth1) is harmonic, where
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e ((dﬁ) 11 (d(log(gh»)Z)_
1= dz? P 2 dz 8h>»

h
=+ rgn —p =0, (22)
8h

and thus

wherei; € R andu € C. In particular, Im(h;) = —Im(g,). On the other hand,
labeling

d? | 3(d(log(gn)\
hy=——> + | —= ,
2 dz? * 2( dz ) s
from (21) we deduce that Ith,) = —Im(h;) and thus
ha — pgn + A2 =0, (23)
wherel, € R.
From equations (22), (23), and their derivatives, it is not hard to see that
dgn 2
(d—z) = gn(—ragh +2ugn — r2), meR.

SinceX is nonplanarir; = A, = 0 implies thate # 0. In this case, and up to
scaling in., we can supposg = i%. Taking into account that(r) = Im(z(z)),
k(s) = constant£ 0 and the preceding expression kas), we deduce that =
—%. Up to the changeg, — 1/g; if necessary, we obtain case 3 of the theorem.
Assume now thafrq| + |A2| # 0. Up to the change;, — 1/g,, which corre-
sponds to the linear isometry i’ given by a symmetry with respect to the plane
x> = 0, we can suppose thap # 0. Moreover, note that the changg — +elg,

(I e R) is associated to the linear isomefyin 1.2 given by

R(x1, x2, x3) = (x1, 2(coshl)xz + sinh(l)x3), £(coshl)xz + sinh(l)x2)).

Therefore, up to this kind of rigid motion ih® and homotheties, we can suppose
thati; = 1 andi, = +1, provided that.; # 0 also (case 4). Analogously; =

0 andx, # 0 lead to case 1 (ifi = 0) and case 2 (ift # 0) of the theorem. This
concludes the proof. O

RemARK 4. Following the proof of Theorem 2, it is easy to see tkié) is fo-
liated by pieces of straight lines in parallel plane$itg v = (1, 0, 0), if and only
if w=72andr =21, =0(i.e, ddﬂ = g1). In this case X(M) is a piece of the
complete maximal spacelike surface with singularities determined by the follow-
ing Weierstrass data:

1 1—g2 1+ g2
C*, &1= —dgp, 2= L dgy, 3= — " dgy ).
( g 2g7 27
These meromorphic data determine, following (8), a well-defined maximal sur-
face. This surface is the one associated to the helicoid (view&d imith hori-
zontal axis) following Remark 1. See Figure 4.
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Figure 4 A piece of a translational invariant maximal surface foliated by hyper-
bolas in parallel timelike planes.

Let us determine the surfaces arising from the four cases of Theorem 2. In case 1,
and doing the changg, — u?, it is easy to see that (M) is a piece of the com-
plete maximal spacelike surface with singularities determined by the Weierstrass

data oy 14y
—u “+u
uz du, @32 — u2 )

((C*, O =2du, &, =

Since the three 1-forms are exacts, the maximal immersion given by (8) is well-
defined.
Incase 2, and up to linear isometriegiiwe have two possibilities: eithéjzi =

gn(gn — 1) or ddiz” = i/gn(gn — 1. Suppose first tha%’ = Ven(gn — 1. Up
to the change;, — ﬁ and from (18), we obtain that (M) is a piece of the
maximal spacelike surface with singularities associated to the Weierstrass data

2 2 = u?)u? u* —2u?+2
C-1{1-1, &= du, ¥y=————du, b3=————-—4d
( T T % ”)
The three 1-forms have no real periods, so the immerXion(8) is well-defined.
If ‘fiiz" = i+/gn(gn — 1 then we obtain the conjugate Weierstrass data, and the im-
mersion is well-defined in a suitable covering®f {1, —1}.
In case 3, and using (18), we have the following Weierstrass data:

i il—g?) il+ g2
C—{0}, 1= —dgy, 20=—7—5— ———dgi ).
< 8 2g? 2g7

The lift of these meromorphic data to the holomorphic universal covétitggnds
to a rotational maximal surface. The associated minimal surface, according to Re-
mark 1, is a catenoid with horizontal normal vector at the ends.

The discussion of case 4 is similar to that of case 2 of Theorem 1. Consider the
compact Riemann surfaddy = {(u, w) : w? = u(u? + 2ru + ro)} and observe
that, except in the degenerate cade= ro = 1, this surface is homeomorphic to a

dgp, P3=—
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torus. Ifr? = ro = 1, thenM, is the Riemann sphere. Assume that eittfeg: 1
orrg # 1. Then define the Weierstrass data

(Mo = Mo — (u™(0) Uu(0)), g = u, mugn = dujw),

with @; (j =1, 2, 3) as in (17). However, these meromorphic data do not define
amaximal immersion because the 1-fordnshave real periods on certain homol-
ogy curves (see (8)). Indeed, first observe that, from (18) and taking into account
dz = du/w, if ro =1 (respro = —1) then®, (resp.®3) is exact. Lef denote a
closed real interval in the-plane whose limit points lie in(w(0)) U {co} and
w|] < 0, and lety be any closed curve i, in the same homology class of the
lift to Mo of I. If y' is any closed curve with’ # my, m € Z (e.g., a curve in
the same class of homology of the lift of a closed real intefvial theu-plane as
before, but satisfyingu|, > 0), then it is easy to see that the periﬁdcb does
not vanish, wherg =1, 3 (if ro=1 orj =12 (|f ro = —1). Furthermore if
p: Mo — Mo is the covering that satisfigs.(H1(Mo, Z)) = {my : m € Z}, then
the lift to M, of the Weierstrass data displayed previously gives new Weierstrass
data without real periods and also determines a complete singly periodic maximal
surface with singularities ih3. SinceM is conformally equivalent t&*, the lift
of My is conformally diffeomorphic t&€* minus infinitely many points, which are
just the lifts of the two ends a/. Itis clear thatX (M) is a piece of this surface.

If 72 < 1andro = 1, then Remark 1 leads (as in Section 3.1) to the examples in
[9] and [8] (but from a different point of view ifL3).

In the degenerated case we have- +1 andrg = 1, and up to the change
gn — v?itis straightforward to check thai(M) is a piece of the maximal space-
like surface with singularities associated to the following Weierstrass data:

2

C—-10,iv/ (D, —i/(£D) |, &1= —— dv,
( {0,iV(£D), —iy(ED }, @1 2+ an®
v? — (£1) vi4+1
————dv, Op=————d

Y AT U)

Note that in case = —1, the periods ofb; (j =1, 2, 3) are imaginary and so the
immersion given in (8) is well-defined. In case= 1, this does not occur and the
immersion is well-defined in a suitable covering®f {0, i, —i}.

Dy =—
v2

3.3. Maximal Spacelike Surfaces Foliated by Pieces of Parabolas

Finally, we study the case = \%(L 0, —1). For convenience, we introduce the
following frame inE3:

1 1
—(@1,0,1), =v=—(1,0,-1).
«/é( ) &=V \/E(:L )

We labely; = (g;, -)o, j =1, 2, 3, as the three coordinate functions associated to
this frame. WriteY; = (g;, X)o, j =1, 2, 3. SinceX = Zf’:llg-ej, for simplicity

and in what follows we writeX = (Y3, Y2, Y3). Note that the metric induced by
(-,-)onTl, (i.e., on the plangz = 0) is given bydy?.

ee=(0,10), e=
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The adapted Weiertrass representatiotdé given by¥; (&) = dY‘ zdé (J
1,2, 3), whereg is a conformal parameter av. In other words,

1 1
V=0, WYy=-—(P1+P3), V3=-—(P1— D3).

V2 V2
From (7), it is easy to see that
W2 4 20,03 = 0.
Sincedz = W3, definingg, = V1/dz yields
1
Wy =g,dz, Wo=—"g2dz, W3=dz. (24)

2

THEOREM 3. If X(M) is foliated by pieces of Euclidean parabolas in parallel

planes with normal Euclidean vector= -1 (1, 0, —1), then, up to scaling and

linear isometries ifL3, the meromorphic map, defined in(24) of X satisfies
dgp\2

1. (diz”) = g,; or

2
2. (ddizp) ==+£g,(g, —1);reR; 0or

3. %%

© dz =1.

Proof. From (24), (8), and (9), we have:

P g2
X(P) = Re(/ (gp dz, —7” dz, dz)); (25)

ds? = (Im(g,))?|dz|?.

Let a(t) be a curve in(M, ds?) parameterized by the arc length such that
Y3(x(t)) = C (i.e., R&z(x(?))) = C), whereC is a constant. We write(t) =
z(@(®), X(1) = X(@ (1)), andg, (1) = g,(@(1)). Then we havéim(g,)|| %] = 1,
and since REZ) = 0 we deduce thaf = i,m( - Uptothe changg, — —g,
(which corresponds to the linear |sometryhi‘1determined by the symmetry with
respect to the plang, = 0), we can assume that

dz. i

dt — Im(g,)’

(26)

SinceX is spacelike and = Jié(l, 0, —1), the vectorsZX andd = are spacelike
and lightlike, respectively. Therefore, the planar curvature of the cKiveis
constant if and only if the function

d?X d2Xx dg
k(t) = [{—=,—>) = —Rel =2
© <dt2 dt2>0 <dt>
is constant. For simplicity, we write = Re(g,) andv = Im(g,).

At this point, we introduce the new parametetr) determined (up to an addi-

tive a constant) by the equatioé; = Im(g 3 Observe that equation (26) gives
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&lel) — j and so we can choosér) = Im(z(t)) for any constanC. On the
other hand, it is clear that

k(s) € k(1(s)) = Z—”E;
SV

sincek(s) is constant, we have

d’v  dudvl
ds? dsdsv
If we define )
d? d 1
S3= Re( &p + <ﬁ) _—> (27)
dz? dz ) 8y — &
and take into account thatr) = Im(z(¢)), we have
S3=0. (28)

2
In particular, the function Irth;) is harmonic, wheré; = 5%, and thus

d?%g
?zp - )ngp — M= 07 (29)
wherex; € R andu € C. Hence, we deduce that [fim) = —Im(iig,). On the
other hand, labeling
d? dg, \?
hy =g, =52 — (52
dz? dz
from (28) we deduce Irth,) = Im (k1) and thus
ha + jign + A2 =0, (30)
wherei, € R.
From Equations (29), (30), and their derivatives, it is not hard to see that
dg 2
(d—z”) = Mg,f +2ugp, + A2, pmeR.

BecauseX is nonplanarj); = u = 0 implies thati, # 0. In this case, and up to
scaling inl.3, we can supposk, = +1. Taking into account that(r) = Im(z(z)),
k(s) = constant£ 0 and the preceding expression fa@s), we deduce that, =

—1 Up to the changg, — —g, if necessary, we obtain case 3 of the theorem.
Assume now thaj| + |u| # 0. The change, — g, + [, [ € R, is associated

to the linear isometryr in I3 given by

lZ
R(y1, y2, y3) = (yl s —ly1+y2 = Sys. y3>.
Hence, up to this kind of rigid motion ih® and homotheties, we can suppose that
A2 = 0 andry = £1, provided that; # 0 (case 2). When; = 0 andu # 0, we
also take into account the change — —g, (which corresponds to a symmetry
with respect to the plang, = 0) to obtain case 1. This concludes the proofld
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ReMARk 5. Following the proof of Theorem 3, it is easy to see tkiet/) is fo-
liated by pieces of straight lines in parallel plane$ig v = }(1 0, -1, ifand
only if .1 = u =0andix, =1(i.e., dﬁ =1). In this case, and after the change
g — —+/2u, we have thatX(M) is a plece of the complete maximal spacelike
surface with singularities associated to the following Weierstrass data:

(C, @1= W?® —Ddu, ®» =2udu, ®3= u*+1) du).

These meromorphic data determine, following (8), a well-defined maximal space-
like surface with singularities. Itis the surface associated, according to Remark 1,
to the Enneper surface (viewed with horizontal normal vector at the eRd)in

See Figure 5.

Figure 5 A piece of a maximal surface foliated by parabolas in parallel lightlike planes.

Let us now determine the surfaces arising from the three cases of Theorem 3. In
case 1, doing the change— /242 and up to scaling, it is easy to see from (25)
and the definition oft; (j =1, 2, 3) thatX (M) is a piece of the complete maxi-

mal spacelike surface with singularities associated to the Weierstrass data

(C, ®1=1—u*du, ®,=2u’du, ®3=—1+ u*) du).

Thethree 1-forms are exact, so the maximal immersion given by (8) is well-defined.
In case 2, and up to linear isometriesliA we have two possibilities: either

dg e(g —1) or = i\/g(g — r). Suppose first thafif,— JVe(g =7r). We

dlstmgwsh two new cases: # 0 andr = 0. Considerr # 0. Up to the change

g— M’Z{l, and from (25) and the definition df; (j =1, 2, 3), we get thatX (M)

is a piece of the maximal spacelike surface with singularities associated to the

Weierstrass data
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_ 244 2_2 4 2.4
(@—{1,—1}, o= ST A TTH g,

V2(u? —1?°

2 2 2_4 2 2 4 2.4
0=~ g = P RO )
w? =1 V2(u? - 1)3
If » = 0 then, up to the change— +/2x and scaling, the meromorphic data are
1— u? 14+ u?
((C—{O}, O, =~ gy, Dy = 2du, oy = —— 14 du).
u

In both cases, there are no real periods and the maximal immersion given in (8)
is well-defined. Concerning the second possibi§§y= i/g(g —r), asimilar
argument leads to the conjugate of the previous surfaces. In this case, the immer-
sion defined in (8) has real periods and so is well-defined in a suitable covering of
C — {1, =1} (if r £ 0) or C — {0} (if r = 0).

In case 3, using the change— i+/2u, (25) and the definition oft; (j =
1, 2, 3), we obtain the following Weierstrass data:

(C, ®1= 1+ u)du, ¥, = —2iudu, &3 = (u? —1) du).

This rotational maximal surface ih® is associated, following Remark 1, to the
Enneper surface, but viewedIE? with the horizontal normal vector at its end.

3.4. Shiffman Type Functions and Maximal Spacelike Annuli
Bounded by Circles

We conclude Section 3 by introducing the Shiffman-type functions on a maximal
spacelike surface ihS.

Let X: M — L3 be a maximal spacelike immersion, and(gtg) denote the
Weierstrass representation ¥f(see (7)). Recall thgg is the stereographic pro-
jection of the Gauss map of.

Let& be any conformal parameter @, and letA.; denote the Laplacian

9 0 1[92 N 32

08 9 4\ ax2  3y2)
Then, the functionsS; (j = 1, 2,3) given in (12), (20), and (27) satisfy the
equation

2

dg
AiSj — ————
a2

dé
In other words, these functions lie in the kernel of the Jacobi opematofo|? on
M. As usual,|o| represents the norm of the second fundamental fori iof L3,
andA is the Laplacian associated to the induced metridfon

Furthermore, we have proved in Theorems 1, 2, and 3 that a nonruled maximal
spacelike surface ifi® is foliated in parallel planes by pieces of circles, hyper-
bolas, or parabolas if and only if the functiéi S», or S3 (respectively) vanishes
on the surface. Itis natural to call these three functions as the Lorentzian Shiffman
functions. See [20].

2
S;=0.




488 FranNcisco J. L6PEzZ, RAFAEL LOPEZ, & RABAH SOUAM

On the other hand, it will be interesting to note that the funcfiginas a good
behavior around singularities obnetype. Let us explain the details, starting with
the following definition.

Let X: M — L3 be a maximal spacelike immersion with singularities, and
label(n, g) as its Weierstrass data, following (7). Suppose that the set of singular-
ities{|g| = 1} in M contains a connected componetitat is homeomorphic t§".

In particular, the stereographic projectigmof the Gauss map of has no branch
points onc. Assume also that there is an antiholomorphic involutfanM — M
satisfying

(i) T%(®) =-9;, j =123

(i) T fixes pointwiser.

Itis clear from (8) thai (c) is a point,P., in L3, and thatX (M) is invariant under
the reflection about this point.

DEerINITION 3. We call P. acone pointof X(M). We also say thak (M) has a
singularity of cone typat P..

It is not hard to prove the following lemma.

LemMA 1. Let P, be a cone point ik (M) associated to the curve of singulari-
tiesc in M. Then, the Shiffman functiay extends in a differentiable way to

Proof. Let z be a conformal parameter around an arbitrary point such that
dz = ®3. Without loss of generality, we can suppose thatl’ = —z, and so lo-
cally ¢ becomes the curve Rg = 0. Moreover, equatiog o T = 1/g gives that
g =e/®@ wheref(-2) = — f(2).

From (12), the functiois; extends ta if and only if

gef, ((d(og(g))* 1
¢@ = Im(( dz ) |g|2—1>

extends ta. To see this, takeg € iR and observe that

f@ =" anzo)z —20)",
m=0
where Réa»;(z0)) = 0, and Im(az;1(z0)) = O for j € Z. Since the meromor-
phic functiong has no ramification points an it follows thata;(z¢) # 0 for all

Zo€EC.
On the other hand,

Ig(2)] — 1= eRU @ —1=Re(f(2)) Hi(Re(f(2))),

where Hi(w) = (¢ — 1)/w for w € C. In particular, H1(0) = 1. Taking into
account the preceding Taylor series expansioff,afie deduce that R¢'(z)) =
Re(z)G1(z), whereG;, is a suitable differentiable function around Moreover,
using thatuy(zo) # O for all zo € ¢, we infer that|(Gy| )| = & > 0. Thus,

18(z)| — 1= Re(z) H1(2),
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Where|(H1|C)| > ¢’ > 0. Furthermore, a similar argument gives that
d(lo 2
Im((w) ) — Re(2) Ha(2),
dz
whereH, is differentiable around. We conclude that, around

H>(z)
Hi(2)(1+ 1gl(2))

is a differentiable function. OJ

G(z) =

Figure 6 A maximal spacelike annulus bounded by two circles in parallel space-
like planes and containing a cone point.

Looking at the expression of Jacobi operator, it is straightforward to check that
maximal spacelike surfaces are stable in a strong sense; that is, the first eigenvalue
of this operator on any compact domain is positive. As a consequence of this fact
and Lemma 1, we can prove the following version of Shiffman’s theorem for max-
imal spacelike annuli with singularities of cone typelih

Let S denote a slab determined by two spacelike pldiedT, in L2

CoroLLARY 1. LetA be acompact maximal spacelike annuluk.fwhose set of
singularities consists of a finitgoossibly empfyset of cone points. Suppose that
A is bounded by a circle or a cone pointlity and by a circle or a cone point ifi,.
Thentheintersection af by a plane contained ifiis either a circle or a cone point.
Therefore A is a piece of either a Lorentzian catenoid or a surface in the family

Proof. Uptoalinearisometryifi.3, we can suppose that the Euclidean normal vec-
tor of [T, andI1,is (0, 0, 1). We writeX : M — L2 as the maximalimmersion such
thatA = X (M), and we labet; andc; as the two boundary closed curves$iv.

First, note that the cas& M ) bounded by two cone poinfz, andP,, is impos-
sible. Otherwise, by successive reflections about cone points, we obtain a complete
maximal spacelike annulu$: M — L3, with infinitely many cone singularities,
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Figure 7 A translational invariant fundamental piece of a Riemann-type example
in R. Itis a spacelike annulus bounded by two cone points and with one end asymp-
totic to a plane. This annulus is a graph over any spacelike foliation plane.

such thatX (M) is invariant under a translation. The quotiend#funder the holo-
morphic transformation induced by this translation gives a t@y@nd the Weier-
strass datdd;, ®,, ®3) of X can be induced on this torus. Furthermote,is
holomorphic, and s@; = ;7o for j =1, 2, 3, where; € C andrg is a nonzero
holomorphic 1-form orf". Since®? + &3 — ®2% = 0 and the associated maximal
immersion is singly periodic, it is not hard to see that= r; A, wherer; e R, A €

C, andr? +r% —r2 = 0. In particular, X (M) lies in a lightlike straight line ifi.3,
which is absurd.

Hence, we can suppose that at least one of the boundary ewrvess mapped
underX onto a circle. After a reflection about a boundary cone point (if it exists),
we can suppose that, in fact, both cure¢gsndc, determine circles and so the
set of singularities lies in the interior 1.

Since A is an annulus with boundary lying in horizontal planes, basic Morse
theory or complex analysis implies that the third coordinate function of the im-
mersion has no critical points. Thus, there are no poinig inith vertical normal
vector and so the stereographic projection of the Gaussgi{ape (7)) has nei-
ther zeroes nor poles. Looking at (12) and taking into account Lemma 1, we infer
thatS; is well-defined oM. As mentioned previouslys; lies in the kernel of the
Jacobi operaton — |o|? on M. Furthermore, sinc&(c1) andX(c») are circles in
the planesiz = C with C € R, we deduce tha$; vanishes oM.

On the other hand, if we denote by? the induced metric oM, then the met-

ric dsg = M+1)2 ds? has no singular points; that is, it is a Riemannian metric on

M that is conformal tals2. LabelingA o as the Laplacian associatedag yields

thatA = on, whereA is the Laplacian associatedde?. Furthermore, it
is clear that

AoS1— 851 =0,

whereg = |0|?(|g| —1)? > 0. Since the first eigenvalue of the operatoy— g on
M is positive andS; lies in its kernel, we have th& vanishes at any point @7 —
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that is, the surface is foliated by circles or cone points in horizontal planes. These
kinds of surfaces were classified in Theorem 1. Finally, Remark 3 impliesithat
is a piece of either a catenoid or a surface lying in the failySee Figure 7. O

REMARK 6. Recall that the plane is the only spacelike maximal gragk’itin
fact, the only complete spacelike maximal surfac&y. However, any surface
in R has a translational fundamental piece consisting of a spacelike annulus with
two boundary cone points and an interior end that is asymptotic to a plane. It can
be proved that this piece is in fact a graph on the plane- 0, as occurs with a
half-catenoid.

Therefore, the space of spacelike graph&fwith a finite number of cone
points is nontrivial, and its study could be an interesting problem.

4. Maximal Surfaces Foliated by Pieces of Circles

Consider a spacelike maximal surface foliated by pieces of circles. In this sec-
tion we show that the planes of the foliation are actually parallel (see Theorem 4).
To do this, we use a similar technique to that developed for the Euclidean case in
[15, pp. 85-86]. The main dificulty in Lorentz—Minkowski space lies in the causal
character of the foliation planes: spacelike, timelike, and lightlike. As a matter of
fact, each case needs a different discussion.

Let M be an oriented maximal spacelike surfackfrand consideX = X(u, v)
a local system of coordinates . We write X,, = ?,—)Lf andX, = %—f As the mean
curvature ofX vanishes, we have

E[XLH va va] - 2F[Xua XU’ Xuv] + G[Xu’ XUa qu] == 07 (31)
where
E= (X, Xy), F=(X,,Xy), G=(X,, Xy)

are the coefficients of the first fundamental form with respedtxp, X,} and
where [y, Uy, us] denotes the determinant of the vectags u,, andus (see e.g.
[17] or [21, Chap. 7]). On the other hand, sinkeas spacelike,

W2 =EG — F?> = (Xu, X.) (X0, Xo) — (X4, X,)2 > 0. (32)

Let us assume that is foliated by pieces of circles ih®; in other words, assume
that M is generated by a 1-parameter family of pieces of circles, each of which is
contained in a plane di3. Denote byu the parameter of this family. We distin-
guish the following three cases.

Case 1: the planes are spacelikéhoose an orthogonal bagis (1), ex(1)} in
eachu-plane. Then the surface can be parameterized by

X(u,v) =c+r(cosve, +sinvey), uel, velJ (33)

(see (1)), wherd andJ are real intervalsg = c(u) belongs to the:-plane, and
r = r(u) > 0is a smooth function.

Case 2: the planes are timelikeet {e;(u), e2(u)} be an orthogonal basis in
eachu-plane, with—(e;, e;) = (e,, e2) = 1. Following (2), we have
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X(u, v) = c+ r(coshve; + sinhvey), uel, vel, (34)
wherec, I, J, andr are as given in Case 1.
Case 3: the planes are lightlikd=ollowing (3),
X(u,v) =c+vei+rvie;, ucl, vel, (35)

wherel, J, ¢, andr # 0 are as before and where, for eache;(u) ande, (1) are
vectors in the:-plane such thafe;, e;) = 1 and(e,, ;) = 0.

In Cases 1 and 2, I&(x) denote the unit orthogonal vector to theplane inR3
(the lightlike Case 3 merits a different treatment). Notice that) is not a light-
like vector and thaN(«) does not belong to the-plane.

Let us explain the global strategy. Reasoning by contradiction, suppose that the
planes containing the pieces of circles are not parallel. This means'that O
for u in some real interval, and hence the cué/kavingN (1) as unit tangent field
is not a straight line. We will construct a moving frame adapted to the foliation,
one that actually comes from the Frenet frame of the cdryeve will express
(33) and (34) in terms of this frame. Later, we shall compute (31). We will obtain
either a real trigonometric polynomial or just a polynomial in one variable that
vanishes in some interval &. The fact that the coefficients of this polynomial
vanish will give the contradiction.

THEOREM 4. Let M be a maximal spacelike surface in the Lorentz—Minkowski
spacel.® foliated by pieces of circles. Then the planes containing these pieces of
circles must be parallel.

Proof. As just mentioned, the proof is by contradiction. We say that d setR
is spacelike, timelike, or lightlike if and only if, for anye I, the associated plane
in the foliation is (resp.) spacelike, timelike, or lightlike. In the next three sub-
sections we shall prove that the planes in the foliation are parallel on spacelike,
timelike, and lightlike intervals. Since the set of pointskofvhose correspond-
ing plane in the foliation is spacelike (resp., timelike) is open, it is not hard to see
that the union of the spacelike, timelike, and lightlike open intervals is an open
and dense subset &. Because the map that takes evergn its corresponding
plane in the foliation is continuous, we deduce that the foliation must be by circles
in parallel planes.

Hence, we can split the proof into three parts.

1: The surface is foliated by pieces of circles in spacelike planes
In this caseN(u) is a timelike vector{N(u), N(#)) = —1. Consider{t, n, b} the
Frenet frame of the integral cuné (N = t). Write the velocity vectoc’ as
¢ =at+Bn+yb, (36)

whereq, 8, y are smooth functions af. Up to a change of coordinates in (33)
given by a translation on, and taking into account thatandb are spacelike, we
can put
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X(u, v) = Cc+ rcosvn + rsinvb.

Up to signs, lek ando be respectively the curvature and the torsion of the curve
C. Notice thatx # 0 becaus®\’ # 0, where the prime symbol denotes the de-
rivative with respect ta. Moreover,t’ is a spacelike vector. Frenet equations for
C are:

t' =«n;
n' = «t + ob;
b’ = —on.

From (31), a straightforward computation yields

O0=acosd +bsinv+ccos +dsinw +ecosv+ fsinv+g, (37)
where

a=—1r%0%? - B2+ y?),
b =r3py,
¢ = 3r¥3(=5rka + 6r'cp +rk'B — rep’).

Froma = b = 0, we deduce thagy = 0 andg = £rk. Moreover,c = 0 implies
thate = +r’. Therefore, it is not hard to see thidt = 0, a contradiction. Thus,
x = 0 andC is a straight line.

2: The surface is foliated by pieces of circles in timelike planes
In this situation,N is a unit spacelike vectokN(u), N(u)) = 1 Lett = N the
unit tangent vector of’. Since we are assuming the planes are not parallek
t’ # 0. Moreover, it is clear thatt’, t) = 0. We distinguish three possibilities as
follows.

First Case:(t’,t’) > 0. Letn be the unit spacelike vector field alodgsuch
thatt’ = «n for some smooth function £ 0. Takeb =t A n, whereA stands for
the cross product if.®. Notice that(b, b) = —1. Up to a change of coordinates
by translations ow, we can write (34) as

X(u, v) = ¢+ rsinhvn + r coshub.
Here, Frenet equations are

t' =«n,
n' = —«t 4+ ob,
b =on.

The formula (31) can now be written as
0=acosh3 + bsinh 4 ccosh 2 + d sinh 2 + e coshv + f sinhv + g,

where, with the same notation of (36),
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a = —r%py,
b= %re’x(—rz/cz—l-ﬁz—}— )/2),
c = 2r3Grela — 6r'cf —rk’'B + reB’),

= N

d= 2r3(rlc’y —rky’ —6r'ky).
Froma = 0, we have thaBy = 0. We then reason as follows.

(i) Supposes = 0. Thenb = 0 implies thaty? = r?«2, and frome = 0 we get
thate = 0. Finally, d = 0 yieldsr’ = 0. ThenW? = —r*?2 < 0, which is
a contradiction.

(if) Supposey = 0. Thenb = 0 givesg = *rk, andc = 0 implies thate =
+r’. We deduce tha¥ = 0, a contradiction.

Second Casegt’,t’) < 0. Letn be the unit timelike vector field along such
thatt’ = «n. The parameterization df is given by

X(u,v) = ¢+ rcoshvn + r sinhvb,

whereb =t A n. The corresponding Frenet equations are

t' =«n,
n' =kt +ob,
b =on.

Hence, we can write (31) as

O0=acosh3 + bsinhd + ccosh 2 + d sinh 2 + e coshv + f sinhv + g,
where

a= —%rsK(rsz - B* =7,

b= —r%py.

c = %r3(—5r/c20( +6r'kp +ri'p —rep’),
d= %re’(—r/c/y +riy’ —6r'cy).

Fromb = 0, we deducedy = 0.

(i) Supposes = 0. Froma = 0, it follows thaty? = r?«?2, and using that =
0 we obtaine = 0. Henced = 0 impliesr’ = 0. Therefore, the coefficient
e can now be computed easily a8r %3 = 0, a contradiction.

(ii) Therefore,y = 0. Taking into account that = O, we haveg = +r«.
Moreover,c = 0 givese = £r’. With these data, one can check tiat= 0,
which is absurd.

Third Case:(t’,t’) = 0. Since we are assuming that the foliation planes are not
parallel, it follows that’ # 0. Hencet' is a lightlike vector lying in the:-plane.
Letn =t’. For eachu, let b be the unique vector orthogonalttsuch that
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(b,b) =0 and (b,n) =1

In fact, from (34) we have

1
n = i(u)(—e+ ey), b= m(eﬁ e2),

where is a differentiable function ofi. We may choose as a new parameter
—e'/2A(u) instead ofv; then, still denoting the new parameteriyy(34) becomes

r
X(u,v) =c+rvn— —hb,
2v

with r, v # 0. The Frenet equations are now

t' =n,
n =on,
b= —t —ob.
Equation (31) gives
1 1 1 1 1
Ozaﬁ—l—bﬁ +CF +dF+€F,
where
1’5 r3ﬂ2
a = _Z + 4 )

/3
b= Z(—Sr(x +6r'g—rp),

r3aB’  ricap  ria’8  3rdr’?

:_232_

e 2 2 2 2
4.1 4.1 33
r ;0 _r2r _ 1’2,3)/ +r2r/ot,3.

Froma = 0 we have8 = +r. Moreover,b = 0 implies thatx = +r’, and from
¢ = 0 we infer thaty = 0. Hence, it is not hard to check thét = 0, which is a
contradiction.

3: The surface is foliated by pieces of circles in lightlike planes
With a change of notation, (35) becomes

X(u,v) = C+ vn + rv’t,

wherec, t, n lie in theu-plane,r > 0, v e I, {t,t) = (n,t) =0, and(n,n) =

1 For eachu, let b(z) be the unique lightlike vector orthogonal tosuch that
(t,b) = 1and [, n,b] = 1 Note that, since a lightlike plane is the orthogonal
plane to any lightlike vector that belongs to it, the planes are parallel if and only
if the fieldt is constant (i.e., doesn’t depend on the parametéiVe may assume
thatt’ = «n. Indeed, it is easily seen that one can always determine a fungetion
of u such that the field = ut satisfies the preceding requirement (accordingly,
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one must changeinto 7 = r/u). Since we are assuming that the planes are non-
parallel, we have # 0. The corresponding Frenet equations are

t' =«n,
n =ot —«b,
b =—on.

The vector fieldt’ is given in (36). The hypothesid = 0 means here that

0=av4+bv3+cv2+dv+e,
where

a=Trk?@2ry — 1),

b =16r%28 + 4rr'cy — 2rcy’ — r'c’ + 2r%'y — 8ri’o +r'k — 16r3cy?,

c=—2rkp — 9ric’a +2rk'B — 20r%kBy +r'y —3r'kB +4rr'y?: —r"y
—«k'oc +1lrkoy + ko’.

Froma = 0, it follows thatr’ = 2r2y. The equatiorb = 0 giveso = 2r8. A
computation ot with these data gives = 0. Therefore, it is easy to prove that
W = 0, which is absurd. O
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