Factorization of Blaschke Products

KEe11 IzucHl

1. Introduction

Let H® be the space of bounded analytic functions in the open unit disc D.
Identifying these functions with boundary functions, we can consider that
H® is the essentially supremum norm closed subalgebra of L*, the space
of bounded measurable functions on dD with respect to the Lebesgue mea-
sure. Sarason [14] proved that H*+ C is a closed subalgebra of L®, where
C is the set of continuous functions on dD. We denote by M(H®+ C) the
maximal ideal space of H”+ C. In [6], Guillory and Sarason proved that
there is a positive integer N such that if f€ H*+ C and b is an inner function
with | f|<|b| on M(H®+C), then f~/b= Vb belongs to H*+ C, and we
cannot take N=1. In [12], the author and Y. Izuchi proved that we can take
N=2. In this paper, we assume that b is a Blaschke product and study the
cases | f|<|b| on M(H®+ C) and fb ¢ H®+ C. Our aim is to investigate the
kind of small changes of f or b, say g and y respectively, that make gb e
H®+C or fy € H”+ C. To prove several of our theorems, Hoffman’s factor-
ization theorem for Blaschke products [9, Thm. 5.2] plays an important role.

In Section 3, we shall give an additional property in Hoffman’s factoriza-
tion theorem that zero sets of its factors having zeros of infinite order coin-
cide with each other. In Section 4, we prove that if fe H*+C and b is a
Blaschke product with | f|<|b| on M(H®+ C), then there is a subproduct
y of b such that fYy e H®+ C and Z(y) = Z(b), and there is a function g in
H®+C such that |g|=|f| on M(H®+C) and gbe H®+ C. In Section 5,
we shall give a sufficient condition for which the absolute moduli of two
Blaschke products coincide on M(H*+ C).

2. Preliminaries

For a sequence {z,}, of points in D with ¥7_; 1—|z,| < o, the function

b(z) = ﬁ —Zp T3y,

n=1 lznl 1-2,z

s, z€D,
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is called a Blaschke product with zero sequence {z,},. If {z,}, satisfies in
addition the condition
inf JT |ZE2r
k n:n#k I—ank
then {z,}, and b(z) are called interpolating. If {z,}, is interpolating, then for
every bounded sequence {a,}, there is a function f in A such that f(z,) =
a, for every n (see [8]). A function 7 in H® is called inner if |I|=1in L*.
A Blaschke product is a typical inner function. An essentially supremum
norm closed algebra between H® and L® is called a Douglas algebra. By
[3; 13], every Douglas algebra is generated by H* and the complex conju-
gates of some interpolating Blaschke products. For a subset A of L™, we de-
note by [H®, A] the Douglas algebra generated by A~ and A. For a Douglas
algebra B, M(B) denotes the maximal ideal space of B. Then M(B) can be
considered to be a closed subset of M(H®) and M(H®+ C)=M(H*)\D.
Also, M(L™) can be considered to be the Shilov boundary for every B. We
identify a function with its Gelfand transform. For a subset £ of M(H®),
cl E denotes the closure of £ in M(H®).
For points x and y in M(H®), put

p(x,yy=sup{| f»)|; feH, || f| =1, f(x)=0}.
It is well known that p(z, w)=|z—w|/|1—Zw| for z, we D. A set
P(x)={yeM(H); p(x,y) <1}

is called a Gleason part. In [9], Hoffman studied Gleason parts extensively.
He showed that if P(x) # {x}, there is a one-to-one continuous map L, from
D onto P(x) such that foL,e H* for every fe H* and (f-L,)(0) = f(x).
For a function f in H”+ C, we put

Z(f)={eMHT+C); f(§)=0].

For x e Z( f), we put
Ord(f, x)=[

>0,

Ord(feL,,0) if P(x)#{x},
o it P(x)={x],

where Ord(f-L,,0) is the usual order of the zero of the analytic function
foL, at 0. We note that Ord(f, x) = if and only if f=0 on P(x). We de-
note by Z.(f) the set of points x in Z(f) with Ord(f, x) =o0. By [8, p.
205], if b is an interpolating Blaschke product with zeros {z,}, then Z(b) =
cl{zn},\{2,} ., and Ord(b, x) =1 for x € Z(b).

In this paper, we mainly study whether or not f/I is in H*+ C when f is
in H®+ C and I is inner. We consider f/I as a function on the Shilov bound-
ary M(L™), so that f/I = fI.

3. Hoffman’s Factorization Theorem

The following theorem is an additional property of Hoffman’s factoriza-
tion theorem [9, Thm. 5.2]. For a Blaschke product b with zeros {z,},, let
K (b)=N%_i{z; p(z,2,) =0} for 0>0.
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THEOREM 3.1. Let b be a Blaschke product with Z,.(b) + 0. Then b admits
a factorization b= b, b, such that Z.(b,) = Z.(b,) = Z(D).

Proof. We recall the construction of b, and b, in Garnett’s book [5, p. 411].
We work in the upper half-plane H*. Let {z,}, be the zero sequence of
b. Fix \, 0<\ <1, and form strips T, ={x+iye H*; NX*1< y <N}, k an
integer. Write the z, in 7 as the (possibly two-sided) sequence z; ;, j an
integer, so that x; < x; if j </. Put z; ;€ 8, if j is odd, z, ; €S, if j is even.
Let b, and b, be Blaschke products with zeros S; and S, respectively. Then
Hoffman proved the following inequalities:

(1) c|b1(2)| /9 <|by(z)| <|by(2)|%c, z K, (D),

where the factors b; and b, do not depend on o, 0 <o <1, and constants ¢
and d depend on o. For x € Z(b)\cl{z,},,, there is ¢ > 0 such that x e cl K,(b).
Hence by (1) we have

bi=b,=0 on Z(b)\cl{z,},.

By [9, Thm. 5.3], Z,(b;) D Z(b)\cl{z,},, so that to prove our theorem we
need to prove Z,(b;) D Z(b)Ncl{z,}, fori=1,2.

Let { be a point in Z,(b)Ncl{z,},. Then P({) C Z,.(b). If P(¢) ¢ cliz,},
then there is a point x in P({) with Ord(b;, x) = o, so that P({) C Z,(b;) for
i =1,2. Therefore we may assume that P({) Ccl{z,},.

To prove P({) C Z,(b;) for i =1,2, suppose the contrary. Here we may
assume that P({) C Z.(b,) and P({)Z Z,(b;). Since b is not zero identi-
cally on P({), we may assume moreover that b;({) # 0. Under these condi-
tions, we shall reach a contradiction.

Let {wy},eca be a net in {z,}, such that w,— {. Since b;({) # 0, we may
assume that b,(w,)=0 for every o€ A. For 0<é<1, put V,={zeH™;
p(z,w,) <6} and w, = x,+iy,, where p(z, w) =|z—w|/|z—w|. Then we
have

(2 V,={x+iyeH™,
(Xx—x)* + [y =y, (1+8%) /(1-8)]1> < [2y,8/(1—56%)].

In what follows, we choose 6 sufficiently small so that the following condi-
tions are satisfied:

(3) p(INC INFTYY =(1=N)/(1+N\)>26 forevery k;

4) b, does not vanish on {xe P({); p(x, ) <48}.

By (3), for each « € A there exists a unique integer k¥ (= k(«)) such that

5) V,CcTyUT, ., and V,NT,+#49.

Put £, = x,—2y,6/(1—6%), 5, = x,+2y,6/(1—62), and
Wo={x+iyveH";t,<x=<s5, NNt2< y <N},

By (2) and (5), V, C W,,. Now we need the following two sublemmas.
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SUBLEMMA 1. sup, sup{p(z,w);z, we W, }<1.

Proof. To study the value of the left side, we may take x,=0. Then we
have the following three inequalities since y, < N*:

. . t,—s 2 [4y,6/(1—86%)]?
t >\k+2, )\k+2 2___ o (s — o3
p(ty+i SaFINTE)T= ty—Sq+I2NH2 | [4y,6/(1—62)]2+4N2k+2)
[4N¥6/(1—62)]? [46/(1—6%)]?

= AN /(1= 6217+ AN+D  [46/(1—62)]2+ 4NE°

p(ty+iINEF2 s +iN Y < (1 =0N2) /(1 +N2);
[47,8/(1—8%)]2+ (N —\*+2)?
[470/(1—62)124+ (NF 4 NF+2)2

- [4)\k5/(1_62)]2+()\k_)\k+2)2

T [ANKS/(1—582)]2+ (NF+NF+2)2

_ [48/(1—8%)17+(1—N%)?

T [48/(1 =812+ (1+N\2)2°

Consequently we have our assertion. U

Pty +iNF2 s +iN )2 =

SUBLEMMA 2. Let N, be the number of zeros of b in V, (o € A). Then there
is a subnet T’ of A such that Ng— > (3 €T').

Proof. To prove this, suppose the contrary. Then there is g in A and a
constant K >0 such that N,<KX for every a« € A, = ;. Therefore there
exist o, 0<0<8/2, and £, €V, such that for a=ag, p(£,, Ww,) <6/2 and
p(%4,27) >0 for every z; €V, N{z,},. Let {£g)5 (B €T') be a subnet of {£,},
such that &3 — §; for some {3 e M(H®+ C). Since wg— ¢ and p(&g, wg) <
6/2, we have p({, {)<6/2 by the semicontinuity of p [9, p. 103]. Since
b,=0o0n P({), by(&3) — 0. We note that if z; €V, then p(§,,z;) > 0, and if
zi&V, then

P(Ee> 2) = p(Wes Zj) — p(Wes £) = 6—8/2=08/2> 0.
By (1), we have b,({;) = 0. But this contradicts (4). O

Now we return to the proof of Theorem 3.1. By the construction of Blaschke
products by and b,, if we denote by NV, , the number of zeros (counting mul-
tiplicities) of b, in V,, then the number of zeros of b, in W, is bigger than
N, ,—2. By Sublemma 2 and the fact that V, CW,, if we denote by N,
the number of zeros of b; in W, we have N; g— o (8 €T'). By Sublemma
1, there is a constant A such that p(¢, w,) <A< for every { e W,. Hence
we have |b,(w5)|sANl’f3—)0. This implies b,({) =0, which is the desired
contradiction. 4

For fe H”, put Zy(f)={xe M(H); f(x)=0}. Then Zy(f) is a closed G;-
subset of M(H®). :
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CorOLLARY 3.1. Let b be a Blaschke product. Then the set Z.(b) is a
closed Gs-subset of M(H™).

Proof. Let A={(iy,i3,...,i); ;=0o0r 1, k=1,2,...}. Then A is a count-
able set. Using Theorem 3.1, we can define a sequence of Blaschke products
{b,; a €A} as follows:

b=b0b1 and boz:baobal-

Then Zy(b,) D Zo(b,) = Z(b), so that Z(b) CN{Zy(b,); a€A}. Let xe
Zo(b)\ Zo(b). Then b,(x)#0 for some o € A. Hence N{Zy(b,); a €A} C
Z (D). Therefore Z.,(b) = N{Zy(b,); a € A} is a closed Gs-subset of M(H™).

. ]

4. Division Problems in H*+C

In [12], the author and Y. Izuchi proved that if b is a Blaschke product and
feH®+C with | f|=<|b| on M(H®+C), then f2be H®+C. In this sec-
tion, we prove that under the above conditions there is a subproduct ¢ of b
such that fYy e H+C and Z(y)= Z(b). To prove this, we will use some
lemmas. The following lemma is a direct corollary of the theorem in [6,
p. 176]; see also [15].

LEMMA 4.1. Let B be a Douglas algebra and let I be an inner function.
Then IBC H*+C if and only if I=0 on M(H®+ C)\ M(B).

The following lemma is a corollary of the main theorem in [12].

LemMA 4.2, Let b be a Blaschke product. If fe H”+C and | f|=|b| on
M(H®+ C), then Ord(b, x) = for every xe M(H®+ C)\M(H®%, fb]).

Proof. By [12],
(/DY¥'be H*+C

for k=1,2,.... This implies b[H®, fb]C H*+C. By Lemma 4.1, b=0
on M(H®+ C)\M([H®, fb]). Let xe M(H®+ C)\ M([H®, fb]). Then
P(x)CMH®+C)\M([H®, fb]) [12, Lemma 2]. Since =0 on P(x),
Ord(b, x) = co. l

CoOROLLARY 4.1. Let b be a Blaschke product, and let b= b, b, be a factori-
zation given in Theorem 3.1. If fe H®+C and |f|<|b| on M(H*+C),
then fb;e H*+C fori=1,2.

Proof. By Lemma 4.2, Ord(b, x) = for xe M(H*+ C)\M([H®, fb}).
By Theorem 3.1, Ord(b;, x) = 0. By Lemma 4.1, b,[H®, fb1CH”+C, so
that fb,=b,(fb)e H”+C. O

We note that generally Z(b;) #+ Z(b) in Corollary 4.1, so that in order to find
a subproduct with Z(b;) = Z(b), our job is to move points x in Z(b,) with
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Ord(b,, x) < oo into Z(b,) so that fb; e H*+ C. The first part of the follow-
ing lemma is proved by Hoffman [9, Thm. 3.2].

LeMMA 4.3. Let b be a Blaschke product with distinct zeros {z,},. Then b
admits a factorization b= byb, such that

(i) if bo(z,) =0 then (1—|z,|*)|b3(z,)|=]b1(2,)];

(i) if bi(z,) =0 then (1—|z,|*)|bi{(z,)|=|bo(z,)|-
Moreover, if x is a point in Z(b) with 2 < O0rd(b, x) < o then by(x) =
bl(X) =0.

Proof. Let x be in Z(b) with 2 <Ord(b, x) <. Suppose that b;(x)=0.
Then Ord(bg, x) = Ord(b, x) =2. By [9, Thm. 5.3], there is a net {w,},in D
such that by(w,) =0 and w, — x. By [9, Thm. 5.4], lim (1 —|w,|*)|b5(w.)| =
0. By (i), b;(w,) — 0, so that b;(x) = 0; this is a contradiction. L]

LemMa 4.4.  Let b be a Blaschke product with zeros {z,},. If Ord(b, x)=1
Jor every x ecliz,},, then b is an interpolating Blaschke product.

Proof. Suppose not. Then there is a subsequence {z,,j} j of {z,}, such that
an—z,‘[

=0.
I —an,zj

lim (1—|z,[*)|b"(z,)| = lim  TI

j— oo Jj—o oo n:in#n;

Passing to a subsequence, we may assume that {an} j is interpolating. Let
b, be the Blaschke product with zeros {an} jand b=b,b,. Then
0= lim (1|2, |*)[b'(z4)|
j—oo
= lim (1= |2, |*)|bi (2| |b2(zn)|-

J— oo
Since b, is interpolating, (1— Ianfz)lbl'(an)I >¢>0 for every j, so that
bz(z,,j)—é(). Therefore b,=b,=0 on cl{znj}j\{znj}j. This contradicts our
assumption. ]

LeEMMA 4.5. Let b be a Blaschke product with zeros {z,},. If Ord(b, x) <
o for every x ecl{z,},, then b is a product of finitely many interpolating
Blaschke products.

Proof. Let x bein cl{z,}, and let m = Ord(b, x). By Hoffman [9, Thm. 5.3],
there is a factorization b= g [17Z, b; such that g(x) # 0 and b; is an interpo-
lating Blaschke product with b;(x) =0 for j =1, 2, ..., m. Since Ord(b;, y)=1
for every zero point y of b;, there is a neighborhood V of x in cl{z,}, such
that Ord(b, ) <=m for {eV. Since cl{z,}, is a compact subset, there is a
positive integer p such that

Ord(b,{)=<p forevery {ecliz,},.

Hence b is a product of finitely many Blaschke products which have distinct
zero sequences. Instead of working on each factor, we assume that b has a
distinct zero sequence.
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Let Ap={(iy, i3,...,i); i;=0o0r 1} and A= U, A. Using a factorization
in Lemma 4.3, we can derive a sequence of Blaschke products {b,; a € A} as
follows:

b= bObl and bazbaobal'

Then b=11{b,; € A,}. For each a € A, by the last part of Lemma 4.3 we
have Ord(d,, {) =0 or 1 for every { ecl{z,},. By Lemma 4.4, b, is interpo-
lating for every c € A,. U

LEmMA 4.6. Let b be a Blaschke product. Then there is a sequence of inter-
polating Blaschke products {b,}, such that

(i) b=1II,=1 by, and
(i) if x € Z(b)\ Zo(b) then Ord(I1X_, b,,, x) = Ord(b, x) for some k de-
pending on x.

Proof. Let {z;}; be the zero sequence of b. By Corollary 3.1, Z.(D) is a
closed G;s-subset of M(H). Let {U,}, be a decreasing sequence of open sub-
sets of M(H*) such that N5 ~; U, =Z,(b). Put {z, ;};={z;}; N[U,-\U,],
where Uy = M(H®). Let ¢, be the Blaschke product with zeros {z,, ;};. Then
b=1I7=1 ¥, Since {z, ;};NU, =0 and U, is open, we have

clz, ;};NZ.(b)Ccliz, ;};NU,=0,
so that
Ord(y¥,, {) =0rd(b, {) <o for {ecl{z, ;};.

By Lemma 4.5, ¢, = Hf.‘glqbn,i, where ¢, ; is interpolating. Since {¢, ;
i=12,...,k,,n=1,2,...} is a countable set, we can rewrite them as {b,},.
Of course we have b=11,-, b,.

To prove (ii), let x be in Z(b)\ Z.,(b) and let m = Ord(b, x). There is an
open subset V of M(H®) such that xeV and clVNZ.(b) =0. By Hoffman
[9, Thm. 5.3], there is a factorization b =g IIjL, A; such that g(x) # 0 and
h; is interpolating with /;(x) =0 for j=1,2,..., m. Here we may assume
that the zero sequence of #; is contained in V. Since clVNZ (D) =0, there
is a positive integer ¢ such that VN U, =@. Then [I/L, 4; is a subproduct of

t —1¥n. Therefore

Ord(b, x)=m= Ord( I1 A, x)

Jj=1
t
< Ord< 11 ¢ x) < Ord(b, x).
n=1

From this we can obtain (ii). O
For a Blaschke product b with zeros {z;};~, subproducts with zeros {z;}7=;
n=1,2,..., are called tails of b. We note that |b,| — 1 uniformly on each

compact subset of D. The following lemma plays a key role in this section.
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LEmMMA 4.7. Let {V; s n=1bea fami’ly of compact subsets of D. Let {1 };
be a sequence of Blaschke products. Moreover we assume that b=11;>-, I,
is a Blaschke product. Then we have:

(1) zfsup;ey |(b H"_l )(§)| =0 as n— oo for each s and k, then there
is a sequence of tatls Jj of I; such that sup;ey, |(BIL=, J)($)|—0
as n— oo for each s;

(ii) (the dual version) if 1nf;ey |(ij 1 1)) =1 as n— oo for each s
and k, then there is a sequence of tazls J; of I; such that

(f:[ )(s“)

Proof. We mainly prove (i). By small changes, we can prove (ii) as a dual
version. Let {a,}, and {¢,}, be sequences of positive numbers such that

inf
g‘EVs n

as n — o for each s.

1)) a,—»0 and > ¢,<o;
n=1

or

1) a,—1 and D ¢,<o
n=1

for the dual version. By induction, we shall choose a family of positive inte-
gers {N; ,},=s and a sequence of Blaschke products {J,}, which satisfy the
following conditions:

(2) for each s, N ,<Nj ,+1, sothat Ny ,—o as n— oo,
3) J, isatail of 7,
4) sup (b 11 .7J->(§‘) <a for n=N;;andl1<s=<k,
teVsal\ J=1
ko k-1 _
(5) sup (b IT J,>(s“)’< sup (b IT J,-)(s“) +ex
$€Vs,n =1 $€Vsn Jj=1
for 1=n<N,and 1<s=<k;
and
: k
4" inf (H )(() >a; for n=N;,and 1=s=<k,
SeVonl NJj=1
k . k—1
(5’ inf (H )(s“)l> inf (HJ,)(?) — €k
;EVs,n J= rGVs,n j=1

for 1=n<N;jpand 1=s=<k.
First we shall choose N, ; and J;. By our assumption,

sup [(bI))($)|—0 as n—oo.
fEVl,n
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Take N, ; such that

sup |(bL)({)|<a; forevery n=N, ;.
§'€V1,n

Since U{V;, ,; 1 =n<N; } is compact in D, there is a tail J; of I; such that

sup [(BJ))()|< sup |b(5)|+ e
feVl’n fEVl,n

for 1=n <N, ;. Of course we have

sup |(bJ))($)|<a, forevery n=N .
$eVin

Our induction works on k. Suppose that {N; ,}s<,<x and J;, 1=s=<k,
are already chosen so that they satisfy (2)-(5). We shall choose J;,; and

Ns k+1, s=1,2,..., k+1. By our assumption,
k+1
sup (bH Ik+l>(s“) sup (bHIj>(§‘)‘—>0
§€Vsn feVsal N J=1

as n— o, Take Ny y 1, s=1,2,...,k+1, so that Ns  <Ns 441 (§<k) and
sup

k
. ( Hjj 1>(§')

for every n=Nj ;. and 1<s<k+l Since UV 3 1=Sn<Nj gy, 1Ss<
k+1} is a compact subset of D, there is a tail Jk+1 of I;, such that

k+1 ko
sup (bHJ,->(s‘)l< sup (bHJ,->(s“)
FeVonl\ J=1 feVenl N\ Jj=1
for1=n< N 441 and 1<s=<k+1. Then we also have
k+1
(s 7))

J=1

<4

T €x41

sup
$eVs
for n= N 4,1 and 1<s=<k+1. This completes the induction for (i). By
almost the same argument, we get the dual version.
Let s=1 and n= N; ;. Then by (2) there is an integer k£, =s such that
Ns, g, =n <Ny .. Let iz k,+1. Then n <N ;. By (4) and (5), we have

(s IiIZ)(s‘)‘< sup (bﬁ 7))+

<y

sup
$€Vs,n

k, _ i
< sup (b J,-)(g‘) + €
eV n J i

Jj=k,+1
Since bH’ =17 —> bIIj- as i — oo uniformly on each compact subset of
D, we get
sup (b 11 fj)(g“) <a,+ X .
(EI/s,n j=1 j=kn+l
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Now let n — oo; then &, — oo. By (1), we have

(b ﬁ .fj)(g‘)l—+0 as n— oo,

Jj=1

sup
$€Vsn

This completes the proof of (i).
For (ii), we can obtain

inf ( H JJ>(§') Zakn— E €.
tevy ol \j=1 J=ky+1
By (I'), ax, — 27y +1 €;—1as n—oo. Hence
inf (H JJ->(§')\—>1 as n— oo, ]
teVy l\j=1

Applying Lemma 4.7(i), we can prove the following theorem.

THEOREM 4.1.  Let b be a Blaschke product. If fe H*+C and |f|<|b|

on M(H®+ C), then there is a subproduct  of b such that fy e H*+C,

Z(Y)Y=Z(b), and Ord(b, x) =Ord(y, x) for every x € Z(b).

Proof. Let b= b;b, be a factorization in Theorem 3.1. Then, by Lemma 4.2,
Zoo(b1) = Zoo(by) DM(H® + C)\M([H, fb]).

We shall show that there is a subproduct b; of b, such that

(D |b3]>0 on Z(by)\ Z(b5),

(2) b;=0 on M(H®+C)\M([H®%, fb]).

By [11, Lemma 2.2], there is a sequence of interpolating Blaschke prod-
ucts {g;}; such that

[H*, fb]1=[H*,q;;j=1,2,...].
By Chang and Marshall’s theorem [3; 13],
M([H®, fb])={xe M(H"); |q;(x)|=1 forevery j}.
Put

a0 = 3 (1/2)/]g,(0)] for xeM(H™).
J’=

Then g is a continuous function on M(H®), 0=¢gy=<1, and

{xe M(H”+C); qo(x) <1} =M(H>+ C)\M(IH", fb]).
Hence f

(3) Zo(by) D{xe M(H”+ C); qo(x) <1}.
For positive integers s and n, put

Vin=1{z€D;qo(z)<1-1/s,1-1/n<|z|<1-1/(n+1)}.
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Then V; , is a compact subset of D: By Lemma 4.6, there is a sequence
of interpolating Blaschke products {7,}, such that b, =II;-;7,, and if
x € Z(b)\ Z(b,) then Ord(IT14_, I,, x) = Ord(b,, x) for some k. By (3),
we have

k
b, IT1 I;=0 on {xe M(H”+C); go(x) <1}.
j=1
By the definition of ¥V ,, we have

N cl[
k=1 n

oo

V},M]CM(H“+C);
k

qgo<1—1/s on N cl[ Vs,,,].
k=1 n=k

Therefore we obtain
sup
(€ Vs,n

for each s and k. Hence we can apply Lemma 4.7(i). Then there is a sequence
of tails J, of I,, such that

k
<b2 Hf,-)ml—»o as n—> oo
j=1

J=

4) sup
{e%m

<bz 11 J‘,-)(s“)}ao as n oo
j=1

for each s. We note that [I7_, J; is a subproduct of b,. We shall show that
by =b, I17, J; satisfies (1) and (2).

Let x € Z(b3)\ Zo.(by). Then Ord(b,, x)=Ord(I1%_, I;, x) for some k.
Since J; is a tail of Z;, Ord(IT5_, J;, x) = Ord(IT-, I;, x). Hence Ord(b;, x) =
Ord(b, I J;) =0; that is, b3(x) # 0. Thus we have (1).

Next let ye M(H®+ C)\M(H®, fb]) ={f e M(H®+ C); qo({) <1].
Take a positive integer s, such that gy(¥) <1—1/s,. Then

yecl[ U VSO,H] for every k.
n=k

By (4), we have b;(y) =0. Hence we get (2).

To prove our assertion, we put Y = bb; = b(b,b;). By Lemma 4.1 and (2),
fU=by(fb) e H*+C. By (1), Ord(b,bs, x) = Ord(b,, x) for x& Zo(b) =
Z.(b,); hence

Ord(y, x) = Ord(b,, x) +Ord(b, b3, x)
= Ord(b,, x)+Ord(b,, x)
= Ord(b, x).

If xe Z,(b), then x € Z(b,) and Ord(y, x) = . As a consequence, we have
Ord(y, x) =Ord(b, x) for every x € Z(b). tl

Using Lemma 4.7(ii), we can prove the following theorem.
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THEOREM 4.2. Let b be a Blaschke product. If fe H*+C and | f|<|b| on
M(H®+C), then there is a function g in H*+ C such that |g|=|f| on
M(H®+C) and gbe H*+C.

Proof. We shall prove that there is a Blaschke product J =17~ J; suchthat
1) J=0 on M(H®+C)\M([H®, fb]),
) |J|=1 on {xe M(H®+C); |b(x)|>0}.

As in the proof of Theorem 4.1, there is a sequence of interpolating Blaschke
products {g;}; such that

[H®, fb]=[H",G;i=1,2,...},
3) b=0 on {xe M(H”+C); |gi(x)| <1 for some i}.
Let {I;}; be a sequence of interpolating Blaschke products which consist of
functions in {g;};, where each g; appears in (/;}; infinitely many times. By

considering tails of I;, we may assume that [I;, /; is a Blaschke product.
For positive integers s and n, put

Vin=1{z€D;|b(z)|=1/s,1-1/n<|z|<1-1/(n+1)}.

Then V; , is a compact subset of D, and

A cl[ U V;,n]CM(H“’-i—C); Ib|=1/s on cl[ U V]
n=k

k=1 n=k

By (3), for every s and j we have
inf |;($)| =1 as n— oo,

$€Vin
For suppose the contrary; then there is a sequence { $nYis $n, € Vs, ny» such
that |I; ($n, )| <e<1 for every i. Let {, be a cluster point of {($n, }, Then (o€
M(H®+C) and |b($0)| =1/s. Since I; =g, for some ¢, |q,(§‘0)|—|1 (fo)] =

e<l1. By (3), b({p) =0 and this is a contradlctlon Therefore for every s

and £,
inf

k
(HIJ-)({)'—»I as n— oo,
teVy l\j=1

By Lemma 4.7(ii), there is a sequence of tails J; of I; such that

(4) inf (H >(§) —1 as n—o

§e Vs n =
for each s. Since J =115~ and {J;}; contains infinitely many tails of each
g;, we have

J=0 on {xeM(H‘”+C); lg:(x)| <1}

for every i; that is,



Factorization of Blaschke Products 65

J=0 on M(H®+C)\M([H>, fb).

Thus we have (1).
To prove (2), let xe M(H*+ C) with |b(x)|>0. Take a positive integer
So such that |b(x)| >1/sy. Then

xecl[ U Vso,n] for every k.
n=k

By (4), we have |J(x)| =1. Hence we obtain (2).

Set g = fJ. Since Z(b) C Z(f), by (2) we get |g]=|f| on M(H*+C). By
(1) and Lemma 4.1, J[H®, fb]C H®+ C, so that gb=J(fb) e H*+ C. This
completes the proof. L]

We have the following problem.

ProBLEM 4.1. In Theorem 4.1, is there a subproduct ¢ of b such that f¢ e
H®+C and |¢|=|b| on M(H"+C)?

The following theorem is a partial answer to Problem 4.1.

THEOREM 4.3. Let b be the Blaschke product
= k
© [ —Zn T—Zy \ "
b )= — ) »
( ) nl;Il( Iznl l—ZnZ

where k,—»oasn—o. If fe H®+ Cand | f|<|b| on M(H*+ C), then there
is a subproduct  of b such that fy €e H*+ C and |{|=|b| on M(H”+ C).

Proof. By the proof of Theorem 4.2, there is a Blaschke product J=1[I;_ J,
such that

) J=0 on M(H*+C)\M([H®%, fb])

and |J|=1o0n {xe M(H®+ C); |b(x)|> 0. By [15], there is an interpolating
Blaschke product ¢ with zeros {w,}, such that

2) (xe M(H*+C); |o(x)| <Bi={xe M(H*+C); |J(x)| <1}.

Then b=0o0n {xe M(H*+C); |$(x)| <1}, so that b(w,) — 0 as n — co. Here
we can choose a sequence of positive integers {N,}, satisfying the following
conditions:

3) N,<k,, N,—x and k, /N, — o as n— oo;

® /7, Z2—Z '
4 Yo(w,) — 0 as n—o0, where ¥y(z)= H( — ) .
n=1 Iznl 1-7Z,z

The detailed proof is left for the reader.

By (4), Yo=0on Z(¢). By (3), Z(¥o) = Z(¥0). Then, by [2; 7], ¥o¢" €
H®+ C for every n. Hence we have
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(5) Yo=0 on {xe M(H"+C); |¢(x)|<1}.

For any positive number M, by (3) there exists n, such that £, /N, > M for
n=ny. Then on M(H”+C) we have

=] II (_2” = )k"

n=ng, lznl l_znz

<| 1 (—Z,, 22, )N"
n=ng Iznl 1-Z,z
=|¢ol™.

This implies that |{o| =1 on {x e M(H*+ C); |b(x)|> 0}. Since y is a sub-
product of b, Y = by, is also a subproduct of b and || =|b| on M(H*+ C).
By (1), (2), and (5),

Yo=0 on M(H*+C)\M(LH", fb)).

By Lemma 4.1, we have fy = y(fb) € H*+ C. This completes the proof.
1

M

5. Absolute Moduli of Blaschke Products
on M(H*+C)

First we shall give a sufficient condition for the absolute values of the mod-
uli of two Blaschke products to coincide on M(H*+ C).

THEOREM 5.1. Let by and b, be Blaschke products with zeros {z,}, and
{w,}, respectively. If p(z,, w,) = 0 as n— oo, then |b;|=|b,| on M(H*+C).

We use the following lemma.

LemMA 5.1 [5, pp. 310, 404]. Let {{,},, be an interpolating sequence with
infy I1,: nex 0(Ens $x) = 6> 0. Then there exists A= \(6), 0<6 <1, such that
V,={z€D; p(z,{,) <A} are pairwise disjoint domains, and such that if
w, €V, then {w,}, is an interpolating sequence. Moreover, if 6 — 1 then
A—o 1.

For a Blaschke product b with zeros {z,},, let 8(b) =inf; 11, n2x P(Zns2k)-
Let {{;}; be a sparse sequence; that is, limy _, o, I1;. j 24 0({j, §x) =1. Let y be
a Blaschke product with zeros {{;};. Let y,, be the mth tail of ¢; that is, ¥,
is the Blaschke product with zeros {{;};~ . Then Z(¥,)=Z(y), 6(¥,) =
6(¢m+1)’ and 6(¢m) —1as m— oo,

Proof of Theorem 5.1. It is sufficient to prove that if b (x)# 0, x €
M(H®+C), then |b;(x)| =]b,(x)|. Let x e M(H”+ C) with b;(x) # 0. Take
a sequence {{;}; in D such that by({;) = by(x) and b,(§;) — by(x). Then

by=b,(x) and b, =by(x) on clf{;}\{{};.
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Passing to a subsequence, we may assume moreover that {{;}; is sparse. Let
¥ be the Blaschke product with zeros {{;};. For 4, 1/V2 <8 <1, take m such
that 6 <A(6(¥,)), where N(8(y,,,)) is a number given in Lemma 5.1. If

V,={zeD;p(z,{,) <6} for n=m and V= U V,,

n=zm
then V;NV;=0 if i#j and i,j =m. Let N, be the number of elements in
{z;};NV,. If lim, sup N, = oo, then |by({,)| < 6™, so that b, vanishes some-
where on Z(y)=cl{{;};\(§;};. But by=b1(x)#0 on cl{{;};\{{;};. Hence
{N,,}, 1s a bounded sequence. Put K = max{N,,; n=m]}. For the sake of sim-
plicity, we assume K = N,, for every n=m. Then {z;},NV,, has K elements,
so that we let

{Ek,n}f=1 ={z;};NV, foreach n=m.

By Lemma 5.1, for each fixed k, 1 <k =<K, {4 ,},=,, is interpolating. Since
$k,n€12;)iNV,, &4 =2z for some s. For the corresponding point w;, we
rename it as ny, ,; that is, 9z , = ws. Then {&; ,},=,, is an interpolating sub-
sequence of {z;}; and {0 .}, i a subsequence of {w;};.

Since p(z;, w;) =0 as i — oo, by Lemma 5.1 again, {ny ,},= n is interpolat-
ing except for a finite set for each k. Let ¢; and y; be the Blaschke products
with zeros {&x 4}n=m and {ny ,},=, respectively. Since p(&x ., M, ») — 0 as
n—oo, Z(¢y) = Z(Yy). By [2; 71, |¢x|=|¢x| on M(H*+C) for k=1,2,...,
K, so we may assume that {z,},NV =0.

Set €, = p(2n, Wn),

I—Gj 1+€j

A, = inf and B,=sup
j=n 1€ jzn 17€;

Then A4,, B,— 1 as n— o, By [5, p. 4], we have

p(g-j:zn)_"p(zns Wn) <

. p(g_j!zn)-l-p(zn’ Wn)
1= p(5r2n) pamwy) PS5 W) =

- 1+p(§'j, Zn) (2, Wy) ’

so that

1= 0% Wa)
1 A, < L "~ <B,.
() n l_pz(g—j’zn)< n

Choose a positive number cg so that

) l—t<—logt<cs(1—¢t) for 262—1<t=<I1.
Here we can take c; such that ¢5;— 1 as 6 — 1. Since

Ip(g-j’ Zn)—p(g‘js wn)ISp(zna Wn)—)o as n—oo
and

p%(§j,2,) = 62> 87— (1-6%) =26%—1
for j = m, there exists a positive integer N such that

p2(Ejs W) >28%~1
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for everyn=N and j = m. By (2), for j =m,
Y 1=-p%,wy) < —log I1 p*(5jwa) ¢ 3 1—p%(S5, W)

n=N n=N nz=N
Y 1-p%(§,zn) < —log I1 (&2 =cs X 1—p%(5),20)-
n=N n=N n=N

By (1), we have

A

—’i[—log I1 pz(s“j,zn)] =—log IT (5, wa)

Cs n=N n=N

SC(SBN[_IOg H pz(i‘js Zn)]-
n=N
Let
—Zn 2—2, W, Z—W,
b = and b = .

LA nl;IN Iznl 1—-Zp2 AN nlz]N lwnl 1-w,z
Then

(An/cs)[—log|by, n($)|*1 < —log| by n($)]?

=< ¢ By[—log|by n(§)1%],

so that

Ibl,N(fjﬂAN/c‘sz |ba, N(E)] = | by, n(55)| 05N
for j = m. Hence
| by, N[V = [y, | =] by, N|EN o0 Z(Y) = Z().

Since |by|=|by | and [b,| =]y n| on M(H”+ C), we have

|by|AN7% = | by| = |by |5V on Z(Y) = Z(Y).
Let N— o and 6 — 1. Since Ay, By—1and ¢;— 1,

|b1|=|bs]|=|by| on Z(Y).

Consequently we have |b;(x)|=|b,(x)|. O

The follo_wing example shows that the condition in Theorem 5.1 does not
imply b; b, € H*+ C generally.

ExaMPLE. We work in the upper half-plane A *. On the horizontal line
{x+ieHT™; x is real}, we consider the following two sequences:
(n’+k/n+i;0<k<n,n=1,2,...};
(n’+k/n+i;0<k=n,n=1,2,...}.
We denote these sequences by {z;}; and {w;};, respectively. The map
dn*+k/n+i)=n’+(k+1)/n+i

induces a one-to-one and onto correspondence between {z;}; and {w;};. If
zj=n*+k/n+i then p(z;, $(z;))=1/2n—0 as j - o by an easy calcula-
tion. Also, {z;}; and {w;}; satisfy the Blaschke condition



Factorization of Blaschke Products 69

o ¢] y_}' . .
j§1 =z <o for z;=x;+iy;.

Let b, and b, be the Blaschke products with zeros {z;}; and {w;};. By Theo-
rem 5.1, |by|=|b,| on M(H®+C). Let ¢, ¢, and ¢, be the Blaschke prod-
ucts with zeros

(n’+k/n+i;0<k<n,n=1,2,...},
{n>’+i;n=1,2,...}, and
(n’+1+i;n=1,2,...}.

Then b, = ¢og¢; and b, = ¢pg¢p,. By [5, p. 288], ¢;¢, is an interpolating
Blaschke product. Hence Z(¢;) N Z($,) =¥, so that ¢,¢,¢ H*+C and
¢2$1$H°°+ C. Therefore b1b2:¢1$2$ H”+C and b2b1 =¢251 & H*+C.

The following shgws that if p(z,, w,) approaches zero very rapidly in Theo-
rem 5.1, then b, b; e H*+ C.

ProrosITION 5.1.  Let by be a Blaschke product with distinct zero sequence
{Zu)n- Then there is a sequence of positive numbers {o,}, such that if b,
is a Blaschke product with zero sequence {w,}, and if p(z,, w,) <a,, then
b2 El e H” +C.

Proof. For each positive integer k, consider a Blaschke product
_..2 Z—2Z;
By= JI ———==.
sk 17l 1=%;2
Put 6, =|B(zy)|- Then 6> 0. Take a sequence {o;}; such that 0 <o, <
(1/2)%5,. Let b, be a Blaschke product with zeros {w;}, such that p(z;, w;) <
ox. By Theorem 5.1, |b;|=|b,| on M(H*+ C).

We set ;= Bi(z;) "' by(zy). Since p(zy, wy) < oy, we have |by(z;)| < 0y <
(1/2)%6,.. Hence

|lax] =87 |ba(zi)| < (1/2).
Let

Ja(z) = § ayBi(z) for zeD.
k=n

Then f, e H®, | f,]|=(1/2)""}, and
Jn(zx) = ap Br(zx) = ba(zy) for k=n.
Hence (f,—b,)b, € H®+ C. Therefore
16201+ H*+C|| ={(by— )01+ f, Dy + H*+ C||
=|full

<(1/2)""'50 as n—oo.

Consequently we have b, b, e H*+C. L]
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Next we prove the following theorem.

THEOREM 5.2. Let b be a Blaschke product and let q be a product of fi-
nitely many interpolating Blaschke products with |b|<|q| on M(H*+C).
Then there is a subproduct by of b such that |b|=|byq| on M(H*”+ C).

To prove this theorem, we need lemmas.

LeEmMA 5.2 [5, p. 439]. Let E and F be subsets of D such that clENclF
contains a point x with P(x) #{x}. Then inf{p(z,w); z€e E, we F}=0.

LEMMA 5.3. Let fe H® and let q be an interpolating Blaschke product
with Z(q) CZ(f) and Z(q) T Z.(f). If B is the Blaschke factor of f, then
there is an interpolating subproduct by of B such that Z(by) C Z(q) and

Z(bo) D Z(@)\ Zuo( f)-
Proof. Let {w,}, be the zero sequence of ¢, and let

6=0(q)=inf JI o(w,, wi)>0.
k n:n#k

Let A=XA(8) be a number given in Lemma 5.1. Then
Va={zeD;p(z,w,) <N}, n=12,...,

are a set of disjoint domains. Put f= BF, where B is the Blaschke factor
and F is a zero-free function on D. Since Z(F) = Z(F'), by Corollary 3.1,
Z(f) is a closed Gs-subset of M(H®). Since Z(q)=cl{w,},\{w,}, and
Z(q) is a totally disconnected set [8, p. 205], there is a sequence of open
and closed subsets {W,},, of Z(q) such that W,NW,, =0 if n+ m, and
Z(O\Z(f)=U, W,. By [10, Cor. 1] there is a subproduct g, of g such
that Z(q,) =W, and II; - g, is a subproduct of g. Take a sequence {q,]},
such that 0 <a, <\ and a,— 0. We denote by {w, ;}; the zero sequence of
q,, and put
Vn,j ={zeD;p(z, wn,j) <ap}.

Let {z;}, be the zero sequence of B. We have

Z(@n) CZ(@\Zol f) CZ(S I\ Zoa( ) C Z(B)\ Zo(B).

By [9, p. 100], Z(B)\ Z(B) C cl{z,},. Since g, is interpolating, Z(q,) =
cl{wn,j}j\[w,,,j}j and every point x in Z(q,) satisfies P(x)# {x} [9, Thm.
5.5]. Hence by Lemma 5.2, for every subsequence {£;}; in {w,, ;}; we have
inf{p(&;,24); J, k=1,2,...} =0. This means that there exist j, such that for
every j = j, there is a point z,, ; in {z,}, NV, ; with

p(zn,j:wn,j)")o as j— oo,

By Lemma 5.1, {z, ;; j =Jj,, n=1,2,...} is an interpolating sequence. Let
b, be the Blaschke product with these zeros. Then

Z(qy,) = clfw,, 1\ Wy, ;3; C Z(by).
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Hence Z(q)\ Zo(f) = U, W, C Z(by). Since z,, ; €V}, ; we have p(z,, j, Wn, ;) <
a, — o, so that

p(Zy,jsWp,j) =0 as n—ooor j— oo,

Then Z(by) C Z(q). O

Proof of Theorem 5.2. First suppose that ¢ is interpolating. By our as-
sumption, Z(q) C Z(b). If Z(q) C Z,(b), by [2] and [7] bg" e H”+ C for
n=1,2,.... Then b=0 on {xe M(H”+ C); |q(x)| <1}. Therefore we can
take bo =b.

If Z(q)Z Z.(b), by Lemma 5.3 there is a subproduct ¥ of b such that
Z(Y)C Z(q) and Z(¥) D Z(g)\ Z(b). Put by= by. By [10, Cor. 1], there is
a subproduct ¢ of g such that Z(¢) = Z(y). Put gy=g¢. Then

Z(qo) = Z(@)\ Z($) = Z(@)\ Z(Y) C Z (D).

Hence, by the same way as above, b =0 on {x e M(H*+C); |go(x)| <1}.
Since Z(¢) = Z(¥), |¢¥|=10on M(H*+ C) by [2; 7]. Consequently,

|bog|=|b¥qo0|=|bge|=|b| on M(H®+C).

Next let g =11}, q;, where g; is interpolating. Since |b|<|g|=<|q;| on
M(H>+ C), by the first part there is a subproduct b; of b such that |b|=
|b1¢1|. Then we have |b;|<|II}-, q;| on M(H*+C). In the same way, we
can find a subproduct b, of b; such that |b,|=|b,q,|, so that |b|=]|b,q,q3]|-
At the nth step, we have a subproduct b, of b such that |b|=|b,q| on
M(H*+C). 0

ProBLEM 5.1. Is the assertion of Theorem 5.2 true when g is a general
Blaschke product?

In the last part of this paper, we prove the following theorem.

THEOREM 5.3. Let b be a product of finitely many interpolating Blaschke
products. Let b, be the nth tail of b. Then for every fin H®,

lim || f+ b, H®||=| f+b(H™+C)|.

n— 00

To prove this theorem, we need a lemma which comes from Theorem 3.1.

LEMMA 5.4.  Let f be a function in H® and let q=11}-, q;, where q; is an
interpolating Blaschke product. If Ord(f, x) = Ord(q, x) for every x € Z(g),
then there is a factorization f=1I'-, f; such that f;e H*, || f;| = fI'",
and Z(f;) D Z(q;) for j=1,2, ..., n.

Proof. For simplicity, we shall prove Lemma 5.4 when n=2. Let f= BF,
where B is a Blaschke factor. Since F is zero-free in D, h=F 12 ¢ >, We
note that

Zo(f)=ZABY)JZ(F) = Zo(BYU Z(h).
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Since Z(F) is a closed G;-subset of M(H*+ C), by Corollary 3.1 Z,(f) is
a closed Gj-subset of Z(f). We separate the following two cases.

Case 1: Suppose that Z(q;) CZ.(f) for i=1,2, and let B=B;B, be a
factorization in Theorem 3.1. Then
Z(Bih)=Z,(f) fori=1,2, and f=(Bh)(Byh).

Case 2: Suppose that Z(q;)Z Z.(f). By Lemma 5.3, we can find an inter-
polating Blaschke subproduct b, of B such that

Z(b))CZ(qy) and Z(b))DZ(g)\Z(f).

If Z(q,) C Z(fb,), let Bb, = B, B, be a factorization in Theorem 3.1. Then
S=(bB3h)(Bsh). By Theorem 3.1, Z(B3) D Z(q,), so that Z(bB3;h)D
Z(q,). Since

Zo(fb1) = Zoo(Bb)) U Z(F) = Z,(Bs) U Z(h),

we have Z(g,) C Z£B4h).
If Z(q2) € Zo(fby), then by Lemma 5.3 again there is an interpolating
Blaschke subproduct b, of Bb, such that

Z(by)CZ(q;) and  Z(b3) D Z(g2)\ Za( f]y)-

Let

BEI 52:B5B6
be a factorization in Theorem 3.1. Then f=(b,Bsh)(by,Bgh), Z(b,Bsh) D
Z(qy), and Z(byBsh) O Z(q,). U

For a point x in M(H®), pn, denotes the representing measure on M(L™) for
H®*. For a function f in L®, we denote by N(f) the closure of the union set
of support sets of u, with f|upp . & H |supp u,» X€EM(HT+C).

Proof of Theorem 5.3. Let b= HJ’-‘zl g;, where g; is an interpolating
Blaschke product. Hence, in this proof, k is_ a fixed integer. For each n, put
¢,=bb,. Then b,H”=bé,H” and ¢, = bb, € C, so that we have
) im inf| f+ b, H®| = | f+b(H+C)|.
n— oo
Next we shall prove
@ lim sup||f+ b, H|| < L./ + b(H=+ O]
H— 0o
Since H*+ C has the best approximation property [1], there exists a func-
tion & in H*+ C such that
3) |.f+bh||=|f+b(H"+C)|.

By [11, Cor. 2.1], N(b) is a weak peak set for H* and (H*+C)|n3y=
H®*| npy- By [4, p. 58], there is a function g in H® such that g= f+bh on
N(b) and
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@ lgll= 5+ bhlng) =S+ bh,

where || f+ bh| ny = supf|(f+ bh)(x)|; x € N(b)}. Then
Ord(f—g, x)=0rd(b, x) forevery xeZ(b).

By Lemma 5.4, there exist f; e H” (1< j < k) such that

k
&) f-g= Hlfj;
j=
(6) I51=1r—sl =l s
() Z(f;))DZ(q;) for j=1,2,...,k.

Let {z; ;}; be the zero sequence of g;. Then, by (7), fij(z;,;) >0 as i — oo,
so that for each ¢ > 0 there is a positive integer N = N(e), independent of j,
such that

Ij}(zj,i)|<€ for iZN,j=1,2,...,k.

Since {z;,;}; is an interpolating sequence, there exist an absolute constant M
and F; € H® such that

®)  |IFll<eM and Fi(z;;)=/fi(z;;) for i=N, j=1,2,...,k.

Consequently f;—F; € q; yH™, where q; yis the Nth tail of g;. Let hje H®,
so that

) Ji—Fi=a; nh;.

We remark that if e changes then /; changes. Thus, for each positive inte-
ger n,

k
Hf+an°°ll=”g+ I1 fj+ b, H* by (5)
J=
k k
={gl+ Hl(F}"f‘QJ,Nhj)“HI qj,Nh;
Jj= Jj=
k
+ qu"Nhj"*'anoo by (9)
j=1
k k
=llef+ _Hl(eM + 1) — Hlllhfll
J= j=
k
+ qu"Nhj'*‘b”Hm bY(8)
Jj=1

To prove the last inequality, we use the elementary inequality

k k
Hl(aj + bj) - Hlbj
j:

J:

k k
= _Hl(lajlﬂbjl)—ﬂllbjl
j= j=
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for complex numbers {a;} and {b;}. Since g; yis the Nth tail of g, Hj-‘zl qj,N
is a tail of b=TI%_, g;. Hence the function IT¥.; g; v/ is contained in
b, H* for some large integer n. Thus we have

k k
(10) lim sup|| f+b,H®||<|g|+ H1(6M+Ilhjll) - _Hlllhjll-
n—oo J= J=
Here we have
a1 11| = 1S5 = F5l by (9)
=|fill+eM by (8)

=@|fI)*+eM by (6).

Now let € — 0. Recall that the function #; depends on the value . But (11)
implies that | /;| is bounded as e — 0 for each j=1,2,..., k. Since eM -0,
by (10) we have

limsup|| f+b,H”|| < | g|-
Hn— 0
By (3) and (4), we obtain (2). As a consequence of (1) and (2), we have our
assertion. ]

ProBLEM 5.2. Is the assertion of Theorem 5.3 true when b is a general
Blaschke product?
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