THE REDUCED MINIMUM MODULUS

Constantin Apostol

Introduction. Let 7" be a bounded linear operator acting in a Banach space.
The reduced minimum modulus of 7 will be defined by the equation

(T) = inf{|Tx|:dist(x,kerT) =1} if T#0,
=0 if 7=0.

The definition of y(7) is taken from [9, Ch. IV, §5] for T 0. (If T=0 we put
v(T) =0, whereas in [9], v(T') = o). Thus y(7") > 0 if and only if 7 has closed non-
zero range. If T is invertible then v(7") = |7"~"| ™" and this shows that the function
T — v(T) is not continuous but it could have good local continuity properties.
In general lim,, _, » 'y(T”)l/ " does not exist and it is not known what conditions
on 7 are equivalent to the existence of lim, _, » v(7"")"/". We mention the follow-
ing known cases when lim,,_, » Y(T")"/" exists:
(1) if 7 is Fredholm, lim,_« y(7T")Y" is the radius of the largest open
disk centered at 0, included in the Fredholm domain of 7, such that
dim ker (7"— \) =const. for A0 in the disk ([8]);

(2) if T is surjective or bounded from below, lim,, _, » 'y(T")l/" is the radius of
the largest open disk centered at 0 such that 77— \ is surjective or bounded
from below for X in the disk ([10], [11]).

In this paper we investigate the properties of the reduced minimum modulus of
operators acting in Hilbert spaces. In Section 1 we develop some general proper-
ties of y(7’) and a related matrix representation of 7" (Theorem 1.5). Section 2
will be devoted to the study of the continuity properties of the function
N —v(T—\), Ne C. The discontinuities of this function form a countable set
and lim, _, , v(T—\) always exists. The set

o, (T) = {u e C: lim y(T—\)= O}
Aop
is closed, non-empty, and obeys the spectral mapping theorem (Theorem 2.7).
As seen in Theorem 2.5 and Proposition 2.6, p,(7), the complement of ¢, (7)), is
the minimal open set where 77— \ has an analytic generalized inverse.

Section 3 deals with the problem of the existence of lim,_, « y(7™")"” and the
role ¢, (T') plays in this problem. A positive new result and a direct generalization
of the result of [8] is the existence of lim,, _,  y(7"" )’/ " for semi-Fredholm oper-
ators (see Remark after Corollary 3.4).

The last part of the paper, Section 4, contains some results on the effect of a
compact perturbation K on o,(7+K) (see Theorem 4.4).

1. Preliminaries. Throughout the paper we shall denote by H a fixed complex
Hilbert space, H # {0}, and 7 will be a fixed bounded linear operator acting in H.
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The symbol £ (H) will denote the algebra of all bounded linear operators acting
in H. If X is a closed subspace of H, then Py will denote the orthogonal projec-
tion of H onto X. If G C H, clm G is the closed linear manifold (or span) of G.

As in [3, §2], we shall call 4 € C a T-regular point if the function N\ = Pyer(7—»),
M\ € C is norm-continuous at g. If p € C is not 7-regular we call it 7-singular. Let
us define (see [5])

o (T)=reo(T): (T-NH=(T—-NH) |},
ol . (T)={N€o..(T):\ is T-regular},
0. (T)={N€o.,(T):\ is T-singular}.
Because 7 acts in a Hilbert space it is easy to see that in case 7 0 we have
y(T) =inf{| Tx|: x € (ker T)*, |x| =1)
=inf(a((T*T)"?)\(0})
=inf(a((TT*)*)\[0}) =v(T*).

1.1. PROPOSITION. For every pair A, Be £L(H) we have

(i) 'Y(A) "P(kerA)J-PkerB" = "A _B"; 5
(ii) |Pxera— Prers|(min{y(A), y(B)}) =2(]|A4|+|B|)|A—B|;
(iii) |v(A) —v(B)| = |Pxera— Pxerp| maxfy(A4), y(B)}+|A—B|.

Proof. (i) The first relation is trivial if y(A)=0. If y(A4) >0 we have as in [5,
Lemma 2],

Y(A) “P(kerA)lPkerB" = “APkerB“ = "(A _B)PkerB" = "A _Bu‘
(ii) To prove the second relation put r = %(min{y(A), v(B)})?. Since r=0is a

trivial case, assume r > 0. Then (ii) follows from the relations:

Preca=Picsl =50 |, (0= —0=B 1|
<5 ] 0= Ay A A= BB [\ B*B) '} |\
=(1/r)|A*A—B*B| = (1/r)(|A|+|B|)|A—B|.
(iii) For every x € (ker B)*, |x| =1, we have
[(A—B)x| = | Ax| — [ Bx| = v (A) | Pker aye X | — | Bx|
=v(A) = [ Bx| = v(A) | Prer ax|
=v(A) — | Bx| —v(A) | (Pxer 4 — Prer 8)X|
= v(A) — | Bx|—v(A) | Pxera— Prer sl »
and this easily implies that

|A—B| = v(A) —v(B) — | Pker a— Pxer 5| max{y(A), y(B)}.
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But interchanging A and B, we obtain
+ (7(A) —v(B)) = | Pxer a— Prer g max(y(4), v(B)}+|A—B]. 0
1.2. COROLLARY. The set
T(H)={Ae L(H):y(A)=¢} (e=0)
is norm-closed and the functions
A— Pyern, A-vy(A), AeTl' (A), >0
are continuous.

Proof. Since T'g(H) = £L(H), we shall assume ¢ >0. Let Be ' \(H),
fA,}n=1CT(H) be such that lim,_,|A4,—B|=0. By Proposition 1.1(i) and
(i), lim,_, o Pkera, exists and majorizes Py, p and by Proposition 1.1(iii),
lim,, _, - y(A,;) =~+(B). This implies Be I'.(H) (see Proposition 1.1). 1

REMARK. A Banach space version of the proof that I',(/) is norm-closed is
given in [4, Lemma 1.9].

1.3. LEMMA. If T has a matrix representation of the form T = (g ; , Where
A has dense range and B # 0, then we have v(T') < y(B).

Proof. Since A* is injective we deduce that B* is the restriction of 7* to an
invariant subspace including ker 7*. It follows that

Y(T) =y (T*) =v(B*) =v(B). O

1.4. LEMMA. Let p e C be such that T— p has closed range. Then the follow-
ing conditions are equivalent:
(i) uis T-regular,
(ii) ker(T—p)Cclmy ., ker(T—N\),
(iii) T has a matrix representation of the form T = (’g ;) , where A — u Is sur-
Jective and B — p is bounded from below.

Proof. The equivalence (i) < (ii) is proved in [5, Lemma 1]. If we put

H1=clm ker(T—)\), H2=HeH]
A&y

and if T= (61 ;) is the matrix representation of 7" determined by the decomposi-

tion H = H,+ H,, then obviously A—pu has dense range and, by Lemma 1.3,
B — p will have closed range. If p is T-regular then ker(7—u) = ker(A—pu); con-
sequently A —u will be a closed range surjection. Since by [3, Proposition 1.3],
we derive that B—yu is bounded from below, and the implication (i) = (iii) fol-
lows. To prove (iii) = (i), observe that we have ker(7T—A) =ker(A—A\) for Aina
neighborhood of p and the function X — Py 4—») is continuous at p by [3,
Lemma 1.5]. ]
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1.5. THEOREM. Let us put

H/(T)= clm ker(T—2M\), H{(T)= clm ker(T—\)*,
real, (T) Ne ol (T)
Hy(T) = (H(T)+H[(T))".
Then H=H;(T)+ H{(T)+ H{(T) is an orthogonal decomposition and deier-
mines the matrix representation

7, * %
T=(0 7§ =*
o o0 7/

such that
o(T)\oc, (T)=0,(T/)Ua(T5)Va/(T7).
Proof. The inclusion “C?” follows immediately from Lemma 1.4, thus we shall

prove the inclusion “D” only. Using Lemma 1.3 and Lemma 1.4 we easily derive
the inclusion

0cr(T)Cp (T7)Np(TH) N pi(T7),
and this implies
C\oc.c (T) Do (T7)Va(T5) U (TY).
Since obviously the right-hand side of the above inclusion is a subset of ¢(7"), we
conclude that

a(TY\o+ (T) Do, (T{)Ya(To)Voi(T}). ]
REMARK. If we put
HA(T)= clm ker(T—M\), Hi(T)= clm ker(T—N\)%

Aeplp(T) ANepl p(T)

Hy(T)= (HAT)+H|(T))",

then the properties of the matrix representation

T, * *
T=|0 T, =*
0 0 T,

are described in [3, §2] (here p; (7T) denotes the set of 7-regular points in the
semi-Fredholm domain of 7). The inclusion p(7T)Uol,(T)D plr(T) can be
easily deduced.

2. The function vy7. To simplify the statements we shall denote by ~ the func-
tion defined by the equation yv7(A) =vy(T—X\), Ne C.

2.1. PROPOSITION. For every pe C, lim, _,, yr(\) exists and the following
implications hold true:

(i) pis T-regular =y is continuous at p;

(ii)) limy_, yr(N) >0=pu is T-regular.
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Proof. The implication (i) is a consequence of Proposition 1.1(iii). If
lim y7(\) >0
Aou
then p is T-regular by Corollary 1.2, and the existence of lim, _,, y7()\) follows
by (i). This proves the implication (ii) as well as the existence of lim, _, , y7()\).

2.2. THEOREM. The set o, (T) is at most countable. The set

{ne ol (T):yr(p)>0}
is the set of discontinuity points of vyr.

Proof. By Proposition 2.1 we easily derive

{u € C: lim y7(N) # ’YT(.U«)} ={pe ol (T):yr(p)>0}.

A—p
Suppose first that 7 is not a scalar multiple of the identity operator. If we put
op={n€ o, (T):vyr(n)=1/n} we have 62, (T)= U, - g,. If g, has an accumu-
lation point u,, then u, € ol (T) by Proposition 2.1(ii), contradicting the fact
that o, (T) is open (see Proposition 1.6). This shows that ¢, is finite and ¢, (T)
is at most countable. If 7= u[ then ol (T)={u}. ]

2.3. COROLLARY. If T is not a scalar multiple of I then o, (T) coincides
with the set of discontinuity points of vyr.

Proof. Since we have o2, (T)={pn€ 0., (T):vr(pn) >0}, we apply Theorem
2.2.

REMARK. Suppose that 77— X has closed range for every A € C. Since da(7T) C
ol . (T) we derive that do(T) is at most countable. It follows that ¢(7) is at most
countable, and we recapture Theorem 1 of [5].

In the sequel we shall need the following notation:

7y (T) = {ue C: lim 3700 =0}, py(T) = C\ oy (T).
—

2.4. PROPOSITION. The set o.(T) is closed and we have

(i) 9o(T)C o (T)Co(T),

(i) o, (7) =0l (T)Ulre C:yr(p) =0),
(iii) o, (T)=0c, (T)Up(T).

Proof. For every ue€ do(7T) we have

lim y7(\) = lim ~y7(\)= lim [(T—\)"'|"'=0.

Ao p Ne p(T) Ae p(T)
A—p Aop

Thus p € 0, (T'). Since obviously o,(T) C o(T), (i) follows. The relation (iii) isan

easy consequence of Proposition 2.1; thus ¢.,(7)=C\p,(T) =0(T)\o¢,.(T),

and this shows that o.,(7) is closed. Further, observe that we obviously have
ocr(TYU{pe Ciyr(pn) =0} =0o(T)\oc, (T),

which concludes the proof. ]
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REMARK. Suppose that 7 is not a scalar multiple of 7. Then
C=p(TVoi, (T)VUol, (T)U{peC:yr(n) =0}

is a partition with the following properties:
(1) p(T) is a set of continuity points for both functions A - (7—\) ~! and YT
(2) 0cr.(T) is a set of continuity points for both functions y7and X = Pyer(7—»).
(3) 0¢:..(T) is a set of discontinuity points for both functions yr and A—
Pyer(—n)-
4) {peC:vyr(p)=0}is a set of continuity points for 7.

2.5. THEOREM. There exists an analytic function F: p., (T) — L(H) such that
(T—NFM(T—N)=T—X\, FO\(T—-NFX\)=F(), \ep,(T).

Proof. Consider the matrix representation

;) *  =*
T=|0 T§ =*
0 0 77

given by Theorem 1.5. Since we have
py(T)=0a(T)\oc, (T)=0(T;)VUo(Te) Vo (T}),
we can apply the results of [6, §2] to produce an analytic function
F:p (T) > £(H)

such that (7"— \)F(\) is a projection onto the range of 77— X and 7 —F(\)(7T'—N\)
is a projection onto ker(7—\). The function F will fulfill the conditions required
by our theorem. |

2.6. PROPOSITION. Lef G be an open subset of C and let F: G — £L(H) bean
analytic function such that (T—N)F(N)(T—N)=T—N\, e G. Then G C p,(T)
and we have

n
(T—x)"“%i(TM(T—}\)"“:n!(T—x)"“, ANe G, n=0,
nF —1
y((T—=N)""1Yy=n! dFQN) , NeG, n=0.
d\"

Proof. Suppose we have
L A"F(N)
d)\"

for some fixed n = 0. Then differentiating and multiplying both sides by 77—\ we
derive

(T—N\)" (T=N"'=nt(T=N"", NeG,

dﬂ+]F()\)

(T—=N""2 =

(T—=N)" 2=+ 1)1 (T—N)"F2,
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and the first relation will follow by induction. Now using the first relation we can
check easily that we have

+1
P(ker(T—)\)"*‘l)l:P(ker(T_)\)n+l)J_E,()\)(T—K)n ,

where F,(\) = (1/n!)(d"F(\)/d\"). Since for every x € (ker(T—X\)"tH', |x| =1,
we have

1= "P(ke,—(T__.)\)n+l)J.Fn()\)" "(T—)\)n+IX||,
we infer

YUT=N""Y = |Pyerr—nyn+tys FN) ] 7 = | F, (N 7

In particular, v(T—\) = |Fo(\)| ~! and the inclusion G C py(T') becomes obviaous.
O

REMARK. The second relation of the above proposition is proved in [8]. We
included a proof for completeness. Theorem 1.5 and Proposition 1.6 together
show that p,(T) is the set of points where 77—\ has a local (or equivalently a
global) analytic generalized inverse. As is natural to expect, o,(7) obeys the
spectral mapping theorem:

2.7. THEOREM. Let f be a complex analytic function defined in a neighbor-
hood of o(T). Then we have

o, (S(T)) = f(o, (T)).

Proof. Consider the matrix representation

T, * %
T=(0 T§ =
0 0 77

given by Theorem 1.5. Since we have

AT x %
o () =0 (TH)VUa(T§)Ua(T), fT)=| 0 [T * |,
0 0 AT

and since one-side spectra obey the spectral mapping theorem, applying Lemma
1.4(iii) we easily derive the inclusion o, (f(7T)) C f(a,(T)). To prove the opposite
inclusion put S = f(7') and consider the matrix representation

S, * %
S=|10 S =*
o 0 S/

given by Theorem 1.5. Then T has the matrix representation
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A % %
T'=|10 B =*x|,
0O 0 C

where S/ = f(A), So=/(B), S/=f(C). Because by Lemma 1.4(iii) and Theorem
1.5 we have

oy (S(T)) = 0,(f(A))VUa(f(B))Vo/(S(C))
= f(0,(A))U f(a(B)) U f(0,(C))
= flo,(A)Uo(B)U0,(C)) D f(o,(T)),
the proof is concluded. L]
3. The existence of lim,,_, o v(7")"".
3.1. LEMMA. If T is similar to A then we have
lim y(7T")"/" = lim (4™)"/",

n— oo 17— oo
lim ,y(Tn)l/nz lim 'y(A")‘/".
n— oo n— oo

Proof. If T=S87'A4S, where S is invertible, then we can easily check that we
have

Y(T") =v(S7'A"S) = v (S )y (A4"S)
=(STHy(S*A*") = ¥(S ) y(S*) v (A*")
= SIS ya.
Analogously we derive
YA = |S|THSTI I,
hence the relations in the statement follow. ]

3.2. THEOREM. Suppose 0 € p,(T) and let r denote the radius of the largest
open disk centered at 0 and included in p, (T). Then lim,, _, » v(T" )V " exists and
we have lim,, _, » v(T")/"=r.

Proof. Let H/(T) be as in Theorem 1.5 and let 7= (g ;) be the matrix repre-

sentation of 7" determined by the decomposition H = H/(T)+ H(T)". If we
denote by r; (respectively r;) the radii of the largest open disks centered at 0 and
included in p,(A4) (resp. p;(B)), then Theorem 1.5 implies r =min{r;, r,}. There
are three cases we must consider:

(1) HAT) =(0}, rp=00, r=r;, T=A. Since T is surjective the existence of
lim, .« Y(T™)Y" and the relation lim, _ »y(T")/"=r follow by [10,
Theorem 1] (see also [11]).

(2) H(T)=1{0}. Passing to the adjoint we reduce to the case (1).

() HXT)#=0, H(T)"#{0}. It is plain that A0 and B0 (via 0 € p,(T)),
thus by Lemma 1.3 we have v(7") = min{y(A"), y(B")}.
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Using (1) and (2) we derive

im v(T")Y" <min{r, ry} =r.

n— oo
Let F be the function defined in Theorem 2.5. If we put
1 d"F(p)
F=L 2FW
n! dp p=0
then we have
F\) = 3 N'F,, IN<r, dim |E,|/"=r"\
n=0 n— oo
By Proposition 2.6 we see that 1
lim (7" lim 7,1 = ( T Im1) = O
n— oo N —» 00 n— oo

REMARK. The analyticity argument used in the proof of (iii) appears in both
[8] and [10]. A combinatorial argument replaces it in [11].

3.3. PROPOSITION. Suppose 0€ 0,(T) and let o denote the connected com-
ponent of o.,(T) containing 0. Suppose also that we have
lim v(7™)""=r> sup |¢].
n-—» oo feo
Then lim,,_, » y(T™)Y" exists, T is similar to Q@ T’ where Q is nilpotent, Oe
p,(T"), and we have
lim v(77)Y" = lim (T"")V/".

H— o i — 0
Proof. Using Lemma 3.1 and Theorem 3.2 we only need to show the existence
of Q and 7’ as above. Consider the matrix representation
; = *
T=|0 T =*
0 0 1T/

given by Theorem 1.5. Let oy, 0, be clopen subsets of ¢.,(7T) such that
o C o, O’—Y(T)=01U02, 0100’2= .

If we put of = 01N 0(73) and o3 = 02N o(77), then the inclusion ¢(73) C 0,(T) im-
plies o(7¢) = 01U 3. Using now [7, Ch. VII, Theorem 20] we may suppose that 7"
has a matrix representation of the form

A * %
T=(10 B =% |,
0O 0 C

where A has dense range, o(B) = o{, and C is injective. Suppose that C
does not act on a {0}-space, and put S= ((1)3 Z) Using Lemma 1.3 we derive
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lim,,_, « v(S")"" > r. Now we want to show the inclusion ¢{ C p:(C). To this aim
assume the contrary and pick g€ o{N p;(C). Since every vector of the form (g()

is orthogonal to ker S” we easily derive that
B *\"/0 1/n
(o &) ()
B %\ 1/n B %
<
(0 u) ’(0 u)

=< sup|¢]|
Q'E *5]

and this is a contradiction. If C acts on a {0}-space we trivially have o{ C p,;(C),

thus in any case we have of{ C p;(C) and analogously o{C p,(A).

Applying the results of [6, §2] we can find T;, T, such that T is similar with
®T,, o(T))Coi, 0€p,(T3). But because we assumed r>sup¢cq|$| we can
choose oy such that r >sup;e,|¢|. Thus if 7{" # 0 (vn), applying Lemma 3.1 we
derive the contradiction

r=Iim y(Ti@®7T3)")"" < |Tis, < sup |¢].

n—oo {ea;

This shows that 77 is nilpotent and we can take Q=1T), T'=T>. ]

fim v(S")" < Tim ( inf
xl=1

n— oo n— o0

< lim

l— o0

sp

3.4. COROLLARY. Suppose 0 € 0.(T') and the connected component of o.(T)
containing 0 is a singleton. Then lim,,_, . v(T")"" exists and, if strictly positive,
coincides with the radius of the largest open disk centered at 0 and included in
py(TYU0}.

Proof. If Iim,,_, « v(T")" > 0 we apply Proposition 3.3 and Theorem 3.2 to
derive the existence and the significance of lim,, _, (T} If lim,, _, o y(T")" =
0, then lim,, _,  v(7T" )/ trivially exists. (I

REMARK. If 7 is semi-Fredholm then lim,, _, - ( T™Y" exists and coincides with
the radius of the largest open disk centered at 0 and included in p/_#(7T)U{0}. In
this case 7 is similar to Q@® T’ as in Proposition 3.3 (see [3, Theorem 3.3]).

3.5. THEOREM. The set {,ueay(T):lTn;,,_,w7((T—)\)")'/”>O} is at most
countable.

Proof. If we put
o={ue oy (T): im v((T—p)")"" >0},

n— oo
onm={p€ o (T):y(T—p)")>1/m}, n,m=1,

we have o C U, ,; 0,1, m- By Corollary 1.2 we know that ¢, ,, is closed and the
function p — Py (r_ ,yns # € 0, ,, is continuous. Suppose that o, ,, has an accu-
mulation point u, ,, and put H, ,, =clmy,, ,, ker(I'—X\). It is plain that we have

(T_P'n,m)an,m =Hn,m’ ker(T—N\) CHn,m, A# Hn,m>
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and this easily implies that u,, ,, € p,(7T). This contradiction shows that g, ,, is
finite and concludes the proof. ]

As seen before, lim,,_,co'y(T")l/” exists and has a precise spectral meaning
if either O € p,(T) or O is an isolated point of o,(7T). In general the sequence
{'y(T”)‘/"};',‘;l can be spread all over the closed interval [0, |T|], as seen in the
following example.

EXAMPLE. Let 7,, n=1, be the (n+1) X (n+1) matrix operator defined in
H® ---@®H by the equations

N
(n+1) times
(0 A4, 0 O ...... 0 )
0O 0 I O ..... 0
0 A 0O 0 0 I 0.0
T, = 71, = ’ 22’
1 (0 0)’ n R ISITTTTTRPPLTLIEIRPPRIP h
O ovvveeennnn, 0 B,
L0 el 0 OJ

where |A| =<1 and A,, B, are self-adjoint projections. If we put S=®;—T,,
then it is easy to see that we have

v(S)=v(A4), v¥(S")=v(A.B,), n=2.

The numbers {v(S”)} can be prescribed in [0,1] if we choose A4, A4,,, B,, prop-
erly, thus the set of limit points of the sequence {y(S”)""} can be made compact.
Proposition 3.3 shows that if 0e ¢(7) and lim,_, « 'y(T")]/">0 then the con-
nected component of ¢(7") containing 0 is not a singleton. Is 0 an interior point

of o(T') in this case? Equivalently, we can formulate the following:
QUESTION 1. If 0 € 30(T’), must [im,, _, o, v(77)"" =0 (or lim,, -, e Y(T")"" =0)?

We do not know if the function lim,_, . v((T—\)")"" behaves as Proposition
2.1 suggests.

QUESTION 2. Does
lim [im y((T—\)")V" (or lim lim 'y((T—)\)”)l/">
Aop n—ow A—p n—oo
exist for every pe C?

4. Compact perturbation. Throughout this section we shall assume that H is
infinite-dimensional.

Let 7 denote the image of 7T in the Calkin algebra L(H)/KX(H). Let @ be a

*.subalgebra of £ (H )/ (H) containing T and 7 (where I denotes the identity
operator in /4) and let ¢: @ —» £L(H’) be a faithful *-representation, where H' is
a complex Hilbert space. It is easy to see that y(¢(T)) and a.,(¢(7~")) do not
depend on @ or ¢ and that we have
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v(&(T)) =inf(a((T*T)"*)\{0}) if T=0.
This allows us to define 0. (T, p,(T) by
o, (M=o, (6(T)),  p,(T)=C\o,(T).

Since obviously y(7T—\) =~y(T—N\), A€ C, by applying Proposition 2.1 we derive
the inclusion p,(T) C p, (7). We shall use further the following notation.

ps-r(T)={ANe C: T— N\ is semi-Fredholm},
ps.r(T) ={N€ ps.p(T): N is T-regular} ([3, §21),
ps.r(T) ={N€ ps.r(T): \ is T-singular} (3, §2]),
aS(T) ={Ne a(T)Npsr(T): \ is isolated in o(T)} ([3, §21),
o/(T") = the left spectrum of 7T, p;,(T)= C\a/(T),
0,(T") =the right spectrum of 7, p,(T)=C\o,.(T),
Sm(H)={Se L(H): ps-r(S)=pi(S)Up,(S)} (I3, §4]).

Any operator S e 8,,(H) will be called smooth.
Let K e X (H) be given. Using Lemma 1.4 we easily derive

ps.r(T+K)C p, (T+K), os-F(TY\ p (T+K) = ps.p(T),

and in general p., (T+K) # p,(T). In the sequel we shall show that we can choose
K such that p, (T'+K) = p;.p(T) and the function -y, g is continuous (see Theo-
rem 4.4 below).

4.1. LEMMA. Suppose that we have
dimker T=o, dim(ker 7" "' Oker T") <, for some m=1,
and let € > 0 be given. Then there exists K e X (H) such that
IK|<e, vy((T+K)")=0, forall n=1,
o(T+K)=0,/(T), o (T+K)=0,(T).
Proof. Without loss of generality we may suppose that we have
dim(ker T**'Qker T*) =00, 0=<k<m.

If H is not separable we can find a separable subspace H’C H such that H’ re-
duces 7 and T'=T | H’ verifies the hypothesis of our lemma. This allows us to
assume that A is separable.

The decomposition H = X7 H;, where

H;=kerT/OkerT’7, 1=j=<m, H,. = (kerT")",

determines the matrix representation
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(0 712 ceveeeeeeenieeeeeiaeeeeens A
0 0 T3 coveeeeeiereaeaannn
T = | severeccerascscaccacecicnsnnsnctosanens
0 teeeeeeeeeeeen, 0 T msi
(0 i, 0 Titmset

with dim ker 7}, 41, +1 < . Because H is assumed separable we can choose K e
K (H) of the form

(Ky, 0 O 0)
0 K, O 0
K = | covereccntecnaiainnnnnnnnen, , o(X)={0},
0 ....... 0 K, O
L0 e 0 0 0

with |K| <e, ker K;=ker Kj = {0}, 1< j = m. Suppose that y(7+K) > 0 and put

m
Hy= EHj>+ker77n+1,m+1, To=(T+K)|Hy (Toe £L(Hp, H)).
i=1

Since ker(T+K)C Hy and dimker(7+K) <o, we conclude that 7y is semi-

Fredholm, an obvious contradiction. This implies (74 K)=0 and, analo-
gously, we have y((T+K)")=0, n>1. To prove the relations.

o(T+K)=0/(T), o (T+K)=0.(T)
is an easy exercise. J

4.2. LEMMA. Suppose dimker T"" = o and dim ker T*" = oo for some fixed
m=1, and put S=T®T. Let ¢ >0 be given. Then there exists Ke X(H®H)
such that

IK|<e,  y((S+K)")=0,
0/ (S+K)=0,/(T), o, (S+K)=0,(T).
Proof. Using Lemma 4.1 we can easily reduce to the case
dim(ker T/ Oker 777 !) = oo, dim(ker 7% Odimker 7*V " V)=, 1=<j=m.
Choose K; , € X(H) such that '
1K1, 2] <e, (ker Ky, 2)* C(T" "ker T™)™,
rank K, , = oo, K\ HC(T"HY N\ (T" 'H)".

0 K2
K= ’
(o "5"):

If we put

then we have
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§m — T" SP_ T" K777
- 0 Tm .

If x®yeker S” we have
m . I3
P(TmH)_L .El Tm—JKLZTJ—ly) =K1’2Tm—1y — 0, Tmy — O,
Jj=
and this implies that
ker S C H®ker(K; ,T" ! | ker T™).
Now, putting
X ={0}@D(ker T"Oker(K; »T™ ! | ker T™)),

we have X C (ker $™)*, rank(S” | X) = oo (in view of rank K , = ), and $” | X
is compact. This shows that S”"(H® H) is not closed; consequently, y(S™)=0.

Since the spectral relations in the statement are obvious, the proof is concludad.
]

4.3. LEMMA. Suppose Te€ S,,(H), p,(T)=ps.r(T), and let e>0 be given.
Then there exists T' € 8,,(H) such that

T'—TeX(H), |T'—=T|<e, ~((T'—N")=0,
Jor all ¢ ps.(T), n=1.
Proof. Let us put ‘
o={(\,n)eo, (T)XN:y((T—N)")>0]}.

We know by the proof of Theorem 3.5 that ¢ is at most countable and to avoid
trivial situations we assume o # &. We also assume that H is separable, other-
wise we proceed as in the proof of Lemma 4.1.

Let @ denote the C*-algebra generated by 7, I, and X(H), and let
¢: @ — £(H) be a representation of infinite multiplicity. For every (A, 1) € o fix
€\, n) > 0 such that E(A,n)ea Enn) =N<E and pl‘l't 77()\,,,) = d)(T)@(,b(T) Since (o3
has infinite multiplicity we easily derive that ¢(7) € 8,,,(H ) and

dim ker(¢(T) —N\)"=dim ker(¢(T)—N)*"=o0, for (\, n)eo.
Thus, applying Lemma 4.2, we can find Ky, , € X (H® H) such that
1Ko ml < ennnys To.m+KomeSn(H®H), Y((Too,my+ Ko, my—N)")=0.

If we put
A= @ (T’O\,n)+K()\.n)), B=T®A

(A,m)ea
we obviously have

Y((B—=N)")=0, VN€¢psr(T), nz1, por(B)=ps.r(T).

Let pe p/(T) be given and assume g € ¢,(B). Then we derive pue€ g;(A) N psr(A)
and we can find (A, n) € o such that pe 0,(T(), )+ K, m), Which is a contradic-
tion because we have
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oi(To,my+ Ko, m) =0i($(T)) Coi(T).

This implies that p;(7T) C p;(B) and, analogously, p,(7)C p,(B), whence we
derive

0sF(B) = ps.r(T) C p)(B)U p.(B) C ps.r(B),

or equivalently, B is smooth.
Now put B'=T®® . nmeo Ton,ny and apply [12, Theorem 1.3] to produce a
unitary operator U such that

U*B'U—~Te X(H), |U*B'U—~T|+n<e.
Taking 7’= U*BU we have
T'—T=U*B—-B)U+U*B'U-Te X(H), |T"—T| <e.

The other properties of 7" required by the statement of our lemma follow from
the fact that 7’ is unitarily equivalent with B.

4.4. THEOREM. There exists K € X(H) such that
T+KeS,,(H) and ~{(T+K—-\)")=0, forall \¢ ps.r(T) and n=1.
If moreover ag (T) =D we may suppose that |K | is arbitrarily small.

Proof. Using [3, Theorem 4.5], we reduce the proof to the case T€8,,,(H).
Proceeding as before, we shall also assume that A is separable.

Let @,¢ be as in the proof of Lemma 4.3 and let {\,};=; be dense in
o(T)\psr(T). If we choose K,e K(H®H) such that ¥7_,|K,|<e, and if
we put

T,=¢(T)®(T), A= EI_-)] (T, +K,), B=T®A,
we may suppose (via Lemma 4.2) that
v(T,+K,—N\,;) =0, 01(7-',,+K,,)=01(¢(T)), Ur(Tn"I'Kn):Jr(qS(T))-

Arguing as in the proof of Lemma 4.3 we derive that B is smooth and U*BU—Te
X (H), |[U*BU—T| < e for some unitary operator U; thus we may assume 7=
U*BU. Since we also have y(B—\,) =v(7,,+ K,—\,;) =0and {\,}=is densein
o(T)Y\ ps.r(T), we infer

p'y(T) = p'y(B) = pS-F(T)a
and this allows us to apply Lemma 4.3. ]

REMARK. Theorem 4.4 shows that there exists a compact perturbation K such
that y7, x is continuous, p,(T+K) = psr(T), and o,(T+K) is the zero set of
Yr+k- As we have observed at the beginning of this section, we have p, (T4 K)C
p.Y(T). We do not know the answer to the following two questions:

QUESTION 3. Can we choose K € X (H) such that p,(T+K) = p,(T)?
QUESTION 4 (weakened version). Is Uxe sy oy (T+K) = p,(T)?
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