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A RECURSIVE FUNCTION, DEFINED ON A COMPACT
INTERVAL AND HAVING A CONTINUOUS
DERIVATIVE THAT IS NOT RECURSIVE

J. Myhill

We shall construct such a function f by placing —_---shaped bumps at each
number of the form 27", where n belongs to a recursively enumerable, nonrecur-
sive set «, and by leaving the neighborhood of all other numbers 2-" flat. For
n € 4, the slope of the graph at 2 ™ can be effectively bounded from below, given n.
Thus, if we could compute f'(2°?) recursively, we could decide whether n € #, con-
tradicting the nonrecursiveness of 7.

We first define the function f nonconstructively, and then prove that it is ac-
tually recursive.

Let
2 2
x(x" - 1) for -1 <x<1,
6(x) = {
0 for |x|>1.
Then 6(x) has the required form on [-1, 1], and
6(-1) = 6(0) = 6(1) =0, B6'(-1)=6'(1)=0, 6'(0)=1.

The function 6 takes its minimum value -A at x = -1/vV5 and its maximum -+x
at x=+1/V5. Wecall 6 on [-1, +1] a bump of length 2 and height A. Now we
define bumps 6qg of length 2o and height B.

The function Baﬁ(x) = (B/A) 6(x/a) satisfies the conditions
0ap(-a) = 04g(0) = 6g(a) =0,  Oup(-a) = O4p(a) =0,  64p(0) = 6/2a,

B <L Ogpx) <B (a<x<a).

For each n € «, we shall put a bump 6, B, around 2°" ; that is, we define

n

f(x) as follows:
Ifnes and 6€ [-a,, +a,], then £(27™ + 6)

6 (6). Otherwise, i(x) = 0.
o, B ’
The parameters o, , B, for n € A will be defined by

-k-2n-2 -k-n-2
o, =2 s Bn =2 ’

where n = h(k) and h is a function enumerating . without repetitions.
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To see that the function f is well-defined, we need only prove that no two bumps
overlap. For n > 0, the half-lengths of the bumps around the two points 2-% and
21-1 are at most 27222 and 274" and the sum of the two half-lengths is less than
the distance 2" between the two points. Since the graph of f consists of alternate
bumps and horizontal line-segments, and since the bumps have horizontal half-
tangents at their end-points, f has a continuous derivative except possibly at x = 0.

Suppose x < 2™, Then, if x is not on a bump, f(x) = 0, while if X is on the
bump surrounding 2-™ (m > n), f(x) < @, = 27K"2"-2 apq

fx)/x < f(x)/27™ 1 < 2™ < 27,

Thus £(x)/x — 0 as x — 0; that is, £'(0) = 0. Since |9’| <1 on [0, 1],

|f'(x)| < Bn/@y on the bump around 27 ; since B, /a, — 0 as n — «, it follows
that f'(x) — 0 as x — 0, and therefore f' is continuous at x = 0. However, f' cannot
be recursive; for if n € «, then £'(2°%) = B&nﬂn (0) = Bn/ray = 2-n /A, while if

n¢ A, £'(277) = 0. Since these alternatives can be decided, this would yield a de-
cision-procedure for .

It remains only to prove that f is recursive on [0, 1]. Let then a number
x € [0, 1] be given, and let it be required to compute f(x) to within 2. Let

M

= - "'h(k) .
gy (®) = EO 00y 1 o™ = 20

then it will suffice to prove that (1) |gM(x) - f(x)| <2™M and (2) gu(X) is recursive.
Re (1). By the definition of f,

o0

ix) = 27 6

k=0

_ o-h(k)
Qp(k)s Bh(k)(x 2 )

where at most one term of the sum is not zero. Therefore g,(x) - f(x) is zero or

consists of a single term
(x - 27Blkly = Png) e(x - 2200 )
A Oh(k)

o O (k) Ph(k)

But |6 | < By =27F K2 <ok <o M g e.d.

) (k) Phk)

Re (2). It is enough to show that 6(x) is a recursive function of x. Let x be
given. To compute 6(x), we first determine whether x <0 or x> -1. If x <0, we
can compute 6(x), because 6(x) = min(0, x(x% - 1)2). I x > -1, determine whether
x>0o0r x<1. I x>0, then 9(x) = max(0, x(x% - 1)2); if finally -1 <x < 1, then
6(x) = x(x2 - 1)2. This completes the proof.

Added in proof. My friend and colleague Milton Parnes has observed that the
same method yields an indefinitely differentiable, recursive function (of course, not
analytic!) on [0, 1], none of whose derivatives is recursive.
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