A RECURSIVE FUNCTION, DEFINED ON A COMPACT INTERVAL AND HAVING A CONTINUOUS DERIVATIVE THAT IS NOT RECURSIVE

J. Myhill

We shall construct such a function f by placing ——shaped bumps at each number of the form 2^{-n} , where n belongs to a recursively enumerable, nonrecursive set \mathcal{A} , and by leaving the neighborhood of all other numbers 2^{-n} flat. For $n \in \mathcal{A}$, the slope of the graph at 2^{-n} can be effectively bounded from below, given n. Thus, if we could compute $f'(2^{-n})$ recursively, we could decide whether $n \in \mathcal{A}$, contradicting the nonrecursiveness of \mathcal{A} .

We first define the function f nonconstructively, and then prove that it is actually recursive.

Let

$$\theta(x) \equiv \begin{cases} x(x^2 - 1)^2 & \text{for } -1 \le x \le 1, \\ 0 & \text{for } |x| > 1. \end{cases}$$

Then $\theta(x)$ has the required form on [-1, 1], and

$$\theta(-1) = \theta(0) = \theta(1) = 0$$
, $\theta'(-1) = \theta'(1) = 0$, $\theta'(0) = 1$.

The function θ takes its minimum value $-\lambda$ at $x = -1/\sqrt{5}$ and its maximum $+\lambda$ at $x = +1/\sqrt{5}$. We call θ on [-1, +1] a *bump* of length 2 and height λ . Now we define bumps $\theta_{\alpha\beta}$ of length 2α and height β .

The function $\theta_{\alpha\beta}(x) \equiv (\beta/\lambda) \theta(x/\alpha)$ satisfies the conditions

$$\begin{split} \theta_{\alpha\beta}(-\alpha) &= \theta_{\alpha\beta}(0) = \theta_{\alpha\beta}(\alpha) = 0 \,, \qquad \theta_{\alpha\beta}'(-\alpha) = \theta_{\alpha\beta}'(\alpha) = 0 \,, \qquad \theta_{\alpha\beta}'(0) = \theta/\lambda\alpha \,, \\ -\beta &\leq \theta_{\alpha\beta}(x) \leq \beta \qquad (-\alpha \leq x \leq \alpha) \,. \end{split}$$

For each $n \in \mathcal{A}$, we shall put a bump $\theta_{\alpha_n \beta_n}$ around 2^{-n} ; that is, we define f(x) as follows:

If $n \in \mathscr{A}$ and $\delta \in [-\alpha_n, +\alpha_n]$, then $f(2^{-n} + \delta) \equiv \theta_{\alpha_n \beta_n}(\delta)$. Otherwise, $f(x) \equiv 0$. The parameters α_n , β_n for $n \in \mathscr{A}$ will be defined by

$$\alpha_{\rm n}~\equiv~2^{-{\rm k}-2{\rm n}-2}~,~\beta_{\rm n}~\equiv~2^{-{\rm k}-{\rm n}-2}~,$$

where n = h(k) and h is a function enumerating \mathcal{A} without repetitions.

Received May 4, 1970.

The author is grateful to the National Science Foundation for supporting the research herein reported (NSF grant 50-1196C).

Michigan Math. J. 18 (1971).

98 J. MYHILL

To see that the function f is well-defined, we need only prove that no two bumps overlap. For n>0, the half-lengths of the bumps around the two points 2^{-n} and 2^{1-n} are at most 2^{-2n-2} and 2^{-2n} , and the sum of the two half-lengths is less than the distance 2^{-n} between the two points. Since the graph of f consists of alternate bumps and horizontal line-segments, and since the bumps have horizontal half-tangents at their end-points, f has a continuous derivative except possibly at x=0.

Suppose x < 2^-n . Then, if x is not on a bump, f(x) = 0, while if x is on the bump surrounding 2^-m (m \geq n), f(x) $\leq \alpha_m = 2^{-k-2n-2}$ and

$$f(x)/x < f(x)/2^{-m-1} < 2^{-m} < 2^{-n}$$
.

Thus $f(x)/x \to 0$ as $x \to 0$; that is, f'(0) = 0. Since $|\theta'| \le 1$ on [0, 1], $|f'(x)| \le \beta_n/\alpha_n$ on the bump around 2^{-n} ; since $\beta_n/\alpha_n \to 0$ as $n \to \infty$, it follows that $f'(x) \to 0$ as $x \to 0$, and therefore f' is continuous at x = 0. However, f' cannot be recursive; for if $n \in \mathcal{A}$, then $f'(2^{-n}) = \theta'_{\alpha_n}\beta_n$ $(0) = \beta_n/\lambda\alpha_n = 2^{-n}/\lambda$, while if $n \notin \mathcal{A}$, $f'(2^{-n}) = 0$. Since these alternatives can be decided, this would yield a decision-procedure for \mathcal{A} .

It remains only to prove that f is recursive on [0, 1]. Let then a number $x \in [0, 1]$ be given, and let it be required to compute f(x) to within 2^{-n} . Let

$$g_{M}(x) = \sum_{k=0}^{M} \theta_{\alpha_{h(k)}, \beta_{h(k)}}(x - 2^{-h(k)});$$

then it will suffice to prove that (1) $\left| g_M(x) - f(x) \right| < 2^{-M}$ and (2) $g_M(x)$ is recursive.

Re (1). By the definition of f,

$$f(x) = \sum_{k=0}^{\infty} \theta_{\alpha_{h(k)}, \beta_{h(k)}}(x - 2^{-h(k)}),$$

where at most one term of the sum is not zero. Therefore $g_n(x)$ - f(x) is zero or consists of a single term

$$\theta_{\alpha_{\mathrm{h(k)}},\beta_{\mathrm{h(k)}}}(x-2^{-\mathrm{h(k)}}) = \frac{\beta_{\mathrm{h(k)}}}{\lambda} \; \theta\left(\frac{x-2^{-\mathrm{h(k)}}}{\alpha_{\mathrm{h(k)}}}\right).$$

But
$$|\theta_{\alpha_{h(k)}, \beta_{h(k)}}| \le \beta_{h(k)} = 2^{-k-h(k)-2} < 2^{-k} < 2^{-M}$$
, q.e.d.

Re (2). It is enough to show that $\theta(x)$ is a recursive function of x. Let x be given. To compute $\theta(x)$, we first determine whether x < 0 or x > -1. If x < 0, we can compute $\theta(x)$, because $\theta(x) = \min(0, x(x^2 - 1)^2)$. If x > -1, determine whether x > 0 or x < 1. If x > 0, then $\theta(x) = \max(0, x(x^2 - 1)^2)$; if finally -1 < x < 1, then $\theta(x) = x(x^2 - 1)^2$. This completes the proof.

Added in proof. My friend and colleague Milton Parnes has observed that the same method yields an indefinitely differentiable, recursive function (of course, not analytic!) on [0, 1], none of whose derivatives is recursive.