A SHARP GOOD-A INEQUALITY WITH
AN APPLICATION TO RIESZ TRANSFORMS

Rodrigo Baifiuelos

0. Introduction. Let f e S(R"), the class of rapidly decreasing functions in
R". For j=1,2, ..., n, define the Riesz transforms as the multiplier operators

(R; )" (&) = (i&; /| £ (&) and set
n 1/2
R =( 2 IR f(x)|2)
J=

In [22] Stein proved that |Rf|, = Cp|f], for 1< p < oo, with C, independent of
the dimension n. Alternative probabilistic proofs are given in [1], [4], [14], and
[16], and in [9] the result is proved by using the method of rotations. Whereas all
of these proofs give constants independent of n, none of them give the correct be-
havior with respect to p (see the remarks following Corollary 2.3). On the other
hand, the classical proof [20] which gives constants depending on the dimension
does give the right asymptotic behavior with respect to p. That is, C, is O(p) as
p—oand O(1/(p—1)) as p — 1. It seems unnatural to us that this should be lost
when passing to constants independent of n. The purpose of this note is to cor-
rect this deficiency. We do this by proving a sharp good-A inequality (Lemma 1.2)
for vector-valued martingales which itself may be of independent interest.

1. The good-)\ inequality. Throughout the paper, we use the following nota-
tion. If X, is an L”-bounded martingale with 1< p <o, X will denote the ran-
dom variable in L? such that X, = E(X'| F,) and {(X), will denote the square func-
tion of X;. By (X) we shall mean {(X).,. All our martingales are on the Brownian
filtration and hence always continuous.

THEOREM 1.1. Let {X'}/L, be random variables in L? with 2 < p < % and such
that EX' =0 for all i. There are universal constants C; and C, (independent of
p and m) such that
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Part (1.2) of the theorem is well known but we shall prove it here for the con-
venience of the reader. However, for (1.1) all of the proofs known to the author
will give, at best, constants of order p. To prove (1.2) we recall the following
lemma.
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LEMMA 1.1 (Garsia [12]). Let A, be a positive continuous increasing process
with Ao = 0. If there is a positive random variable Y such that E(Aw—Ar | F1)<
E(Y | F7) for any stopping time T, then E(A%) < pPE(YP), 1< p<oco.

Proof of (1.2). We assume that p > 2; otherwise the result is trivial. Because
(X}))?—<¢X"’y, is a martingale we have, for any stopping time 7,

E(X"Y—(X"y7|F1) = E(X')*—(X})* | F1) = E(X')?| 7).
Summing both sides and applying Garsia’s lemma with p/2 > 1, we obtain (1.2)
with C, = +/1/2. _ [

The first part of the theorem will be a consequence of the following good-A in-
equality.
LEMMA 1.2. Let { X'}/, be as in the statement of the theorem. Set
1/2
(E ]X,Iz) and Y*=sup|Y;|.
t

i=1

Let Z=3"1¢(X"y and fix ¢ > 0. Then, for all >0,

P{Y*>2\ZV2=eN = C exp[ _fz ]P{Y*> A,
€

where C, and C, are universal constants.

The novelty in this lemma is the presence of the exponential square estimate on
the right-hand side of the inequality. The original good-\ inequalities of Burk-
holder and Gundy [5] did not give this sharp estimate. However, for the case of a
single martingale (72 =1) and the case when the martingales are mutually orthog-
onal with equal area functions, the lemma as we have stated it above was proved
by Burkholder in [6]. Our proof follows his argument very closely. From the
lemma we easily get (1.1).

Proof of (1.1).

(XY= §°° N=1P(Y*> 2N} dA
(5) ="

<pS N=IP(Y*>2); ZV2 < e d)\+p5 N-1P(ZY2 > N} d\

—C o oo
=C exp[ Ezz]p |, MTIPLY >N an+p [T W TIP(ZY2> enjax

-C 1
=C exp[ 622]E|Y*|”+ e—pE(Zp/z),
L

where the first inequality is clear and we have applied Lemma 1.2 for the second.
From here we obtain (using the convention that C is a universal constant)

27C, exp[C; /e?]

p/2
eP(exp[C, fe2]—27) L&)

(1.3) E(Y*)? <
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and choosing e ~ C/Vp gives
(1.4) E(Y*)? < CP(Wp)’E(Z""),
which is the same as (1.1). ]

To make the proof of Lemma 1.2 more clear we break it into several lemmas.
Besides the random variables Y;, Y*, and Z which have already been introduced
above, we set Y= (Z/L,|X|?)/2 and Z,=37L <(X"),.

LEMMA 1.3 (Pipher [19]). The process
(1.5) W, =exp[V1+(Y;)? —1Z,]
is a supermartingale.

The proof of this lemma is an application of the Itd formula with

1/2
F(xl,---,xm,yl,---,ym)=exp[(l+ > x;) - = E y,]

i=l1 1—1

LEMMA 1.4. Suppose |Z'?|. <a <. Then, for all A\ >0,
szz
o2 .

(1.6) P{Y*>\}=C, exp[

Proof. 1t follows from Lemma 1.3 that E(exp[Y])<e- exp[,_ a?], and repeat-
ing this with X’ replaced by (\/a?)X’ for any A > 0 we obtain

2
1.7 E(exp[%])se-exp[;\—az],

which together with Chebyschev’s inequality gives

—\2
1.8 P{Y >N} <e- .
(1.8) { j=e exp[ a2 ]

From Doob’s inequality applied to the submartingale Y, we have that |Y*|) <
(p/(p—1)?|Y|5=16|Y|5 for p = 2. Thus we see, by summing the series for the
exponential, that if £(exp[C; Y */a?]) = C, then the same holds for Y*, and there-
fore (1.8) gives the conclusion of the lemma. O

Let T be a stopping time and set Q=(T< oo} F, = ‘:S-'T+,, and dP = dP/P(Q)
Then X! = X}, ,— X/} is a P- martlngale over &, with (X7, = (X Y74, —(X7r.
Applying the above argument to the X’ (under the assumptions of Lemma 1.4)
we obtain

2
j)‘ ]P{T<oo}.

t i=1

1/2 —
(1.9 P{sup E |XT+,-—XT|2) >SN T< oo} =C, exp[

LEMMA 1.5. Suppose | ZY?| <a <. Then, for all A\> 0,

2
,2,_)‘ ]p{y*> A

P{Y*> 2\ =C, exp[_
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Proof. Let T = inf{¢:Y; > A}. The continuity of the paths gives Yr =\ on
{T < oo} = {Y*>\]. Therefore

m . C\V/2
P{Y*>2\} sP{sup(Y,) >2NT< oo} sP{sup( > |X,‘—X'T[2> >N T< oo},

t>T t>T \i=1

and applying (1.9) gives the lemma. O

_Proof of Lemma 1.2. Let 7 = inf{¢: Z, > (eN)?}. Then if X, = X!,, we h_ve
|ZY?| < e\ and

PY*>2\; ZV2<eN}=P{Y*>2\; 7= o}

=P{ sup |Y;|>2n; 7= oo]sP{f’*>2)\}

O<i<r

—C,\? - —
sClexp[—:z—;‘\—z—-]P{Y*>)\]sC1exp[ ESZ]P{{*>)\],

where the next-to-last inequality follows from Lemma 1.5 and the rest are clear.
O

We should remark here that the estimate exp{—C, /ez] is absolutely crucial to
obtain the constant vp in (1.1). Even with .ne extimate exp[—C, /e] one cannot
get this behavior in p. Also, asymptotically the constants in Theorem 1.1 are best
possible since they are already best possible in the scalar case; see [7].

Let us mention another goc 1-\ inequality that can be obtained by the methods
of [6]. We leave the proof *, the interested reader.

THEOREM 1.2. Let B, be one-dimensional Brownian motion and let T be a
stopping time. For 0 < a < 1 define M* =sup, .,|t "“B;|. Then

— 7

C
PM:>2N 72 2<eN}=<C, exp[ Eza ]P[M;';>>\},

where C,, and C/, are constants depending on «.

This good-\ inequality can be used to give the right behavior with respect to p
in the constants of some of the inequalities proved by Barlow and Yor [2]. For
other good-\ inequalities which also use the ideas in [6], see Bass [3] and Davis [8}.

2. Martingale transforms and their projections in R”. Let X, be an LZ?martin-
gale on the filtration §, of #-dimensional Brownian motion, n = 2. Such martin-
gales have the representation [10] X; = X+ {§ H,-dB;, where Xo=EX and H;isa
process with values in R” adapted to F;. If A(s) is an 7 X n matrix-valued process
adapted to F,;, we define the martingale transform (A4 * X),= jf) (A(s)Hy)-dB;.
The following basic result can be found in [10]:

|A*X|,<C,M|X|, for 1<p<co.

Here C, depends only on p and M = sup; M(s), where M(s) = sup{|A(s)V]:
VeR”, |V|=<1}. The constant C, obtained in [10] is, at best, of order p3?2 as
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p — oo, In [1] it is shown, using some nontrivial results of Davis [7] on the best
constants between |X |, and [(X)"?|,, that the constant C, is O(p) as p — .
Here we show that the same conclusion holds for vector-valued martingale trars-
forms.

THEOREM 2.1. Let {A;(s)}{Z, be a sequence of n X n matrix-valued processes
adapted to F;. Let M(s) = (sup{Z{2|A:(s)V|*: VeR", |V|=< 1)Y? and set M =
sups M(s), which we assume to be finite. There is a constant C,, which depends
only on p such that for every Xe LP, 1< p <oco,

(2 4, *X|2>l/2

i=1

2.1) =CpoM|X|p.

p
Furthermore, C,<C;p for p=2 and C,<C,/(p—1) for 1< p<2, where C,
and C, are absolute constants. Asymptotically these constants are best possible.

Proof. Since the constants in Theorem 1.1 are independent of m, these inequal-
ities actually hold when 7 = co. Write

X =X+ j: H,-dB, and A;*X= j: (Ai(s)Hy)-dB;.
With Y= X — X, we have (Y} = {3 |H,|*>ds and (A; * X)= {5 |A;(s)H|* ds. Al-

so, E(A;*X)=0 and E(Y)=0. Then for p =2, by applying (1.1) and then (1.2)
we obtain

o 1/2
(£ aexe) 7],

i=1

IA

1/2
ll 2 (A;*X)
i=1

D
< CVPM|KYY/?|, < CYpVDM| X — Xo|, = CoM| X | ,.

If 1 < p <2 our good-\ inequality shows that

- 1/2

> |A,-*X]2) 2 (A; *X))
i=1 P

i=1
with C independent of p. From here we have
1/2

1/2

(2.2) |A *X|> < CM|KY)Y"?|,.

i=1
Now apply the classical Burkholder—Gundy inequalities, which show that
K>3, <C|Y*], for 1<p<2,

with C independent of p. This, (2.2), and Doob’s maximal inequality give

- 172
Y |Ai*X|

i=1

p p
=CM——|Y|,=CM——|X|,,
=M i), = eM X,
which completes the proof for 1< p <2 and hence, together with the previous
case, for all 1< p<oo.
To prove the sharpness part, let B; be 2-dimensional Brownian motion. Let 74
be the indicator function of a set with, say, P(4)=3. Let
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0o -1
H= .
i o
It follows easily by time changing to Brownian motion (see [11, p. 29]) that
P{sup,[(H*14);|> A} ~ Cyexp[—C3\].

Thus
I * L)1 =p [ W TPH* 1) >N dA~Cip |~ W exp[~CoA1 aA

Cl p— l —X
C —5P S A d,
and Stirling’s formula does the rest. Theorem 2.1 is proved. L]

We note that we have only used the scalar case of (1.2). The full generality is
needed if we wish to prove vector-valued inequalities of the form

1/2 1/2
2.3) l‘ 2 |A*X’|2) 2 |X’|2)

i=1
for 1< p<oo and C, as above. Here A is just a single matrix.

We now explain the connection between martingale transforms and Riesz trans-
forms. Since this has already been done in so many places ([1], [4], [13], [14]) we
shall be brief. Let Z, = (X, Y;), —o0 <t <0, be the background radiation process
of Gundy and Varopoulos [14] in R%*!. This is “Brownian motion” which “starts
at time —oo from Lebesgue measure on R” X {0} and terminates at time ¢ =0
upon hitting the boundary R”. If fe S(R"), let u be its Poisson integral to R%*.
If A(x,y), xeR", ye Rt is an (n+1) X (n+1) matrix-valued function, we define
the martingale transform of f by

< C,,M’

p p

axr={ 14X, Yavu(x,, Y)1-dz,

and the projection operator by the conditional expectation
TAf(x)=E[A*f|Zy=(x,0)]=E*[A*f].

THEOREM 2.2. Let {A;(x,¥)}i~, be a sequence of (n+1) X (n+1) matrix-vai-
ued functions on R%:*!, Let

1/2
M(x, y)-(sup{ > |A4i(x, »)V|*: VeR", |V|<1D

i=1

and set M = |M(x, y)|L=®n+1y, which we assume to be finite. For f e 8(R") de-
fine Tf(x)= (2721 |Ty; f(x)|2)1/2 Then, for 1< p < oo, there is a constant C,, de—
pending only on p such that |Tf|,<C, M| f|p. Furthermore, C,=Cpforp=
and C,<Cy/(p—1) forl< p<?2, where C, and C, are absolute constants.

Theorem 2.2 follows from Theorem 2.1 with the additional observation that
the conditional expectation is a contraction in L” for 1 < p < oco. For full details
see [1]. Notice that we have made no smoothness assumptions on the matrices.
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Now let AJ, 1=<j=<n, be the (n+1) X (n+1) matrix whose entries are a,k—l if
i =1, k=j+1, and zero otherwise. Then ([13], [14]) T4, f(x) = 2R f(x), and for
this sequence of matrices M < 1. Thus we have the following consequence of The-
orem 2.2.

COROLLARY 2.3. |Rf |, = C,| f|pforl< p <o, where C, depends only on p.
Furthermore, C,<C1p for p=2 and C,<C>/(p—1) for 1< p<2, where C,
and C, are absolute constants. By duality we also have | f|,<ap,|Rf|p, and a,
has the same behavior as Cp,.

Several remarks are in order concerning this corollary. As mentioned in the in-
troduction, the constant independent of the dimension was proved by Stein [22].
Here, however, we should also mention the work of Meyer ([17] and [18]). Their
proofs use the fact that the Littlewood-Paley g-function has |g(f)|, = | f|, for
1 < p < oo with constants independent of dimension. However, at present the best
one can say is that | f|, < Cp|g(f)|, (say, for p = 2), and therefore the constants
obtained by this argument are, at best, O(p3/?) as p — . Alternative probabilis-
tic proofs with constants independent of dimension are given in [1] and [4]. In [1]
it is shown, using a nontrivial result of Davis [7], that for a single Riesz transform
we do have the correct behavior in p. This argument does not work for the full
vector. On the other hand, Duoandikoetxea and Rubio de Francia [9] used the
method of rotations to obtain constants independent of dimension and of order
p as p — . However, their argument only gives O(1/(p—1)*?) as p —1. The
above proof corrects the deficiencies in the previous probabilistic arguments and
improves the constant obtained by Duoandikoetxea and Rubio de Francia, giv-
ing the correct behavior of this constant for the full range of p.

If we consider matrices of the form A = a(y)I, with a(y) a scalar function
on (0, o©) and 7 the (n+1) X (n+1) identity matrix, we obtain the operators of
Laplace transform type studied in [17], [21], and [23]. More precisely, if a(y)

L>(0, o) then (T4 f) " (§) = m4(£) f(£), with
my(£) =1672|£|? S: a(y)e 4=ty dy.

COROLLARY 2.4. Let {a;(¥)}i~, be a sequence of real-valued functions in
(0, ). Let a(y) = (2521 |a:;(¥)|?)V? and M = |a(y)| L=, =), Wwhich we assume to
be finite. For f € $(R") define Tf(x) = (Xi%1|T4; f(x)|?)?, where A; = a; 1. Then,
Jor 1< p <o, there is a constant C, depending only on p and having the same
asymptotic behavior as the constant in Theorem 2.2, such that |Tf|, < C, M| f|p-

The corollary follows from Theorem 2.2. The constants we obtain here are bet-
ter than those obtained in [17], [21], and [23], which are, at best, of order p*/? as
p — oco. The corollary applies to the semigroups studied in [23].

Very recently Gundy [15] has shown that the same probabilistic machinery used
to study the Riesz transforms in R” can be used to study the Riesz transforms
of the Orstein—-Uhlenbeck semigroup (a truly infinite-dimensional situation). He
uses this to prove the boundedness of these operators in L”, 1 < p < oo, a result
first proved by Meyer [18] using Littlewood-Paley theory. A careful reading of
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Gundy’s proof reveals that the constant he obtains is of order p? as p — . The
good-\ inequality in this paper improves his constant to order p*?2. As far as we
know, the question of whether the Riesz transforms of the Ornstein-Uhlenbeck
semigroup have constants of same order as the constants for the Riesz transforms
in R” remains open.
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