ITERATES OF HOLOMORPHIC SELF-MAPS
OF THE UNIT BALL IN C¥

Barbara D. MacCluer

Introduction. The sequence of iterates of a holomorphic map of the unit disc
D into itself with no fixed points in D was studied by J. Wolff [7] and A. Denjoy
[1]. They showed that for such a function the iterates converge, uniformly on
compact subsets of D, to a unimodular constant. In Section 1 of this paper we
consider the generalization of this question to holomorphic, fixed point free self-
maps of the unit ball in CV. We will show that in this case also the sequence of
iterates converges, uniformly on compact subsets of the ball, to a constant of
norm 1. The basic tool we use is a theorem of W. Rudin [4] which characterizes
the fixed point set of a holomorphic map of the ball into itself as an affine subset
of the ball.

The one variable Denjoy-Wolff theorem is often stated to include holomor-
phic self-maps of the disc which fix one point in the disc, but which are not con-
formal automorphisms of the disc. In this case the entire sequence of iterates still
converges to a constant, the interior fixed point. In Section 2 we consider the
iteration of maps with fixed points in the ball in higher dimensions.

I would like to thank Professor David Ullrich of The University of Chicago
for several helpful conversations on the subject of this paper.

1. Maps with no interior fixed points. Let B, or By if we wish to indicate the
dimension explicitly, be the open unit ball in C%, in the Euclidean metric. Denote
by H(B; B) the family of all holomorphic maps of B into itself. For f € H(B; B)
we denote the iterates of f by f,:

Si=1, Jnv1=Stn n=1,2,3,...

Since H(B; B) is a normal family, every sequence of iterates of f contains a sub-
sequence which converges, uniformly on compact subsets of B. We will examine
the possible subsequential limits of { f,,} according to the fixed point character of
f. Note that a subsequential limit of iterates of f € H(B; B) need not belong to
H(B; B). However the following lemma shows that this can only happen if the
limit is a constant map of norm 1.

LEMMA 1.1. Let F: B— B be holomorphic. Then either F(BYSBor F(z)=¢
in @B, for all 7 in B.

Proof. Suppose there is a z; in B with F(zy) = { €3B. Set G(z) = (1+{z, {))/2,
so G belongs to A(B), the algebra of functions holomorphic in B and continuous
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on B. Note that G({)=1 and |G(z)| <1 for all z in B\{{}. Consider the holo-
morphic function GoF. Since G°F(z5) =1 and |G-F(z)|<1 for all z in B, the
maximum modulus theorem implies G- F is identically 1. So F(z) =¢, for all zin
B, as desired. O

We will find it convenient to use some facts from the theory of topological
semigroups. Under the operation of composition and with the topology of uni-
form convergence on compact subsets of B, H(B;B) becomes a topological
semigroup {5]. For f€ H(B; B) denote by I'(f) the closure, in the space of all
holomorphic maps from B to CV with the topology of uniform convergence on
compact subsets of B, of the iterates of f. If I'(f) S H(B;B), then I’'(f) is a
compact topological semigroup and as such contains a unique idempotent [6].
Recall g is an idempotent if go-g=g. An idempotent in H(B; B) is also called a
retraction of B.

Next we give a precise statement of Rudin’s theorem on the fixed point sets of
maps in H(B; B). This theorem is the key to the proof of our main theorem.

THEOREM 1.2. [4; Sec. 8.2.3, p. 166]. If F: B — B is holomorphic, then the
fixed point set of F is an affine subset of B; that is, the intersection of B with
c+ L, where c € CN and L is a complex linear subspace of CN.

Denote by Aut B the group of biholomorphic maps (automorphisms) of B
onto itself. These maps take affine subsets of B onto affine subsets [4, Sec. 2.4.2,
p. 33]. Moreover, since Aut B acts transitively on B [4, Sec. 2.2.3, p. 31],if A is
an affine subset of B there is a ¥ € Aut B so that

Y(A)=1{(z1,2,...,2y) €EB with z;=0 for i=r+1,...,N}.

To see this, first map some point of 4 to the origin, so that the image of A4 is the
intersection of B with a complex linear subspace of CV. Now apply a unitary
transformation. Thus ¥(A) = B,, the unit ball in C". We will say f € H(B; B) is
an automorphism of A if ¥ fo¥~! is an automorphism when restricted to ¥(A4).

Before stating our main result we need to develop a several variable analogue
of a theorem which in the disc is due to J. Wolff [8]. To facilitate the statement
of this theorem we introduce some notation. Let

e;=(1,0,...,0)=(1,0") €aB.
For A>0,

E(e;,N)={z=(21,22,...,2n) 50 that |1 —z; > <N(1—]z|®)}.

Some computation shows that E(e;, ) is the set of points (z;,22,...,2x) =
(z1,2") in CV satisfying |z; — (1—c)]*+7¢|z’|* < ¢? where c=N/(1+\). Thus
E(e;,\) is an ellipsoid in B, centered at e;/(1+A) and containing e; in its
boundary. For an arbitrary ¢ in B, E({, N) is the analogous ellipsoid in B,
centered at {/(1+ A) and containing { in its boundary.

THEOREM 1.3. If f is in H(B; B) and fixed point free, then there is a unique
point ¢ € OB such that each ellipsoid E (¢, N) is mapped into itself by f and every
iterate of f.
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Proof. Choose r, 11. Let a, € B be a fixed point of the map r, f: r,B — r,B.
Passing to a subsequence if necessary, assume a, — { € B. Since f has no fixed
points in B, { € dB. Without loss of generality assume {=e;. Then a, — ¢,
flay)=ay/r, = e, and

1—|f(an)| — 1—(|an|/rn)
1"'|an| l_lanl

<l.

Again passing to a subsequence if necessary we have

1-|f(a)| _

lim =a<l.

now 1—|ay]

By Julia’s lemma [4, Sec. 8.5.3, p. 175]

1-A@P _ 1=zl
1-1f(2) = 1—|z?

(here f=(f1,05,...,fn)). Geometrically this means f(E(e;,N)) S E(e,al) S
E(e;,\) since a <1, as desired.

To see that ¢ is unique suppose we have another point {’ in dB with the prop-
erty that each ellipsoid E({’, A) is mapped into itself by f. Choose A\; and A, so
that E({’, \;) and E({, ;) are tangent to each other at the point z in B. Then
f(2)isin E(¢’, M )NE(E, Ny) = (2], contradicting the hypothesis that f is fixed
point free. O

NOTATION. We call the point { of Theorem 1.3 the Denjoy-Wolff point of f.
The constant map g(z) ={ for z in B will be denoted {(f).

A consequence of Theorem 1.3 is the following:

COROLLARY 1.4. Let f € H(B; B) be fixed point free. Then I'(f) contains at
most one constant map, which can only be {(f).

Proof. Let { be the Denjoy-Wolff point of f. Suppose there is a sequence { n;}
so that f, = w€ B. If w# ¢ we can find a small neighborhood V of w in B dis-
joint from some ellipsoid E(¢{, A). By Theorem 1.3, if z is any point in E({, N),
then the image point f,(z) is in E({, M) for all n>1. Thus f, (z) ¢ V for any i,
SO f,,l.(z) +/> w. Therefore the only constant function which may appear in I'(f)
is £ (f). O

We can now state our main theorem.

THEOREM A. Let f be in H(B; B) and suppose f has no fixed points in B.
Then f, = $(f).

We give the proof of Theorem A in several steps, beginning with the following
proposition.

PROPOSITION 1.5. Let f be an arbitrary map in H(B; B). If there is a noncon-
stant map among the subsequential limits of { f,,}, then I'(f) contains a noncon-
stant idempotent.
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Proof. We suppose there is a nonconstant map g and a sequence {n;} so that
Jn, = g. Note that g(B)SB. Set m; =n;,;—n;. Choose a convergent sub-
sequence of {f, ), say f’"ik = h. On the one hand f’"ik"f”ik — hog. But also
JmioSn; =Jn,., —> 8 So hog=g which implies that 4 is the identity map on the
range of g, which consists of more than one point. By Theorem 1.2 the fixed
point set of 4 is an affine subset A of B. The dimension of 4 is =1 and the range
of h contains 4. .

Now suppose that the range of /4 properly contains 4. Then the above argu-
ment, applied to / instead of g, produces another subsequential limit of {f,}
which is the identity on an affine subset A’ of B containing the range of 4. More-
over the dimension of A’ is strictly greater than the dimension of A. Choose
from among the subsequential limits of [f,} the map H with fixed point set of
maximal dimension. For this map H we must have range H = fixed point set of
H, since otherwise there would be another subsequential limit with a fixed point
set of larger dimension. Thus H is an idempotent, and since the dimension of the
fixed point set of H is 21, H is nonconstant. O

Our next goal is to establish Theorem A for automorphisms of B with no fixed
points in B. If fis in Aut B then f is continuous from B to B and thus has a fixed
point in B. The automorphisms of B with no fixed points in B fix either exactly
one point or exactly two points of dB [4, Sec. 2.4.6, p. 33]. The case of two fixed
points in dB is easy to handle.

PROPOSITION 1.6. Let f € Aut B fix precisely two points of o0B. Then f,, con-
verges to one of these fixed points.

Proof. Suppose that f fixes {; and {, in dB. Consider the complex line L
through {; and {5. Since an automorphism takes complex lines to complex lines,
S maps LN B onto LN B. Now the Denjoy-Wolff theorem in one variable implies
that the iterates of f restricted to L N B converge to one of the fixed points, say
¢1. By Lemma 1.1, every convergent subsequence of {f,} must converge to {;.
This implies that f,, — {;, since H(B; B) is a normal family. Clearly {; must be
the Denjoy-Wolff point of f. O

The case of one fixed point in dB requires more work. We will assume, without
loss of generality, that the fixed point is e; = (1,0’). To study automorphisms of
the disc it is convenient to transfer to the upper half plane via the biholomorphic
map z = i(1+2z)/(1 —z). A similar device is available in several variables. Let
Qc CN be the region (the Siegel upper half-space) consisting of those points
(wy,w’) with Imw; > |w’|?, where w'= (W,...,wx), |W/|>=|wy >+ -+ - +|wn|?
Define ®, the Cayley transform, on CM\{z;=1} by ®(z)=i(e;+z)/(1—z).
Then @ is a biholomorphic map of B onto Q [4; Sec. 2.3.1, p. 31]. Moreover if
0 =0U08Q, where dQ = {(w,,w’) such that Imw, =|w’|?}, and QU {oo} is the
one-point compactification of @, then defining ® (e, ) = o extends ® to a homeo-
morphism of B onto QU {co}. The automorphisms of B with fixed point set {e; }
correspond to the automorphisms of £ with fixed point set {oo}.
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An example of a class of such automorphisms are the Heisenberg translations,
defined as follows. For each b= (b,,b") in dQ set

By (Wi, w')= (Wi+ b, +2i{w’, b’y w'+b").

The Heisenberg translations form a subgroup of AutQ, and for b#0 each #,
fixes oo only [4; Sec. 2.3.3, p. 32]. By a Heisenberg translation of B we shall
mean an automorphism of B of the form ® ~'o/1;-®, where @ is the Cayley trans-
form and A, is as above.

It is easy to see that the iterates of a Heisenberg translation converge to ey,
since for any 0# b € 9Q, (hy), — . However, in contrast to the situation in
one variable, not every automorphism of Q with fixed point set precisely {eo}isa
Heisenberg translation. For example, if A= (\;,...,A\y) where |\;| =1 and if
b#0isreal then gy \(w1, w’') = (W + b, A\aw,,..., AyWy) is an automorphism of
Q fixing {oo} only. Note that g, ) fixes setwise the image under ¢ of the complex
line through 0 and e;, namely {(w;,w’) €Q with w’=0}. We will see that any
automorphism of B with fixed point set {e; } which is not a Heisenberg transla-
tion of B must fix setwise some nonempty, proper affine subset of B. A map f'is
said to fix a set S setwise if f(S) S S. In this situation we will also say f fixes S
as a set.

THEOREM 1.7. Let G € Aut B fix e; only. Write G=(G,, G,,...,Gn). If
(*) 11-G1(2)/(1=|G(2)) = 1 -z, [/ (1—|2[*)

holds for every z in B, then either G is a Heisenberg translation of B or G fixes as
a set a proper, nonempty, affine subset of B.

REMARK. David Ullrich has pointed out to me that condition (*) of Theorem
1.7 must hold for an automorphism of B with fixed point set precisely {e, }. We
give a proof of this fact at the end of Section 1. Note that (*) has a simple geomet-
ric meaning: the boundary of each ellipsoid E'(e;, A) is mapped into itself by G.

Before giving a proof of Theorem 1.7 we will establish the following corollary.
COROLLARY 1.8. If G € Aut By, fixes e; only then G,, = e.

Proof. If condition (*) of Theorem 1.7 fails to hold for some point w in B then
by Theorem 1.3 we must have

[1—G(wW)|>7(1=|G(W)]*) =B|1 —w |2/ (1 —|w|*)

for some 8 < 1. Suppose further that G, does not converge to e; ={(G). By
Corollary 1.4 and Proposition 1.5 I'(G) contains a nonconstant idempotent.
Moreover, by a theorem of H. Cartan [3; p. 78] the nonconstant subsequential
limits of the iterates of an automorphism must again be automorphisms. Since
the only idempotent which is an automorphism is the identity map I on B,
I'(G) contains I. Thus there is a sequence {#n;} so that G,, — I. In particular
G ,(w) = w. But this cannot be, for w lies in the boundary of E(e;,\) where

=|1—w;|>/(1—=|w|?) and G, (w) is in E(e;, B\) Sint E(e;,\) for every n > 1.
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This contradicts our assumption that G,, does not converge to e;.

We suppose now that G satisfies (*) at every point of B and apply Theorem 1.7.
If G is a Heisenberg translation ®~!o4,®, then G, — e, since (h;), — ©. We
finish the remaining case by induction. Note that the corollary is true for N=1
and assume it holds for kK < N. We are left to consider the possibility that G fixes
setwise a nonempty, proper, affine subset A of B of dimension k£ <N. Now
G= G|4 is an automorphism of A = By fixing e, only. By induction G, = e; and
by Lemma 1.1 G, = ¢,. a

In the proof of Theorem 1.7 we will transfer back and forth between the ball B
and the Siegel upper half-space @ via the Cayley transform ®. For the proof of
Theorem 1.7 we will use lower case letters to denote automorphisms of Q and the
corresponding capital letters for the associated automorphism of B obtained by
composition on the right and left by ® and ®~! respectively. '

Proof of Theorem 1.7. Let G € Aut By, fix e; only and satisfy (x). If ®(z)=w
then Imw,—|w’|?>= (1—|z|?)/|1—z;|>. Thus the boundary of the ellipsoid
E(e(,\) is mapped by ® to {(w;, w’) € Q such that Imw,— |w’|>=1/A}. Condi-
tion (*) for G € Aut By becomes, for the function g= $oGod1,

(**) Img,(w)—|g’ (W) =Imw,— |w’|?

where g= (&1, 82,...,8~7) = (&1,8").

Set G(0)=a so g(i,0’)=®(a)=(a;,a’). Now Ima,— |a’|2 =1 since g satis-
fies (++). Write @, = c+i(1+ |a’|?) where c is real. We claim that there is a Heisen-
berg translation of Q taking (a;,a’) to (i,0’). To see this consider the point
(c+i |a’|2,a’) in 0. The Heisenberg translation associated to this point takes
(i,0") to (a,a’). Its inverse is a Heisenberg translation having the desired prop-
erty; we denote it simply by 4. (A computation shows that b= (—c+i|a’|?, —a’)).

Now hjog is an automorphism of € fixing oo and (#,0’). The corresponding
automorphism F of B fixes 0 and e, and is just H>G. Note that F is unitary.
Moreover, since F fixes e, F fixes as a set the orthogonal complement of the
complex line through e;, namely the set {z;,=0}. Thus F(21,22,...,2x) =
F(z;,2') = (z;, Uz’) where U is a unitary operator on C¥~1. An easy computa-
tion shows that

W]“"i 2
W1+i ’ wi+i

FOCI)_I(WI,W,)'=( UW,>=¢—1°F(W1,W,)
on CN\{w, = —i}. Therefore the automorphism f of Q defined by f= ®oFod~!
coincides with the original unitary map F on ;

J(w)=(w;, Uw’) (w=(w,w’) €Q).

At this point we consider two cases. If every eigenvalue of U'is 1 then U, and
hence F, is the identity. Thus G= Hj; ! is a Heisenberg translation of B and we
are done. So we suppose that U has an eigenvalue e’? # 1. We will show that this
implies that G fixes setwise a proper affine subset of B. It is sufficient to show
that g=®-G-d~! fixes setwise a proper affine subset of Q, since ® preserves
affine sets.
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Choose 07 A= (N\,,\;,...,\y) so that A(U) =e”’A where (U) denotes the
matrix of the operator U relative to the standard basis on C¥~1. Recall that g=
PoGod ! =@ H; 1o Fod !=h; lof, where h; ! is the Heisenberg translation
associated to the point (c+i|a’|?, a,,...,ay) in 8Q. Let A be the column vector
(ay,...,an)" sothat AA= YN , \;a;. Now consider the set

N
F= {(wl,wz,...,wN) €Q with ¥ >\,-w,-=AA/(1—e"")}.
i=2

J is a nonempty, proper affine subset of . We claim that g fixes & as a set. To
see this choose (W, Wy,...,wy) in F. Now g(w;, Wy,...,wy)=h; Lo f(w,w’)=
hy Y(wy, Uw’). Writing W' = (wy, ws,...,wn)" we see that the last N —1 coordi-
nates of sy !(wy, Uw’) are (U)W ’+A)". To check that g(w;,w,,...,wy) is in
F we compute

A(UYW'+A)=eAW’'+AA
=e"AA/(1—e®)+AA
=AA/(1—e").
Therefore g(w;,w’) is in &, as desired. ]
A final observation before the proof of Theorem A is the following.

LEMMA 1.9. If f € H(B; B) is such that f, — I, the identity map on B, for
some sequence {n;}, then f € Aut B,

Proof. We may assume f, _; —>g. Then f, _yof — gef. Since f, — 1 we
have gof=1. In particular g is in H(B;B) and therefore we also have f,,‘.=
fof,,i_l — fog. So fog=gof=1as desired. (]

Proof of Theorem A. Proposition 1.6 and Corollary 1.8 together establish
Theorem A for automorphisms of B with no fixed points in B. Now suppose f is
an arbitrary fixed point free map in H(B; B). If every subsequential limit of
{fn} is constant then by Corollary 1.4 f,, = ¢(f), uniformly on compact subsets
of B, and we are done. Hence we suppose there is a nonconstant map among the
subsequential limits of { f,}. By Proposition 1.5 there is a sequence {#;} and a
nonconstant idempotent 4 so that f,,f, —> h. Let A be the fixed point set of A, an
affine set of dimension >1.

We claim that f maps A into A. To see this choose z; in A. Now

Jn(20) = h(z9) =29 and thus f(f,(z)) = f(z).

But f(fy,(20)) = fu, (S (20)) = B (f(2)). So f(29) = h(f(z)); that s, f(z) is in
the fixed point set A of A, as desired.

Moreover, f,, restricted to A converges to the identity on 4. Lemma 1.9,
with A replacmg B, implies that f= f | 4 is an automorphism of 4, which clearly
has no interior fixed points. By Corollary 1.8, fn converges to a constant in
dB. But this contradicts the fact that f,,‘, converges to the identity map on A.
Thus the subsequential limits of { f,,} must all be constant and we are done by
Corollary 1.4. O
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We finish this section with a proof of the fact that condition (*) of Theorem 1.7
must hold for any G € Aut B with fixed point set {e; }. As previously remarked
this is equivalent to the following:

THEOREM 1.10. Let g € AutQ fix co only. Then for every w= (w,w’) in Q
(+*) Img (w)—|g’(w)|*=Tmw, —|w’|*.

Proof. Suppose g(i,0")=(a,,a’). Set t =Ima;— |a'|2. Since (a;,a’) is in (2,
t is positive. For s> 0 define §; € AutQ by &;(w;, w’) = (s’w;,sw’). If s #1 the
fixed point set of & is {0, «}. Consider the automorphism 8;og where s =1/Vt.
The image of (i,0’) under this map is

and Im(¢'a;)—¢"!|a’|>=1. Thus, as in the proof of Theorem 1.7, there is a
Heisenberg translation A, so that h. 'e850g fixes (i,0’) and c. Moreover we
must have, for some unitary operator U,

hi'odgog (wy, w’) = (wy, Uw’)
so that
g(wy,w’)=0yrohc(wy, Uw’)
= (t(wy+c +2iUw’,c")), Ve (Uw'+c")).

If =1 we have g(w;,w’) =h.(w;, Uw’) and an easy computation shows that
g satisfies (*+). Suppose that ¢##1. We will show that this contradicts the
hypothesis that g fixes oo only by producing a point in 2 fixed by g.

If £ #1 we may solve VI (Uw’+c’) =w’, since (U —¢ ~V/2I) is nonsingular. Let
v’ denote the solution. If v; =« +i|v’|* where « is real, then (v, v’) will be in 9.
We claim we may choose « so that g (vy, v’) = (v, v"). By our choice of v” we have

g(v,v’)= (t(a+i|v'[2+cl+2i(Uv’,c’)),v’).

We wish to have t(a+i|v’|?+c;+2i{Uv’,c’y) =a+i|v’|%. Since (v;,v’) is in
992 and g is an automorphism, g (v, v’) lies in Q2. Thus for any real «,

Im t(a+i|v’ >4 ¢ +2iUv’,c’y) =|v'|* = Im(a+i|v’[?).
Thus (v,,v’) will be a fixed point of g if « is chosen in R to satisfy
Ret(a+ilv’[*+c;+2i{Uv’,c’)) =a=Re(a+i|v’]?)

or
ta+Ret(c;+2i{Uv’,c’)) =q.

Since ¢ #1 we may solve this equation for real «. Thus the assumption that ¢ # 1
implies that the fixed point set of g contains more than one point, contradicting
the hypothesis. ' O

2. Maps which fix an interior point. We consider the case of f € H(B; B) fix-
ing at least one point of B. Several remarks can be made about the sequence of
iterates of f; we collect these comments together in:
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THEOREM B. Let f € H(B; B) have a fixed point in B. Then either

(1) There is a constant function g(z) =zy € Bin'(f). In this case f,, — g, and
the fixed point set of f is of course precisely {z,}, or

(2) There is a sequence {m;} such that fm,— converges to a nonconstant idem-
potent h. The fixed point set of h is an affine subset of B which may be strictly
larger than the fixed point set of f, even if f is not in Aut B. Moreover, if f is not
an automorphism of B then every subsequential limit of { f,,} is degenerate in the
sense that its range is contained in an affine subset of B of lower dimension than B.

Proof. Suppose there is a sequence {#;} such that f, converges to a constant
function g. Then clearly the fixed point set of f is precisely the range of g. We
claim f, — g, for otherwise there is a sequence {m;} such that f,, = h, where &
is not a constant map. Without loss of generality f,,, —,, = k € H(B; B). Then
f,,,,. —n, of,,,_ — kog and also fmi —n; of,,f =fm.- — h. But k-g is constant and £ is not,
which is a contradiction. This proves (1).

If there is no constant map in I'(f), then Proposition 1.5 shows that there is a
nonconstant idempotent among the subsequential limits of {f,}. Moreover, the
proof of Proposition 1.5 shows that given any nonconstant subsequential limit G
there is a subsequential limit A which is the identity map on the range of G. Thus
if the affine subset of B of smallest dimension containing the range of G is all of
B, then the identity map on B is a subsequential limit of { f,,}. This implies that f
is an automorphism of B, by Lemma 1.9. O

For an example where the fixed point set of the limit function is strictly larger
than the fixed point set of f, let g be a holomorphic function on the unit disc,
with |g| <1. Define f on B, by f(21,22) = (—21,8(21)22). Thus f € H(B,; B,)
and the fixed point set of £ is {(0, 0)}. Now fox (21, 22) = (21, 8¥(z1)g% (—21)22)
and f; — h, where A(21,2;) = (2;,0).

We remark that Case (2) of Theorem B can only occur if f acts as an auto-
morphism on some affine set in B of dimension > 1.

3. Remarks on Theorems A and B. Some similar results have been obtained
by Yoshisha Kubota [2], using different methods. He does not consider the fixed
point free maps as a separate case, and his result does not show that in this situa-
tion the entire sequence of iterates converges to a point in dB.

Corollary 1.8 has also been independently obtained by David Ullrich. His
argument, while similar in spirit to ours, uses the Iwasawa decomposition for
gE€AutQ as g=V¥o6,°h, where h; is a Heisenberg translation, §,(w,,w’) =
(Nw;,A\w’) and ¥ is an automorphism of @ fixing (/,0’) in Q. He shows that
A =1if g fixes oo only and that ¥ (w;, w’) = (w;, Uw’) for some unitary operator
U on CN~!. The remainder of the argument proceeds as before.
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