INTEGRAL DOMAINS IN WHICH
EACH ¢-IDEAL IS DIVISORIAL

Evan Houston and Muhammad Zafrullah

Introduction. Let D be a commutative integral domain, and let F(D) be the
set of nonzero fractional ideals of D. We recall the v- and ¢-operations. For each
AeF (D), A,=(A ") =the intersection of the principal fractional ideals of
D which contain A4, and A, =U {J,: J is a finitely generated subideal of A4}. If
A=A, (resp. A= A,) then A is said to be a v-ideal or divisorial (resp. a t-ideal).
The v-ideal A has finite type if A=J, for some finitely generated Je F(D). The
fractional ideal A is quasi-finite if A~'=J 7! for some finitely generated frac-
tional subideal J of A. The v- and #-operations are examples of star operations;
the reader is referred to [7, §§32, 34] or to [15] for the properties of star opera-
tions (which we shall use freely).

We define a domain D to be a TV-domain if each t-ideal of D is divisorial
(equivalently, if the v- and t-operations on D are the same). Our study of 7V-
domains is motivated by [12], where Heinzer studies domains a// of whose non-
zero ideals are divisorial. The class of TV-domains is, of course, much larger. It
includes the class of Mori domains, domains satisfying the ascending chain con-
dition on divisorial ideals. Hence Noetherian domains and Krull domains are
TV-domains. |

In the first section, we study the properties of 7V-domains, generalizing many
(but not all) of the results of [12]. Before describing the main result, we recall
that each 7-ideal A4 of D is contained in a #-ideal M maximal among #-ideals con-
taining A, and this maximal t-ideal is prime [15, pp. 30-31]. We prove (Theorem
1.3) that every (proper) f-ideal of a TV-domain D is contained in only finitely
many maximal /-ideals. We also show that every maximal #-ideal of a 7V-domain
D has the form (a): b for some a,be D.

In the second section we give several characterizations of Krull domains. In
particular, we give a proof more direct than (say) that given in [5, pp. 12-16] of
the fact that (a) a completely integrally closed Mori domain is a Krull domain.
In fact we prove that (a’) a completely integrally closed 7V-domain is a Krull
domain. This is done as follows. First, define a fractional ideal A of D to be
v-invertible (resp. t-invertible) if (AA~'), =D (resp. (A4~!), = D). In [18, Thm.
0] it was proved, as a consequence of (a), that (b) D is a Krull domain if and only
if every A € (D) is t-invertible. Here we prove (b) independently of (a) and then
use (b) to prove (a’), yielding a more satisfying approach to a well-known result.

The third section characterizes Priifer v-multiplication domains among 7'V-
domains, and we show that this class of rings is a certain subclass of the class of
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rings of Krull type studied by Griffin [10]. The requisite definitions are reviewed
in that section.

Finally, in the last section, we present several examples and pose some ques-
tions. Among the examples is a Noetherian domain with two maximal ¢-idzals
containing a common prime Z-ideal, thwarting our hope of generalizing [12, Thm.
2.4]. We also observe that pseudo-valuation domains are 7V-domains.

1. Properties of TV-domains. We begin with a generalization of [12, Lemma
2.1].

LEMMA 1.1. Let D be an integral domain, and let {A_,} be a set of fracticnal
ideals of D for which N, (Ay),#0. Then (N, (AL),) 1=, ALY, In particu-
lar, if the A, are divisorial then (N, Ay) 1=(2,A4.Y,.

Proof. Since N, (A,),#0, 3, A;'is a fractional ideal of D. For any set {Bg]
of fractlonal ideals for which ¥ 5 By is a fractional ideal, the formula (2 Bg) ™! =
Mg BB is valid. Application of this formula to the set {4} yields (X, 47! !=
My (Ay),- The result follows by inverting both sides. O

LEMMA 1.2 (cf. [12, Lemma 2.3]). Let D be a TV-domain, let A be a t-ideal of
D, and let M be a maximal t-ideal of D containing A. If {B,} is the set of t-ideals
of D which contain A but are not contained in M, then (\,B,Z M.

Proof. The set {B,} contains D and is therefore nonempty. For any B e {B,} we
have (M + B),= D, since BZ M and M is a maximal #-ideal. It follows that D=
B~ INM ! Since M is a t-ideal, it is divisorial, and we may choose xe M ~1—D.
Hence x & B‘1 for each Be {B_}. We claim that x¢ (X, B !),= (E B;Y),. Oth-
erwise, x € F, for some finitely generated D-submodule F of ¥ B!, whence x €
(X7, B Y, for some finite subset {B, ..., B,} of {B,}. By Lemma 1.1 this implies
xe(N?_, B;) . However, N B;e{B,}, a contradiction. Hence x ¢ (X B, =
(NBy !, and M~z (N B,) L It follows that N B, Z M. O

We are now ready for the main result on 7V-domains.

THEOREM 1.3 (cf. [12, Thm. 2.5]). If A is a proper t-ideal of the TV-domain
D, then A is contained in only finitely many maximal t-ideals of D.

Proof. Let {M_} denote the set of maximal #-ideals which contain A. For each
alet T, = Ng,. o Mpg. By the preceding lemma, T, M,. Hence A€ X 7T,,=T, and
T & M, for each «. It follows that 7,=D. Thus 1€ 7, whence 1€ (X7_ T;), for
some finite subset {73, ..., 7,} of {7T,}. Denote the corresponding subset of {M}
by {(M,...,. M, }. If M & {M,,...,M,}, then Ma__ x7_, T;, contradicting the facts
that M is a proper #-ideal and (X7_, 7}),= L]

Recall that a Mori domain is an integral domain D which satisfies ACC on
divisorial ideals. According to Querré [19, Thm. 1] this is equivalent to the re-
quirement that every nonzero fractional ideal A of D be quasi-finite. It follows
that in a Mori domain the ¢- and v-operations are the same, so that a Mori do-
main is also a 7V-domain. As an application of Theorem 1.3, we therefore have
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the following result, which has been proved by other methods in [2], [4], [14],
and [20].

PROPOSITION 1.4. If D is a Mori domain, then every nonzero element of D is
contained in only finitely many maximal divisorial ideals of D.

REMARK 1.5. Actually, [14, Thm. 2.1] is the stronger result that a nonzero ele-
ment of a Mori domain D is contained in only finitely many divisorial prime
ideals of D (maximal or not). This stronger result does not generalize to 7TV-
domains. To see this recall from [12, Lemma 5.2] that a valuation domain has
all its nonzero ideals divisorial if and only if its maximal ideal is principal. This
same property characterizes 7V-domains among valuation domains, since every
nonzero ideal of a valuation domain is a #-ideal. Thus if V is a valuation domain
with principal maximal ideal which also contains an infinite ascending chain of
prime ideals, then V is a TV-domain containing elements which lie in infinitely
many divisorial primes.

PROPOSITION 1.6 (cf. [12, Lemma 2.2)). In a TV-domain D, every maximal
t-ideal has the form (a): b for suitable a, b€ D.

Proof. Let M be a maximal #-ideal of D, and pick xe M ~!—D. It is easy to
show that M ~!=(D+xD),, whence M=(D+xD) '=DN (1/x)D=(a): b,
where x = b/a. O

REMARK 1.7. In a Mori domain every divisorial prime ideal has the form
(a): b [14, Cor. 2.5]. However, in a valuation domain, ideals of this form are
principal. Thus if ¥V is a Mori domain of Krull dimension >1 and with principal
maximal ideal M, then Vis a TV-domain, but M is the only prime ¢-ideal of V of
the form (a): b.

In general, if M is a maximal 7-ideal of a domain D then MD,, need not be a ¢-
ideal [22]. However, from Proposition 1.6 we have

COROLLARY 1.8. If M is a maximal t-ideal of a TV-domain D, then MD,, is
divisorial in Dy,.

2. Characterization of Krull domains. Recall that a fractional ideal A of a
domain D is quasi-finite if A~!=J"! (equivalently, A,=J,) for some finitely
generated fractional ideal J € A. It is easy to show that if A € F(D) is #-invertible
then A is quasi-finite [15, Thm. 8]. In fact, A is f-invertible if and only if A is v-
invertible and both A and A~! are quasi-finite.

We begin with yet another analogue of a theorem of Cohen.

THEOREM 2.1. If D is a domain in which every prime t-ideal is t-invertible,
then every t-ideal of D is t-invertible. (It follows easily that every nonzero frac-
tional ideal of D is t-invertible.)

Proof. We proceed contrapositively. Suppose that I' = {A4: A is a non-Z-invert-
ible #-ideal of D} is nonempty. If I' is partially ordered by inclusion, and if {4}
is a chain in T, then it is easy to see that A=) A4 is a ¢-ideal. Moreover, since
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t-invertible ideals are quasi-finite, it is clear that 4 is not f-invertible. Hence
Zorn’s lemma applies, and I" has maximal elements. We shall complete the proof
by showing that any maximal element P of I'" is prime. Accordingly, suppose
that a, be D with abe P, bg¢ P. Let J=P:a. Then J is a t-ideal properly con-
taining P, so that J is t-invertible. Hence P=P-(JJ "), € (PJJ V), c P, =P,
and P=(PJJ Y, =(J-(PJ7Y),),. Since P is not t-invertible, it follows that
(PJ 71, is not t-invertible (since any product of two z-invertible ideals is 7-invert-
ible). Therefore, (PJ 1), cannot properly contain P, whence (PJ ~'), = P. How-
ever, aJ < P, so that, as J is t-invertible, a e (PJ _1), = P. This completes the
proof. 1

Before stating our main characterization of Krull domains, we record for easy
reference the following lemma. The proof is straightforward and follows from
[9, Prop. 4].

LEMMA 2.2. Let A be a t-invertible ideal of the domain D. Then for every
prime t-ideal P of D containing A, ADp is principal.

We now present our characterizations of Krull domains. Although we believe
the proofs are new, many of the characterizations themselves are not. In par-
ticular, the equivalence of (1) and (4) appears in [6] and [18]; [16] contains the
equivalence of (1), (3), and (4); and [17] contains the equivalence of (1) and (2).
Of course, the equivalence of (1) and (5) is well known. What we offer is an effi-
cient approach to these results.

THEOREM 2.3. The following statements are equivalent for a domain D.

(1) D is a Krull domain.

(2) Every associated prime of D is t-invertible. (P is an associated prime of
- D if Pis minimal over (a): b for some a,be D.)

(3) Every prime t-ideal of D is t-invertible.

(4) Every nonzero fractional ideal of D is t-invertible.

(5) D is a completely integrally closed Mori domain.

(6) D is a completely integrally closed TV-domain.

Proof. We shall prove (1)=8)=(®)=4)=(1) and 4)=2)=3)=4). Of
these (1) = (5) is well known, and (5) = (6) and (4) = (2) are trivial.

(6) = (4). Let A be a nonzero fractional ideal of D. Since D is completely inte-
grally closed, (4A4~1),= D [7, Thm. 34.3]. Since D is a TV domain, (4A~!),=D
as well.

(4) = (1). In general D= {D,,| M is a maximal #-ideal of D} [9, Prop. 4]. It
suffices to show that each nonzero element of D lies in only finitely many maxi-
mal z-ideals M and that each D,, is a PID. The first requirement is satisfied as a
result of Theorem 1.3, since z-invertibility implies quasi-finiteness, so that D is a
TV-domain. The second follows from Lemma 2.2.

(2) = (3). Let P be a prime #-ideal. Shrink P to a prime Q minimal over a non-
zero principal ideal, so that Q is an associated prime of D. We claim that P= Q.
If not choose xe P— Q. Q, being t-invertible, is quasi-finite, whence Q+xD is
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also quasi-finite. Hence (Q +xD), S P, and we may pick v € (Q+xD) ! —D. Let
Q’ be a minimal prime of D:u. Then Q& Q' and both Q, Q' are associated,
hence ¢-invertible, primes of D. Lemma 2.2 therefore implies that both QD and
Q’Dg- are principal in Dg., an impossibility.

(3) = (4). This is Theorem 2.1. O]

In [8] Glaz and Vasconcelos introduce the concept of an H-domain: a domain
D in which every ideal A with A== D is quasi-finite. They then prove that a
completely integrally closed H-domain is a Krull domain. An alternate proof can
be obtained as follows. Let D be a completely integrally closed H-domain. If 4
is a nonzero ideal, then, by complete integral closure, (44 ~!), = D. Hence, since
D is an H-domain, AA~'is quasi-finite, from which it follows that (44~!),=D.
Now apply (4) = (1) of Theorem 2.3.

We close this section with more on the connection between H-domains and
TV-domains.

PROPOSITION 2.4. A domain D is an H-domain if and only if every maximal
t-ideal of D is divisorial. Thus every TV-domain is an H-domain.

Proof. Assume that D is an H-domain, and let M be a maximal #-ideal. It suf-
fices to show that M, = D. However, M, = D implies the existence of a finite sub-
ideal J of M with J,= D. This is impossible, since we would then have D=J,=
J,EM.

Conversely, assume that every maximal #-ideal of D is divisorial. Let A be an
ideal of D with A~!'=D. Then A & M for every maximal #-ideal M of D. Hence
A, =D, and the result follows. O

REMARK 2.5. It is not the case that every H-domain is a 7V-domain; that is,
divisoriality of the maximal t-ideals does not ensure divisoriality of all t-ideals.
An example illustrating this may be constructed as follows. Let D be a Dedekind
domain with infinitely many prime ideals. Let K be the quotient field of D, and
let V be a valuation domain on K of the form K+ M. Put R=D+ M. By [3,
Thm. 2.1] R is a Priifer domain, and its (infinitely many) maximal #-ideals (that
is, its maximal ideals) are invertible, hence divisorial. However, the prime #-
ideal M is contained in all of the maximal #-ideals, so R is not a TV-domain by
Theorem 1.3.

3. TV-Priifer v-multiplication domains. We begin with some terminology. Let
D be a domain. Then D is said to be a v-domain if every nonzero finitely gener-
ated ideal of D is v-invertible. D is a Priifer v-multiplication domain (PVMD) if
every nonzero finitely generated ideal of D is v-invertible with guasi-finite in-
verse, that is, if every finitely generated ideal of D is 7-invertible. A useful char-
acterization is as follows [9, Thm. 5]: D is a PVMD if and only if D,, is a valua-
tion domain for each maximal #-ideal M of D. We show below that a 7V-domain
is a PVMD if and only if it is a v-domain. Finally, D is a ring of Krull type if D
is a locally finite intersection of essential valuation overrings, equivalently [10]
if D is a PVMD in which each nonzero element belongs to only finitely many
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maximal z-ideals. The ring D of Krull type is an independent ring of Krull type
if each prime #-ideal of D lies in a unique maximal 7-ideal.

We can now state our main result on 7V PVMD’s. The proof borrows heavily
from ideas in [12].

THEOREM 3.1. The following statements are equivalent for a domain D.

(1) D is a TV-domain which is also a v-domain.

() D is a TV-domain which is also a PVMD.

(3) D is an independent ring of Krull type whose maximal t-ideals are quasi-
finite (and therefore t-invertible).

Proof. (1) = (2). If A is a finitely generated ideal of D, then (44 ~!), = D. Since
D is a TV-domain (4A4~!), =D also, so D is a PVMD.

(2) = (3). By Theorem 1.3 and the discussion above, D is a ring of Krull type.
By [13, Prop. 2.1] divisoriality of a maximal #-ideal of a PVMD is equivalent to
quasi-finiteness and to #-invertibility. It remains to show that each prime #-ideal
P of D is contained in a unique maximal z-ideal. Suppose, on the contrary, that
PSS MNN, where M, N are maximal ¢-ideals. Set B= N, {B,: B, is a t-ideal of
D which contains P and is not contained in M}. By Lemma 1.2, BZM. If ye
B—M then (P, y?%),e(B,}, whence y e (P, y?),. Hence y € J, for some finitely
generated subideal J of (P, y2). It follows that y € J,Dy < (J,Dn), = (JDN),=
JDx S (P, y?)Dy, where the v’s on the parenthetical expressions denote the v-
operation on the valuation domain Dy, the first equality follows from [21, Lemma
4], and the second equality follows from the fact that JDy is principal. Hence
there is an element s € D—N with sy e (P, y?), say sy =a+xy? with ae P and
x € D. However, this gives y(s—xy)=a € P, so that s —xy e P < N, a contradic-
tion because y € N (since Ne {B,}).

(3)=(1). Any ring of Krull type D is a PVMD, hence a v-domain. Also D=
Mg Dar,, where {M,]} is the set of maximal ¢-ideals, and each D,,_is a valuation
domain [9]. Let A be a ¢-ideal. By [9, Prop. 4], A =N ADy, =\ (ADyp ND),
so it suffices to show that each AD,, N D is divisorial. Let M € {M_}. Since M is
quasi-finite, MD,, is principal, so each nonzero ideal of D,, is divisorial [12,
Lemma 5.2]. In particular, we may write ADy; = (g agD,,, where each age
M. Thus it suffices to show that aD,,ND is divisorial for each ae M. Let J=
aD,,ND. One shows easily that J is a ¢-ideal. As in the proof of [12, Thm. 5.1:
(2) = (1)] we show that J € N for each maximal ¢-ideal N M. Clearly, the rad-
ical of J is a prime ideal P contained in M. Since the radical of a 7-ideal is a
t-ideal, we have by hypothesis that P € N, whence J € N for each such N, as
claimed. Since ¢ is contained in only finitely many of the N, we may use prime
avoidance to choose b € J so that (a, b) £ N for each N. It is then easy to see that
(a,b),=(a,b),DyND2aD,ND=J. Since J is a t-ideal, it follows that J=
(a, b),, so J is divisorial. 1

REMARK 3.2. In [12, Thm. 5.1] Heinzer showed that the class of integrally
closed domains all of whose nonzero ideals are divisorial is a certain subclass of
the class of Priifer domains. This might lead one to suspect that an integrally
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closed TV-domain would necessarily be a PVMD. However, in [1, Examples 3.8]
Barucci gives a construction which produces examples of integrally closed Mori
(hence T'V-) domains which are not Krull domains. (A specific example is D=
k+ Yk[X, Y]y,, where k is a field and X and Y are indeterminates.) By [2, Thm.
2.5] localizations at #-invertible maximal f-ideals of such a domain D are rank-
one discrete valuation domains. Since D is not a Krull domain, D must contain
a non-Z-invertible maximal #-ideal, so that D cannot be a PVMD by Theorem 3.1.

REMARK 3.3. The rings of Theorem 3.1 appear to be a natural generalization
of Krull domains, and their study in the spirit of [10] may well be fruitful.

4. Comments, examples, and open questions. In this paper we have gener-
alized many of the results in [12]. However, [12, Thm. 2.4] states that a nonzero
prime ideal of a domain all of whose nonzero ideals are divisorial is contained
in a unique maximal ideal. This does not generalize to 7V-domains. Indeed, the
structure of Noetherian domains leads one to expect that there would be plenty
of Noetherian counterexamples. For the sake of completeness, we give below an
explicit example of a Noetherian domain D which has a prime #-ideal contained
in two maximal #-ideals.

EXAMPLE4.1. Let X, Y, Z, V, W be independent indeterminates over the field
k;let R=k[X,Y,Z, V3 V3 W2 W3 XV, XW,XVW,YV, ZW]; and let R’ =
kIX,Y,Z,V,W].Set P=(X, Y, V)R'NR and Q= (X, Z, W)R'NR. The follow-
ing claims are easily verified.

Claim 1. R is Noetherian with integral closure R’.

Claim 2. The monomial X‘Y/Z*V!W"™ of R’ lies in R if and only if exactly
one of the following conditions holds:

(i) /#1land m#1;

(ii) I=1, m#1,and i+j=1;

(iii) /#1, m=1,and i+ k=1;

(iv) I=m=1, i+j=1,and i+ k=1.

Claim 3. Let fe€ R and let f= f,+ --- + f,, denote the canonical representation
of f as a sum of monomials. Then fe R if and only if each f,eR.

Claim 4. XR'S R, so XR’'=XR’'NR is a (necessarily divisorial) height-one
prime of R.

Claim 5.
P=XR'+(YR'NR)+(VR'NR) and QO=XR'+(ZR'NR)+(WR’'NR).

We now assert that P=R: V and Q= R: W. Granting this, P and Q are in-
comparable divisorial primes of R, and each contains the divisorial prime XR’.
Since in the Noetherian case localization preserves divisoriality, D= Rg, where
S=R—(PUQ), is the required example.

We prove now that P=R: V; the proof that Q= R: W is similar. To prove
that PV S R, it suffices by Claim 5 to show that XR’-VER, (YR'NR)-VCSR,
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and (VR'NR)-V € R. The first inclusion is obvious. Let fe YR’'NR. We may
assume that f is a monomial, say f =aX'Y/ZXV!W"™.Y, ae k. It is now straight-
forward to show that fV e R, using Claim 2. The third inclusion is handled sim-
ilarly.

Finally, suppose that g€ R and g € R. We may assume that g is a monomial,
say g=aX'Y/Z*XV'Ww™. 1If I>0 then ge VR'NRCS P. If /=0 then, by Claim
2, gVe R implies that i+ =1. Hence ge (X, Y)R’'NR < P. This completes the
proof. ]

REMARK 4.2. Let D be a TV-domain in which every prime #-ideal is contained
in a unique maximal 7-ideal. Then, with relatively minor modifications in the
proof of [12, Thm. 3.6], we can show that each localization of D at a maximal
t-ideal is a TV-domain. As Example 4.1 shows, however, this extra assumption
is not necessary, since any localization of a Noetherian domain is a 7V-domain.
We have been unable to prove or disprove the following:

OPEN QUESTION. If M is a maximal #-ideal of the 7V-domain D, is D, neces-
sarily a 7V-domain? (By Corollary 1.8 and Proposition 2.4, D,,is an H-domain.)

From the proof of Theorem 3.1 (1) = (2), one is tempted to conjecture that if
A is a nonzero finitely generated ideal in a TV-domain D then 4~ !is quasi-finite.
That this is false is demonstrated by the next example. Before presenting the
example, we prove that every pseudo-valuation domain (PVD) is a 7V-domain.
PVD’s were introduced in {11]; a PVD may be defined as a quasi-local domain
(D, M) having a valuation overring V whose maximal ideal is also M. If (D,M)
is a PVD which is not a valuation domain, then M ~!is the valuation overring
with maximal ideal M.

PROPOSITION 4.3. If D is a PVD which is not a valuation domain, then Dis a
TV-domain.

Proof. Let M denote the maximal ideal of D, and let V=M ~1. It suffices to
show that every nonprincipal ¢-ideal A of D is an ideal of V' [11, Thm. 2.13]. Ac-
cordingly, let a € A and pick be A—aD. Then (a, b),< A. If (a, b) =(c) is prin-
cipal in D, write a=rc. Since b ¢ (a), c&¢ (a), whence re M. Therefore, al/'=
rcVe Mcc A, as desired. If (a, b) is not principal in D, then (a, b),=(a,b)V
[11, Prop. 2.14]. In this case aV < (a, b), S A, and the proof is complete. L]

REMARK. Easy examples show that a quasi-local 7V-domain need not te a
PVD.

EXAMPLE 4.4. Let (D, M) be a PVD, not a valuation domain, such that A is
not principal in V=M L. (If V is a nondiscrete valuation ring of the form K+ M
and F'is a proper subfield of the field K, then D= F+4 M is such an example [11,
Example 2.1].) We shall produce a finitely generated fractional ideal of D whose
inverse is not quasi-finite. (The existence of such an integral ideal then follows
easily.) Let xe V—D. Then (1, x) is the desired ideal. It is easy to see that M =
(1, x) ~L. Suppose that M is quasi-finite, say M = J,, where J is a finitely generated
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subideal of M. Since ax ¢ aD for each a € M, M is not principal in D. Therefore
[11, Prop. 2.14], M =J,=JV, contradicting the nonfiniteness of M in V.

We now consider polynomial rings over 7V-domains. We begin with a modi-
fication of [19, Lemme 2].

LEMMA 4.5. Let A be a t-ideal of the integrally closed domain D.

() If AND#0 then A=(AND)DI[x].

2y If AND=0 then A= fJD|[x] for suitably chosen fe€ D|[x] and fractional
t-ideal J of D.

Proof. (1) Pick ge A and ae AND, a#0. Then (a,g),ND=0, so by [19,

Lemme 2(1)] g€ (a, g),=((a, g),ND)D[x]=(AND)D[x].
(2) This requires only a minor modification of the proof of [19, Lemme 2(2)].
O

PROPOSITION 4.6. If D is an integrally closed TV-domain, then so is D[ x].

Proof. This follows easily from Lemma 4.5 and the fact that divisoriality is
preserved upon passage from D to D[x]. O

We have not been able to remove the hypothesis that D be integrally closed.
Therefore, we close with the following:

OPEN QUESTION. If D is a TV-domain, is D[x] necessarily a 7V-domain?
(Note that by [8, 3.2c], D[ X] is an H-domain.)

REFERENCES

. V. Barucci, On a class of Mori domains, Comm. Algebra 11 (1983), 1989-2001.

. V. Barucci and S. Gabelli, How far is a Mori domain from being a Krull domain?, J.
Pure Appl. Algebra 45 (1987), 101-112.

3. E. Bastida and R. Gilmer, Overrings and divisorial ideals of rings of the form D+ M,

Michigan Math. J. 20 (1973), 79-95.

DN =

4. N. Dessagnes, Intersections d’anneaux de Mori — exemples, C. R. Math. Rep. Acad.
Sci. Canada VII (6) (1985), 355-360.

5. R. Fossum, The divisor class group of a Krull domain, Springer, New York, 1973.
6. S. Gabelli, Completely integrally closed domains and t-ideals, manuscript.

7. R. Gilmer, Multiplicative ideal theory, Dekker, New York, 1972.

8. S. Glaz and W. Vasconcelos, Flat ideals 11, Manuscripta Math. 22 (1977), 325-341.
9. M. Griffin, Some results on v-multiplication rings, Canad. J. Math. 19 (1967), 710-722.
10. , Rings of Krull type, J. Reine Angew. Math. 229 (1968), 1-27.
11. J. Hedstrom and E. Houston, Pseudo-valuation domains, Pacific J. Math. 75 (1978),

137-147.

12. W. Heinzer, Integral domains in which each non-zero ideal is divisorial, Mathematika
15 (1968), 164-170.

13. E. Houston, On divisorial prime ideals in Priifer v-multiplication domains, J. Pure
Appl. Algebra 42 (1986), 55-62.



300

14.

15.
16.

17.

18.
19.

20.

21.
22,

EVAN HOUSTON AND MUHAMMAD ZAFRULLAH

E. Houston, T. Lucas, and T. M. Viswanathan, Primary decomposition of divisorial
ideals in Mori domains, J. Algebra, to appear.

P. Jaffard, Les systemes d’ideaux, Dunod, Paris, 1960.

B. Kang, *-operations on integral domains, Ph.D. Thesis, The University of Iowa,
1987.

S. Malik, J. Mott, and M. Zafrullah, On t-invertibility, Comm. Algebra 16 (1983),
149-170.

J. Mott and M. Zafrullah, On Krull domains, manuscript.

J. Querré, Ideaux divisoriels d’un anneau de polynémes, J. Algebra 64 (1980), 270-
284.

M. Roitman, On Mori domains and commutative rings with the chain condition on
annihilators, Queen’s Mathematical Preprint, 1986.

M. Zafrullah, On finite conductor domains, Manuscripta Math. 24 (1978), 191-203.
» The D+ XDg[X] construction from GCD-domains, J. Pure Appl. Algetra
50 (1988), 93-107.

Department of Mathematics
University of North Carolina at Charlotte
Charlotte, NC 28223

Department of Mathematics
University College London
London WCIE 6BT
England



