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Certain systems of orthogonal functions have been shown to have properties very
similar to those of the Walsh functions. Let {¢,}, n=0,1,2,... be a system of real
functions on [0, 1]; set ¥4=1, and for n=2%1 42k2 4 ... 425 O0<k, <ky< - - <k,
set Wp=dy ~bp, ... P If {¥,} is an orthogonal system on [0, 1], it has been
called a W-system by Alexits [1, pp. 185-196] after the Walsh system, {w,}, which is
formed from the Rademacher functions, {r,}, in this way. (The definition given by
Alexits differs from ours in form because we use Paley’s definition of the Rade-
macher functions, r,(x)=signsin2”*!7x. Alexits sets r,=1 and; accordingly, sets
¢o=1, an assumption we do not make.) A usual assumption is

(*) S‘Il,z, =K for n=n,

and many results have appeared which may be summed up simply by saying that the
properties of series Y ¢, ¥, are much the same as those of Walsh series if we make the
additional requirement

(*%) |$.(x)| < la.e. forevery n.

We will consider only systems satisfying (*) and (**) and we will refer to them
simply as W-systems.

In our research announcement [5] we have pointed out the reason for the strong
parallels between W-systems and the Walsh functions: A W-system is the Walsh
system in disguise.

If we assume for the moment that we can restrict our attention to W-systems for
which |¥,(x)|=1a.e. for all n, we can state our principal result.

THEOREM. If {¥,} is a W-system, then there is a measurable function y mapping
[0, 1] into itself such that m(y ~'(E))=m(E) for every measurable EC[0,1] and
wpoy(x) =V¥,(x) a.e. for every n.

The W-system {¥,} is complete if and only if there is a metric automorphism y of
[0, 1] such that 5(x) =y(x) a.e.

Here by a metric automorphism of a set E is meant a 1-1 mapping of E onto E
such that the mapping and its inverse are measurable and measure preserving.

We see then that if ge L?, p=1, g~ Y c,w,, then gey€ L? and goy~ Y, ¥,. If
{¥,} is complete and fe L?, p=1, f~ ¥Xc,¥,, then foy~ '€ LP and fon '~ Lc,w,.
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Examples of results which can be obtained from these considerations are to be found
in [5].

The Rademacher functions are independent random variables taking on the values
+1 and having expected value zero. Thus the products of the Rademacher functions
form an orthonormal system. Our theorem implies the converse of this statement: If
the products of ¢,’s form an orthonormal system, and |¢,| <1, then {¢,} is a
system of independent random variables taking on values +1.

Suppose {ry ]}, i=0,1,2,... is a rearrangement of the Rademacher system. This
induces a rearrangement {w,, } of the Walsh system given by the relation

n=20 420 4. 42 O0<ij<i<---<i

implies m,=2"1+2"2+ --- +2"ix and my=0.

We have called such a rearrangement coherent [5]. Alexits [1, pp. 188-189] has
briefly considered such rearrangements of W-systems. If we consider {wm” },
n=0,1,2,... as a complete W-system, there is a metric automorphism 7 of [0, 1]
such that w,, (x)=wy°n(x) a.e. for every n. We may then conclude:

If {wy, ) is a coherent rearrangement of the Walsh system, then the almost every-
where convergence and summability behaviors of the series L.c,w, and L.c, Wy, are
the same.

We now prove a lemma which allows us to assume, without loss of generality, that
|$,(x)| =1a.e. for every n.

LEMMA 1. (a) To any system {$,} on [0, 1] with §|¢;|*={|d:¢;|>*=K for i#j and
|¢.(x)| <1la.e. for all n, there corresponds a measurable set EC [0, 1], m(E) =K,
such that, for every n, |¢,| =1 on E and ¢,=0a.e. on E°.

(b) A W-system {¥,} lives on a set E of measure K in the sense that

(i) | ¥, =1 on E for every n,
(i) m({¥,#0}NE°) >0 for only finitely many n,
(iii) {¥,]} is orthogonal relative to E.

Proof. (a) Let E;={|¢;| =|¢;| =1}, i#j. Assuming that Ef contains a set of
positive measure on which one function, say ¢;, satisfies 1 =|¢;| >0, and the other,
¢;, satisfies |¢;| <1, we have

1

K=S |¢i¢j|2=S + S C<S ]¢i12+S |il* =
0 Ej; Ej; Ej; EZ,

a contradiction. Thus ¢;=¢;=0a.e. on Ej. Set E=NEj;.

(b) There is an ngy such that §| %= K if n=ny. Then there is a ky such that
§| ;i |2—§|¢,¢J|2 K for i,j=ky, i#j. Thus there is a set E, m(E)=K, such that
|¢o,,| =1 on E and ¢,=0a.e. on E for n =k,. Then for every i and large j, |.|¢;|*=
§0 | i ¢J|2—K implying |¢ ;/=1a.e. on E for every i and establishing (i) and (ii).

Finally, if i#/j and k is sufficiently large § . ¥;¥ -—So(‘I' &x) (¥;0) —jo\If ¥ =0
since i’ #j’, yielding (iii). ||

If A is a metric automorphism of [0, 1] taking [0, K] into E, we see that
{¥,°A4(Kx)} is a W-system on [0, 1] and |¥,°A (Kx)|=1a.e. for all n. Thus we can
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reduce the study of the original system on E to the study of a W-system living on
[0, 1].

Now we turn to the main theorem, whose proof will be accomplished through a
series of lemmas.

If ¢ is an integer in [0,2%¥—1], then there is a unique representation

t=ak_12°+ tee +002k~1

with @,=0 or 1. Let Ef={x|¢,(x) =%, v=0,...,k—1}. Then [0, 1]— Uz"—lEk
is a zero set and the sets Ef are pairwise disjoint and measurable. We have, further,

LEMMA 2. m(E}) =1/2% for all k and t=0,1,...,2%—1.
Proof. For k=1 we have

_ . _ 0y _ 1
—SO¢0—SE?¢0+§E‘1¢0—””(E1) m(Ey)

implying m(E?) =m(E})=1/2. Suppose for fixed k, m (EL) =1/2* for each ¢. If we
knew

(**+) gtqbk:(} for t=0,...,2k—1,
EL

then since Ef N {¢,=1}=FE%, | and EL N {¢;= —1}=E¥!, we would have
m(EZ. ) = m(EF4") = 1/2m(Ef) = 1/2F+1,

In order to demonstrate (***), we consider ¥, for 2¥>p=5,20+ --- + b, _, 2" 1.
Then

k=1
_ by_y —
Y, =gbo-plr- ... - gl = H e'™sb  on  Ej,
bg , br_,

where ¢ is as above. Now w,=r, . -1 %71 and for each x, € (2%, (t+1)/725),
w,(x,) = Hs 0 leimashs Since by is orthogonal to ¥, for v <2k we have

2k—1
r S V, ¢, =0
or L2551 w, (x,) Jetd=0,»=0,..., 2K —1. This is a system of 2¥ homogeneous equa-
tions in the unknowns St dp.
Consider the coefficient matrix (w,(x,)) and suppose that, for some i,
2kt
wi(x,) = Eo a,w,(x), t=0,1,...,25~1.

ET]

Since w, is constant on (#/2%, (t+1)/2%) for v <2¥—1, we have, except perhaps for
finitely many x, .
k1

wi(x) = E a,w,(x).

v¢l
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From the orthogonality of {w,} we have at once that o, =0 for all ». Hence (w, (x;))
is nonsingular and (***) must hold. [ |

We now define a function on [0, 1] by means of the dyadic representation of its
values, y(x)=.apa, -+ with a,=(1/i7)log¢,(x), »=0,1,2,.... The set of x for
which «,7#0 or 1 for some v is clearly a zero set. We will show that the set Z=
{x | for some vy, a,=0 or o, =1 for »>p,} is also a zero set.

If y(x)=.apa;---a;,_,00--- =y, with a;,_; =1, then either

(l) O = Aoy e ey Op_1 = Qp_1, Ot,,=0 for v=k
or
(ii) Co=dg, ..., Qp_2 = Qy_2, 0o_1=0, a,=1 for v=k.

If (i) holds, then xEE,fnyO for n=k. If (ii) holds, then x€ E! for n=k and ¢=
2" '+ ;2" 2+ --+ +a,_;2° The set of dyadic representations of forms (i) and
(ii) is countable, call it {r;}. For each i and each large n there are two sets E'! and E
of measure 1/2” such that y(x) =r; implies x € §!= E'UE/2. For any ¢>0 we may
choose n; such that m (U &, ) <2Y1/2"<e, implying m(Z) 0.

Except for a set of measure zero, we have then for n=2%1+2%24 ... 2k 0 <k, <
ky< -+ <k,

Wpey(x) = wy(iagay--+) =rg (Cogog =2 ) oo - (oo -+ )
= &g, (%) - g () =T ().
We have further

LEMMA 3. For every measurable E C [0,1], y ~'(E) is measurable and
m(y~'(E))=m(E).

Proof. Let yg=.apa;---a,_,;00---. Then

2%(1-yp)
o, 11= U™ Do+ i12%, yo + (i+1)/2%].
i=
Except for a set of x of measure zero, y(x) € [yo+i/2%, yo+ (i+1) /%k] if and only if
x € E¥7+i_ Thus we have, modulo a zero set, {x|y(x) =y}= , 2ky Efand yisa
measurable function.
If an integer ¢ is less than 2/, it is clear from the above that

m(y~1[t/2¢, (¢+1)/21]) =172

For a measurable set E C [0, 1] and any ¢ >0, there is an open set G= U I, where the
I, are nonoverlapping intervals of the form [#/2/, (¢+1)/2/], such that GDE and
m(G) < m(E) + e. Then m(y ""(E)) = m(y "(G)) = Tm(y ' (I})) =
m(G)<m(E) +e¢, implying m(E)=m(y ~1(E)). [

A sequence {f,} of bounded measurable functions is said to be maximal if there is
a set Z of measure zero such that if x;,x, ¢ Z and f,(x;) =1, (x,) for every n, then
Xx;=Xx,. Rényi [4] showed maximality to be a sufficient condition that the system
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(fm.fm. o ffy, m;=0,1,2,..., n=1,2,3,..., beclosed in L2. That maximality
is also necessary has been shown by Gundy [2] and Waterman [6].
Clearly {¢,} is maximal if and only if y is almost everywhere 1-1. We have further

LEMMA 4. If {¢,} is maximal, there is a metric automorphism n on [0, 1] such that
n(x)=y(x) a.e.

Proof. For each n, let ¢,=¢,a.e. with {¢,=1}, {$,=—1} Borel sets whose
union is [0, 1]. Clearly {¢,} is maximal and so there is a Borel zero set 9; such that
X1, % € 91§ and ¢,(x;) =¢,(x;) for every n imply x;=x,. Let 9*(x)=.8oB"",
B,=(1/im)log &,(x). Then there is a Borel zero set 9, such that x € 9§ implies that
B,=0or 1 for each » and 3,%0 or 1 from some »y onward.

Let 9U=9T, U9l,, B=91¢, and B*=%*(B). Then n* is 1-1 on B. If Ef are defined
relative to (¢, } as Ef were for {¢,]}, then for y, as above we see that

k-1
{x[n*zy}NB= U E;—- €,
t=2ky0
where the Ef are Borel sets. Thus 5* is a Borel measurable functionl on Band B*is a
Borel set. It follows from the Kuratowski theorem (see [3]) that 5* is Borel measur-
able on B*. Clearly *(x) =y(x) a.e. Thus for measurable E,

m(y~'(E)An* " (E)) =0

implying that n*_l is measure preserving. Thus #* is also measure preserving.
-1 .. . .
Let n*l =75* and n*" =n*on*" for n> 1. Similarly, let n*o denote the identity and
n -1 n+1

let n* =n* onp* forn<-—I1.

Then By=NZ.7 *" (B) is a Borel set of measure one and 5* is a 1-1 mapping of By
onto B,. We define 5(x)=79*(x), x€ By, n(x)=x, x€ Bj, obtaining the metric
automorphism we sought.
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