Spectra of Slant Toeplitz Operators
with Continuous Symbols

MARK C. Ho

1. Introduction

Let p(0) ~ Y% cqe™ be a bounded function on the unit circle T, where ¢, is
the nth Fourier coefficient of ¢. The slant Toeplitz operator A, with symbol ¢ is
an operator on L2(T) whose representing matrix with respect to the usual basis
(e :neZ}is:

(- )
e Cc_2 c_3
Co c_1 C_2p
C1 Co c_1
(03] C1 co
K C3 C2

Note the double shift between rows instead of the single shift, as in the doubly in-
finite Toeplitz matrix which represents a multiplication operator on L2, and note
that one can obtain a matrix like this by eliminating every other row of a doubly
infinite Toeplitz matrix.

Currently, the most general result about the spectrum of A, is that if ¢ is invert-
ible then the spectrum of A, contains a closed disc, and the interior of that disc
consists of eigenvalues with infinite multiplicity. In this paper, we will show that
the spectrum of A, is a closed disc if ¢ is continuous. Furthermore, we will show
that if ¢ is a continuous function that does not vanish on T, then the interior of its
spectrum consists of eigenvalues with infinite multiplicity.

2. Definitions and Notation

In this section, we will introduce some notation and definitions that will be used
throughout the paper. We will also assume, throughout this section, that ¢ is
continuous. Let us first define the following operator on C(T):
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(Lo f)O) i= w(g) f(-g-) + (p(-‘;— + n) f(g + n)

for any f in C(T). It’s easy to see that, for any f in C(T), the nth Fourier coeffi-
cient of L, f is given by

2 do

(Lo f, ™) = A (L¢f)(9)€_""95

[ @) @) o) (o)) 5
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On the other hand, since A, = A;M, (where M, is the multiplication operator
and A is easily seen to be the adjoint of the composition operator induced by the
map 7(e'?) = /2% on T; see [8]), the nth Fourier coefficient of A, f is

<A(pfs einB) — (f, Ad‘;einB) — (f, gaeiilne) — ((Pf, ei2n9)
do

2m
= [ vors@e™
0 T

Therefore, L, f = 2A, f for all f in C(T).
REMARK. Let X be a compact metric space with a differential structure, and Iet

T:X — X be an n-to-1 covering map. For an«a > 0 and a g in C*°(X), consider
the following operator on C*(X):

Lef(xy= Y gfQ

yeT—1(x)

for all f in C%(X). Operators of this type are sometimes called the Ruelle-Perron—
Frobenius operators, and were studied extensively by mathematicians in dynami-
cal systems in the past few decades (see e.g. [1; 10; 12; 13]). The spectra of these
operators under the C*(X) topology (¢ > 0) generally consist of a closed disc
centered at the origin and some isolated eigenvalues outside that disc. Obviously,
inourcase L, = L, with X =Tand T = 7.

Next, let us consider the following set of functions on T:

E := [ FeCM): f~) ae™and ) |a,le < oo] :
It is not difficult to see that E is a Hilbert space with the inner product given by

(f.8)E= Zangnezlnl
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for f ~ ), a,e™ and g ~ Y, b,e™ in E. Moreover, given any f in E, one
can extend f to an analytic function F on the annulus {z : e~} < |z| < e}. Now
consider ¢ in C(T) whose Fourier coefficients ¢, decay exponentially, that is, the
coefficients satisfy

lenl < Ce 7l Q)]

for some C and y > 0. The following properties are consequences of the work of
Cohen and Daubechies in [2].

(i) L, is a compact operator on E if% <y <l
(ii) If ¢ does not vanish on T and % < y < 1, then r,, the spectral radius of

Ly,2 on E, is an eigenvalue of algebraic multiplicity 1, and the corresponding
eigenfunction is strictly positive. Also, r, > 0.

Evidently, (i) and (ii) hold for any nonvanishing trigonometric polynomial ¢ on
T. We sketch a proof for (i) and (ii) as follows.
For % < y < 1, the boundedness of L, follows easily from the estimate

” LqufHZE = 42 ZCZn—mam

2 2 -2 2
<4IFIE D lcznoml*e™ e

n,m

< 4C2”f"2E Z e—Z(I—V)ImIe—Z(ZV—l)Ini’

n,m

2
2!

and the compactness of L, follows from the fact that L,, is trace class on E, since
for any n and m we have

[(Lyem, en)El = 2|C2n—m|elnle_lml = Zce—(l—y)lmle—(Zy—l)lnl,
where {e, = e "ei" : n € Z} forms an orthonormal basis of E. Notice that
both inequalities depend on the fact that |2n — m| > 2|n| — |m| for all n and m.
For (ii), thespace Eg = { f € E : f(0) € R, 8 € [0, 27] } over R is an ordered
real Banach space with the usual order, and it is easy to check that L,,2 sends Ef
into E(')" (where E()* ={f € Ey: f = 0}). Hence, by the Krein—Rutman theorem
(which can be regarded basically as a version of the Perron—Frobenius theorem for
the infinite-dimensional case), ., the spectral radius of L,y 2, is an eigenvalue of
L, (since, according to the terminology used in [14], E is the “complexification”
of Egy). Furthermore, we can find a ® in E0+ such that L,z ® = r.®. Interested
readers can find a detailed explanation for this argument in the appendix of [14].
To show that @ is strictly positive, we use the following identity:

2n-1 n
UHIOENDY []‘[ 0(27% 0 + 2m7r))] f270 + 2m))

m==2n—141] k=1

for all f in C(T) and 0 in [0, 27 ]. Now, since the set { e2” €20 . n.m e Z}is
a countable dense set in T for any €, and since ® is nonzero and continuous, there
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must exist N, M for each 6 such that ® (2~ (0 + 2Mn)) > 0. From the above
identity this means that

rg ®(0) = (Li ®)(©) > 0,

since by assumption ¢ does not vanish on T. But then this implies that ® > 0 on
T. Finally, the algebraic multiplicity of r, can be derived from [14, 3.2, p. 270].

3. Lower Bound for A’;"

Let us now return to slant Toeplitz operators. For any f in L2(T), we have

*kn *n *xn n *n ZJT dg
VAL FIP = (A3 1L AL ) = (A Ay o f) = afo £ = | Wl P 5,

0
where ¥, = A’l‘(plz(l) > 0 (see [8]). This implies that

1A" 1l = (essinf{y.)'/?]| 12

and hence C, = (essinf{,})!/? is a lower bound for A%". In this section we will
show that C1/" — r(A,), where r(A,) is the spectral radius of A, on L*(T). To
achieve this, we need the following lemma.

LeEMMA 3.1.  Recall that r, is the spectral radius of L,,2 on E. Let ® in E be
a strictly positive eigenfunction of L, associated with r.. Then there exists a
constant k > 0 such that 2r, Yy, — «k® uniformly if ¢ is a trigonometric
polynomial that does not vanish on the unit circle.

Proof. The argument of the proof is borrowed from the proof of Lemma 4.7 in
[2]. Let us first define a continuous function

g0) := @)@, 6 €[0,27].

re®(20)

It is obvious that g is differentiable and strictly positive. Furthermore, for any 8
in [0, 2] we have

— 1 2 1 2
8O) +g0 +m)= ___—re(I)(ZB)(D(Q)I(p(G)l + _—_—re¢(29)d)(9 + )0 + )|

(@@)|e®)* + D0 + m)p® + 7))

re®(26)
P (20 )
= :—83327; (since L, (®) = r.P)

= 1.

It is then a consequence of a result in [10] that, for any f in C(T), the sequence
L% f converges uniformly to a constant.
Next we will show by induction that

Liaf =rloLy(fo™)
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for all f in C(T) and all n > 1. Let us check this for n = 1. For any f in C(T)
and @ in [0, 2], we have

it -1 (9(s)
+g(g +”) f(g +n) cp(g +JT)—1
) () b5 +)

1
= r—ea—éj(ldlqplz f)(g).

()

Now assume LﬁoIZf =rf®LE(f®~!) fork <n —1andall fin C(T). Then
Liyof = LigpLis f)
=r}"Lie(eL; ' (fO)
=rl@L (oL} ' (fo Ho™)
=rlOLY(fO7");

hence the induction is complete.

Finally, let us prove the lemma. Let ¥k = lim,,_, » L’g}(CIJ_l). Since L ,2=24,
on C(T), we have

@Y Y = Q)AL (1) = (7L (1) = RLE@T) > k@
uniformly on T. It is also clear that ¥ > 0, since Lg(d)_l) > (0 for all n. O

We will now present our main result in this section as a result of Lemma 3.1.

PROPOSITION 3.2. If ¢ is a trigonometric polynomial with no zeros on the unit
circle, then

CM" = (essinf (¥, N/*" — r(A,).

Proof. Since ® is strictly positive and continuous, the sequence w,}/ " converges
uniformly to %re > 0 (if x > 0) or O (if « = 0), by Lemma 3.1. But since

Wl = r(A,)? and r(A,) > r(A,1)~" > 0 (see [8]), Yn'" — r(A,)? uni-
formly. This completes the proof. d

Note that we have also proved the following.

COROLLARY 3.3. If ¢ is a nonvanishing trigonometric polynomial, then

re = 2r(A,)>.
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4. Spectrum of A,

We are now ready to prove the main theorem. (Theorem 4.1 also appears in [11],
a fact that was brought to the author’s attention in May 1996. The work here,
however, was done independently and its proof uses different methods.)

THEOREM 4.1. If ¢ is a nonvanishing trigonometric polynomial on the unit cir-
cle, then o (Ay) and 0,(A,), the spectrum and the essential spectrum of A, are

the closed disc
{A Al =1 (Ap) ).

Furthermore, if |A| <r(Ay) thendimker (A, —A) = oo and dim ker(A’:D —A)=0.

Proof. The idea of the proof can be found in [5] (or see [6, Thm. 7.44]). From
Proposition 3.2 we have

C/" = (essinf{y,N'*" — r(A,).

Thus, if |A| = r < r(A,) then we can choose large n such that [A|" = r" < C,
and C,, > 0.
On the other hand, from the definition of C,, we have

Cull Fll2 = 1AL fll2

for all f in L2(T). In particular, this means that AJ" is one-to-one and the range
R of Aj;,” is closed. Let P be the projection from L*(T) onto R, and let S be the
inverse of A"g;" as a map from R onto L2(T)—that is, SA’;" = I and A;';"S = I3.
This implies that

ISP < ISl <C;' <r™™ =A™
Therefore, the series
o]
S). — Z)_\.nk(sp)k-i‘l
k=0

converges absolutely. Furthermore, it is easy to see that Sy (A}" — A") = I. Hence
S, is a left inverse of AZ,” — A" (hence Sy is a right inverse of A’:D — A").

Claim: A’; — A is semi-Fredholm but not Fredholm.

First, we would like to point out that the range of A{, —A" is closed since A}, — 1"
is right invertible. Second, since R+ = ker(A}) 2 ker(4,) = {¢~ e’ ¢
k € Z}) is infinite-dimensional (see [9]), ker (P) = R’ is infinite-dimensional.
This means that dim ker (S;) > dim ker (P) = o0. Suppose that e is Fred-
holm; then A*q;" — A" is also Fredholm. But since S, is the left inverse of A’;“ — ",
this would imply that S, is Fredholm, which is impossible (note we have actually
shown that dim ker(A'é, — A") = 00).

The claim above implies that o, (A’;), the essential spectrum of A” , includes the
circle { ¢ : |¢| = r" }. Now consider the identity

n
l——[(A(p . A‘ei2n’k/n) — A?o . )\'n,
k=1
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and define
n—1
S'A = |:1_[(A¢ _ )Lei27rk/n)j| S;T
k=1

A direct computation shows that (A, — ) S, = I. Since o, (A%,) includes the Cir-
cle of radius r”, the spectral mapping theorem for the Calkin algebra implies that
o.(A,) intersects the circle of radius 7. Suppose that there is a Ao on the boundary
of 6.(A,) with |Ag| = r. Then, as A — Ag from the essential resolvent of A, with
|A| = r, the essential norm of the essential inverse of A, — A approaches infinity.
If A, — A is essentially invertible then S‘,\, its right inverse, must be its essential
inverse. But the estimate

ISalle < ISall < 1SN = r™ IS~ AL 4+ 7)™

for all || = r shows that the boundary of 0.(A,) cannot intersect the circle of ra-
dius r, which means that o,(A,) contains this circle. Therefore, A, — A is right
invertible but not Fredholm for all A with || = r, and the proof is complete since
r is arbitrary. O

We can extend Theorem 4.1 to the case when ¢ is a nonvanishing continuous
function on T as follows.

THEOREM 4.2. If ¢ is a continuous function with no zero on the unit circle, then
both the spectrum and the essential spectrum of A, are the closed disc

{AA =r(Ap) )
Moreover, dimker (A, — 1) = oo and dimker(A:jJ —A)=0if |Al < r(Ay).

Proof. The key in proving Theorem 4.1 is to show that
C" = (essinf (¥, N/?" — r(A,).

Given p > 1, it is not difficult to see that there exists an € > 0 such that [¢| <
ple| a.e. whenever || — ¢]loo < €. Now let p be a nonvanishing trigonometric
polynomial such that ||p — ¢|lo < €. This implies that | p| < p|¢|, and therefore
VUn = Alp(1) = p"Af,2(1) = p"¥y. Thus, by applying Proposition 3.2 to p and
setting C,, = (essinf{¥,})!/2, we obtain

r(Ap) = lim Cl/» < /p liminf C}/",

n—o00

Let us choose a sequence of nonvanishing trigonometric polynomials p,, such
that p,, — ¢ uniformly on T. We can find large N so that || p, — ¢llc < €if n >
N. This means that

r(Ap,) < /p liminf cl/n
if n > N. By [9, Prop. 5.1], we have
r(Ay) = lim r(4,,) < /p liminf cl/n,

Since p is arbitrary, we have
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r(A,) <liminf C,/",
n—o0
and the theorem follows again from the fact that ||, ||(1,é” — r(A,p)z. ]

Our next theorem is an immediate consequence of Theorem 4.2.

THEOREM 4.3. If ¢ is a continuous function on the unit circle, then the spectrum
of Ay is the closed disc
(A =r(Ag) }-

Proof. We will use an elementary result from operator theory:
r(A) <liminf r(A,)
n—>o0

if ||A, — A|| — 0. Since the set of nonvanishing continuous functions is dense in
C(T), we may choose a sequence ¢,, of nonvanishing continuous functions on T
such that ||¢, — ¢|lcoc — 0. This means that ||A,, — Ayl — 0.

Now letr < liminf,_, r(A,,). Choose a subsequence r(A%j) of r(A,,) such
that

r(Aq,nj) \u ligggf r(An).

In particular, r(A,pnj) > r for all j. Therefore, by Theorem 4.2, there exist f; with
| /illo = 1 in L2(T) for every j such that

Ag,, f; =1
if |A| = r. But this means that
1(Ag =V fill < I(Ag,, = Ap) fill + 1(Ag,, — M) fill = I(Ag,, — Ap) fill = 0,

which implies that { > : |A| = r } is contained in the approximate point spectrum
of A,, and this completes the proof. O

Next we show that the spectral radius (A ,) is nonzero for a sufficiently large class
of continuous symbols on T.

PROPOSITION 4.4.  If ¢ is a nonzero trigonometric polynomial on T, then r(A,)
is nonzero, that is, o0 (A,) # {0}.

Proof. Without loss of generality, let ¢(0) = Z:;V:o a,e™ with ay # 0 (since
clearly r(Ay) = r(Ayy) if |A| = 1). In [8] it is shown that the subspace H of
L%(T) spanned by {e : [n| < N} is invariant under A,. Let A = A,|y. Now
assume that r(A,) = 0; this means that r(A) = 0, sodet(x] — A) = x™ for some
integer m > 0. By the Cayley—Hamilton theorem, A™ = 0 (i.e., A is nilpotent).
However, we have

(A¥1,1) =ad #0

for any integer k > O (since ag # 0), and this leads to a contradiction. This com-
pletes the proof. d
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5. Final Thoughts

Keane [10] has actually shown that the sequence L} f converges uniformly to a
constant if g is in C1(T), g(6) + g(6 +n) = 1 for all 8 in [0, 27], and one of the
following conditions is satisfied:

(1) g has only one zero on T;
(ii) g has finitely many zeros and none of the zeros wanders into a periodic orbit
of the mapping t(e'?) = ¢%?; or

(iii) all zeros of g liein [7, 2y or (%, Z]

(see [10, p. 313]). This means that the conclusion of Theorem 4.2 will hold for a
larger class of the symbols ¢ (in fact, we believe that Theorem 4.2 is still valid for
the class of Holder-continuous ¢ on T). The reason for our insistence on nonvan-
ishing symbols is just for the sake of simplifying the statements. In fact, judging
from the kind of results we have in Section 4, we believe that the spectral proper-
ties of A, depend more on the zero set of ¢ than on the smoothness of ¢. Hence
it is natural to pose the following questions: What is the weakest requirement for
¢ under which the conclusion of Theorem 4.2 will hold? Does there exist a ¢ in
L*°(T) such that o (A,) is not a closed disc? (As we have already shown in [8],
o (A,) contains a closed disc centered at 0.)

This work also seems to have pointed out some interesting relations between
the spectral properties of A, and the topologies of the spaces on which A, are act-
ing. First, we would like to present the following theorem, which is a special case
of a remarkable result due to Ruelle [13].

THEOREM 5.1. Let ¢ be in C(T), whose Fourier coefficients c,, decay exponen-
tially (see Section 2 for definition). Given a > 0, let ro and p, be the spectral
radii of A, and Ay, on C*(T), respectively. Let pg be the spectral radius of Ay
on C(T). Then, for any a > 0, we have ry, < pg and py = po. The spectrum
of A, on C*(T) consists of a closed disc centered at 0 whose interior consists
of eigenvalues with infinite multiplicity and some isolated eigenvalues with finite
multiplicity in the region { A : |A| > 27%pg }.

By letting & N\ 0, one can show that o(A)y), the spectrum of A, on C(T), is a
closed disc centered at 0 whose interior consists of eigenvalues with infinite mul-
tiplicity. Moreover, the spectral radius p of A, on C(T) is also an eigenvalue
(no longer isolated). This observation may lead one to believe that Theorem 4.1
can be derived from Theorem 5.1 with some modification. But this turns out to be
not true: one can show that, for example, there is no eigenvalue on the circle of
the spectral radius of Ao 4| ON L?(T) if o # 0 (see [9]). On the other hand, by
Theorem 4.1 and Theorem 5.1 we have

o Cog(Ay) C - Cog(Ay) Co(Ay)

(where 04 (A,) is the spectrum of A, on C*(A,)) if ¢ is a trigonometric poly-
nomial with no zeros on T. The foregoing discussion suggests that the spectral
radius of A, is no longer the constant py if the topology on the space is weaker
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than the uniform topology. In fact, we believe that p,,, the spectral radius of A,y
on LP(T), is strictly increasing as p \( 1 unless ¢ is unimodular on T.

One of the reasons that the operator £, (see Section 2) is called the Ruelle-
Perron—Frobenius operator is because, when g > 0, it sends C*(T)™ into C*(T)*
for all @ > 0. As a consequence, the spectral radius of £, on C%(T) is an eigen-
value with a corresponding eigenvector in C*(T)™, if g satisfies certain condi-
tions (i.e., if g is a strictly positive C* function). This conclusion, however, does
not hold in L%(T), as we have seen in the example Ajeio 4o for a # 0 (although
these operators still map L2(T)* into L2(T)*). We believe that the main reason
for this is because—whereas C*(T)™ has nonempty interior in C*(T) for all @ >
O—the interior of L2(T)™* is empty. This raises some interesting questions: Does
there exist a probability measure . on T such that the spectral radius of A, (p a
strictly positive C* function, for instance) on L?(u) is still an eigenvalue; and if
so, how do we characterize such u?
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