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Mappings of Finite Distortion: Condition N
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1. Introduction

Suppose thatf is a continuous mapping from a domain� ⊂ Rn (n ≥ 2) into
Rn. We consider the following Lusin condition N: IfE ⊂ � with Ln(E) = 0,
thenLn(f(E)) = 0. Physically, this condition requires that there be no creation
of matter under the deformationf of then-dimensional body�. This is a nat-
ural requirement, since the N property with differentiability a.e. is sufficient for
validity of various change-of-variable formulas, including the area formula, and
the condition N holds for a homeomorphismf if and only if f maps measurable
sets to measurable sets.

If the coordinate functions off belong to the Sobolev classW 1,1
loc (�) and|Df | ∈

Lp(�) for somep > n, thenf satisfies the Lusin condition N (Marcus and Mizel,
[14]). Recently we verified in [10] that this also holds when|Df | belongs to the
Lorentz space Ln,1(�) and that this analytic assumption is essentially sharp even if
the determinant ofDf is nonnegative a.e. For a homeomorphism, less regularity
is needed: it suffices to assume thatf ∈W 1,n

loc (�,Rn); this is due to Reshetnyak
[19]. On the other hand, there exists a homeomorphism that does not satisfy the
condition N and so|Df | belongs toLp(�) for eachp < n; see the examples by
Ponomarev [17; 18]. Some further results on the Lusin condition are listed in the
survey paper [13].

We will need the concept of topological degree. We say that a continuous map-
pingf issense-preservingif the topological degree with respect to any subdomain
G ⊂⊂ � is strictly positive: deg(f,G, y) > 0 for all y ∈ f(G) \ f(∂G). In this
paper we show that, for a sense-preserving mapping, the sharp regularity assump-
tion in the rearrangement-invariant scale to rule out the failure of the condition N
is that

lim
ε→0+ ε

∫
�

|Df |n−ε = 0. (1.1)

Theorem A. Suppose thatf : �→ Rn is sense-preserving and that(1.1)holds.
Thenf satisfies condition N. On the other hand, there is a homeomorphismf

from the closed unit cubeQ0 ontoQ0 such that
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sup
0<ε≤n−1

ε

∫
�

|Df |n−ε <∞, (1.2)

f does not satisfy condition N, andf restricted to the boundary of the unit cube
is the identity mapping.

Let us defineLn)(�) as the collection of all the measurable functionsu with

‖u‖n) = sup
0<ε≤n−1

(
ε

∫
�

|u(x)|n−ε dx
)1/(n−ε)

<∞.

ThenLn)(�) is a Banach space and

L
n)
b (�) =

{
u∈Ln)(�) : lim

ε→0+
ε

∫
�

|u|n−ε dx = 0

}
is a closed subspace. These function spaces were introduced by Iwaniec and Sbor-
done [9]. The motivation for the subindexb in the definition of the latter space
comes from the fact thatLn)b (�) is the closure of bounded functions inLn)(�);
see [5], where the notation is slightly different from ours. It is immediate that
L
n)
b (�) ⊂ Ln)(�) ⊂

⋂
p<n L

p(�) and that each measurableu with∫
�

|u|n
log(e + |u|) dx <∞

belongs toLn)b (�).
There are recent results related to Theorem A. Müller and Spector [15] prove

the condition N for a Sobolev mapping that satisfies an invertibility assumption
under the conditions that (a) the Jacobian determinant is strictly positive a.e. and
(b) either the image of the domain has finite perimeter or the weak Jacobian, de-
fined as a distribution using integration by parts, is represented by an appropriate
measure. In our situation the weak Jacobian of the mappingf coincides with the
pointwise Jacobian by a result of Greco [5] and thus no additional assumptions are
needed. Yet another result in the same direction can be found in the work of Šverák
[20]. Here again it is assumed that the Jacobian of the mapping is strictly positive
almost everywhere. Thus our results are not covered by these earlier works.

Let us now move on to mappings of finite distortion. We say that a Sobolev
mappingf ∈ W 1,1(�,Rn) hasfinite distortionif there is a measurable function
K = K(x) ≥ 1, finite almost everywhere, such that

|Df(x)|n ≤ K(x)Jf (x) a.e. (1.3)

HereJf (x) = J(x, f ) = detDf(x) is the Jacobian determinant off.We call (1.3)
thedistortion inequalityfor f. Notice that, unless we put extra conditions onK,
we require only thatJf (x) ≥ 0 a.e. and that the differentialDf vanish a.e. in the
zero set of the Jacobian determinantJf . Gol’dstein and Vodopyanov [4] proved
that Sobolev mappings of finite distortion with|Df | ∈ Ln(�) satisfy the Lusin
condition N. We are interested here in mappings of finite distortion with lower in-
tegrability of the gradient. For the basic properties of such mappings, see [8] and
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[11]. Our results in [11] together with Theorem A and its proof yield the following
corollary.

Corollary B. Letf be a mapping of finite distortion that satisfies(1.1). Then
f satisfies condition N. On the other hand, there is a homeomorphismf of finite
distortion from the closed unit cubeQ0 ontoQ0 such that(1.2)holds andf does
not satisfy condition N.

As a consequence of Theorem A, we also deduce that Sobolev mappings whose
dilatations are exponentially integrable satisfy condition N. This result in the
planar case is essentially due to David [1]. More generally, we have the following
result.

Corollary C. Suppose thatf ∈W 1,1(�,Rn), Jf ∈L1(�), and

|Df(x)|n ≤ K(x)Jf (x)
a.e.x ∈ �, whereexp(λK) ∈ L1(�) for someλ > 0. Thenf satisfies condi-
tion N. On the other hand, if9 : (0,∞) → (0,∞) is a strictly increasing and
continuous function such that∫ ∞

1

9 ′(t)
t

dt <∞, (1.4)

then there is a homeomorphismf of finite distortion from the closed unit cubeQ0

ontoQ0 such thatJf ∈L1(Q0) with∫
Q0

exp(9(K(x))) dx <∞

and such thatf does not satisfy condition N.

The conclusion of the first part of Corollary C was previously known only in even
dimensions—under the assumption thatλ > λ(n) > 0. For this result see the
paper [7] by Iwaniec, Koskela, and Martin, where the condition N was obtained
as a consequence of nontrivial regularity results for mappings of exponentially in-
tegrable distortion. Notice that the exponential integrability ofK in Corollary C
cannot be substantially relaxed because (1.4) holds, for example, for the function
9(t) = t/ log2(1+ t).

Our proof of Theorem A goes as follows. The topological degree is related to
the weak Jacobian by a degree formula. On the other hand, by a result of Greco [5],
the weak Jacobian coincides with the determinant ofDf under the assumptions
on f. We are then able to estimate the measure off(E) by an integral of the
determinant ofDf. The example showing the sharpness of(1.1) is anatural ho-
meomorphism that maps a regular Cantor set of measure zero onto a Cantor set of
positive measure. The construction is similar to that of Ponomarev’s [18]. Extra
care is needed, however, as we also use this very same mapping for Corollaries B
and C and hence must estimate the distortion of our homeomorphism.
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Note added in December 2000:It has been very recently noticed that the diver-
gence of the integral in (1.4) is sufficient (modulo minor technical assumptions)
for condition N in the setting of Corollary C. See [12] for details.

2. Degree Formula

If A is a realn × n matrix, we denote the cofactor matrix ofA by cofA. Then
the entries of cofA arebij = (−1)i+j detAij, and cofA is the transpose of the
adjugate adjA of A.

Let V be an(n−1)-dimensional subspace ofRn oriented by a unit vectorv nor-
mal toV. Then, for each linear mappingL : V → Rn, there is a vector3n−1L ∈
Rn such that

3n−1L · v = (cof L̃)v

wheneverL̃ : Rn→ Rn is a linear extension ofL (cf. [16]).
The following result is due to Müller, Spector, and Tang [16].

Proposition 2.1. LetG ⊂ Rn be a domain with a smooth boundary and letf ∈
C(Ḡ) ∩W 1,p(∂G). LetDT f be the tangential derivative off with respect to∂G
in the sense of distributional differentiation on manifolds. Leth ∈ C1(Rn,Rn).
Assume that either

(a) p > n− 1, or
(b) p ≥ n− 1 andLn(f(∂G)) = 0.

Then ∫
∂G

(h B f )(x)3n−1DT f(x) · n(x) dHn−1(x)

=
∫
Rn

divh(y)deg(f,G, y) dy. (2.1)

Proof. Part (a) is directly stated in [16]. For part (b), we can mimic the proof in
[16], where the strict inequalityp > n−1 is used only to prove assumption (b).

The following proposition is stated in ultimate generality because it may be in-
teresting in its own right. In the sequel we will use the assertion only under the
stronger hypothesis that|Df | ∈ Lp(�), p > n − 1. A reader interested in only
this level of generality may skip the proof and realize that the conclusion easily
follows from part (a) of Proposition 2.1.

Proposition 2.2. Suppose thatf : � → Rn is a continuous mapping and that
|Df | ∈ Ln−1,1(�). Let η ∈C∞c (�), η ≥ 0, andh∈C1(Rn,Rn). Then, for almost
all t > 0, we have

Ln(f({η = t})) = 0 (2.2)

and
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{η=t}

(h B f )(x) · cofDf(x)n(x) dHn−1(x)

=
∫
Rn

divh(y)deg(f, {η > t}, y) dy, (2.3)

wheren(x) denotes the outward unit normal to{η = t} at x.

Proof. According to Corollary 2.4 in [10], the property|Df | ∈ Ln−1,1(�) implies
that there is a nonnegative increasing functionϕ on (0,∞) such that∫ ∞

0
ϕ1/(n−1)(s) dx <∞

and ∫
{Df 6=0}

|Df |ϕn/(1−n)(|Df |) dx <∞.
We call a levelt good if Dη is bounded away from zero on{η = t} (so that{η =
t} is a smooth manifold), if the trace off belongs toW 1,n−1({η = t}), and if, for
Hn−1-a.e.x ∈ {η = t}, the tangential derivativeDT f(x) of the trace off coin-
cides with the restriction ofDf(x) to Tx({η = t}) and∫

{η=t}∩{Df 6=0}
|Df |ϕn/(1−n)(|Df |) dHn−1(x) <∞.

Using the Sard theorem, the co-area formula, and well-known behavior of traces,
we observe that almost all levelst are good.

Let t be a good level. Then, using again Corollary 2.4 in [10], we observe that
|DT f | ∈ Ln−1,1({η = t}) and thus by [10, Thm. C] we have

Hn−1(f({η = t})) = 0;
in particular, (2.2) holds. Now formula (2.3) follows from Proposition 2.1.

3. Sense-Preserving Mappings

Each sense-preserving mappingf : �→ Rn satisfies the spherical monotonicity
property

diamf(B) ≤ diamf(∂B) for eachB ⊂⊂ �. (3.1)

Indeed, ify ∈ f(B) \ f(∂B) theny cannot belong to the unbounded component
of Rn \ f(∂B), since we would then have deg(f, B, y) = 0. Hencef(B) is con-
tained in the closed convex hull off(∂B) and (3.1) holds.

If f ∈W 1,p(�), p > n − 1, satisfies (3.1), then the following well-known os-
cillation estimates hold: for eachx ∈� andr ∈ (0, 1

2 dist(x, ∂�)
)
,(

diamf(B(x, r))

r

)p
≤ Cr−n

∫
B(x,2r)

|Df |p dy.
The right-hand side is bounded asr → 0 for all Lebesgue points of|Df |p. By the
Rademacher–Stepanov theorem, it follows thatf is differentiable almost every-
where (cf. [6]) and thus, at almost every pointx0, Df(x0) is the classical (total)
differential off atx0.



174 Janne Kauhanen, Pekka Koskela, & Jan Malý

The following result is well known, but for the convenience of the reader we
give a proof here.

Lemma 3.1. If f ∈W 1,p(�,Rn), p > n − 1, is sense-preserving, thenJf ≥ 0
a.e. in�.

Proof. Fix x0 such thatDf(x0) is the classical differential off atx0 andJf (x0) 6=
0. It suffices to prove thatJf (x0) > 0.

We may assume thatx0 = 0= f(x0). SinceJf (0) 6= 0, there is a constantc >
0 such that

|Df(0)x| ≥ c|x|
for all x ∈Rn. By the differentiability assumption, there exists anr > 0 for which
B(0, r) ⊂⊂ � and

|f(x)−Df(0)x| < 1
2cr

for all x ∈ ∂B(0, r). It follows that

|f(x)−Df(0)x| < dist(0, f(∂B(0, r)))

for all x ∈ ∂B(0, r). Then, by the properties of the topological degree (see e.g. [3,
Thm. 2.3(2)]) we have

deg(Df(0), B(0, r),0) = deg(f, B(0, r),0) > 0,

whence detDf(0) > 0.

Let q ≥ 1 and letq ′ be the conjugated exponent. Iff ∈ W 1,q(n−1)
loc (�,Rn) ∩

L
q ′
loc(�,Rn), then the weak Jacobian is the distribution DetDf defined by the rule

〈DetDf, η〉 = −
∫
�

fnJ(x, (f1, . . . , fn−1, η)) dx

for each test functionη ∈C∞c (�). HereJ(x, (f1, . . . , fn−1, η)) is the determinant
of the differentialDg of the mappingg(x) = (f1, . . . , fn−1, η). Thus, in the lan-
guage of differential forms,

J(x, (f1, . . . , fn−1, η)) dx = df1∧ · · · ∧ dfn−1∧ dη.
We need a result of Greco [5] according to whichJf ∈L1

loc(�) and

DetDf(x) = Jf (x) := J(x, f )
wheneverf ∈W 1,1

loc (�,Rn) satisfies(1.1) andeitherJf (x) ≥ 0 a.e. in� orJf (x) ≤
0 a.e. in�. The regularity in this result is sharp in the sense that(1.1) cannot be
replaced with (1.2).

Lemma 3.2. Let f : � → Rn be a sense-preserving mapping inW 1,p(�) with
p > n − 1, and assume that the weak JacobianDetDf satisfiesDetDf = Jf .

Then

Ln(f(G)) ≤
∫
G

Jf (x) dx

for all openG ⊂⊂ �.
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Proof. Let s ∈ (0,1). Chooseη ∈C∞c (G) such that 0≤ η ≤ 1, |∇η| 6= 0 in {0 <
η < 1}, and

sLn(f(G)) ≤ Ln(f({η = 1})).
Then, for almost everyt ∈ (0,1),

f ∈W 1,p({η = t},Rn).
Thus, by choosingh(y) = (0, . . . ,0, yn) in Proposition 2.2 we have, sincen(x) =
−∇η(x)/|∇η(x)|, that

sLn(f(G)) ≤ Ln(f({η > t})) ≤
∫
Rn

deg(f, {η > t}, y) dy

= −
∫
{η=t}

fn(x)

|∇η(x)|J(x, (f1, . . . , fn−1, η)) dHn−1(x). (3.2)

Integrating (3.2) overt ∈ (0,1) via the co-area formula, we obtain (see e.g. [2,
Thm. 3.2.12])

sLn(f(G)) ≤ −
∫
G

fn(x)J(x, (f1, . . . , fn−1, η)) dx =
∫
G

ηJf ≤
∫
G

Jf (x) dx.

In the last inequality we have used the fact thatJf ≥ 0 a.e. (Lemma 3.1). Now let
s → 1.

4. Proofs of Theorem A and Corollaries B and C

The first part of the claim of Theorem A immediately follows from Lemma 3.2
since, by Lemma 3.1,Jf ≥ 0 a.e. and thus by Greco’s resultJf ∈ L1

loc(�) and
DetDf = Jf . The example of Section 5 gives the second part of Theorem A as
well as the second parts of Corollaries B and C.

Corollary B follows immediately from Theorem A since, by [11, Thm. 1.5], a
mappingf of finite distortion satisfying(1.1) issense-preserving.

Under the assumptions of Corollary C,∫
�

|Df |n
log(e + |Df |) <∞

(see [7]), whence, by the results of Greco [5],(1.1) issatisfied. Thus Corollary C
follows from Corollary B.

5. An Example

Let 9 be as in Corollary C. We will construct a homeomorphismf : Q0 =
[0,1]n → Q0 (n ≥ 2) that fixes the boundary∂Q0 and has the following prop-
erties.

(a) f ∈W 1,1(Q0,Rn), f is differentiable almost everywhere, and

sup
0<ε≤n−1

ε

∫
Q0

|Df(x)|n−ε dx <∞. (5.1)
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(b) The Jacobian determinantJf (x) is strictly positive for almost everyx ∈Q0,

and ∫
Q0

Jf (x) dx <∞. (5.2)

(c) The dilatationK(x) = |Df(x)|n/Jf (x) is finite almost everywhere, and∫
Q0

exp(9(K(x))) dx <∞. (5.3)

(d) f does not satisfy Lusin’s condition N.

Besides the usual Euclidean norm|x| = (x 2
1 + · · · + x 2

n)
1/2, we will use the

cubic norm‖x‖ = maxi |xi |. Using the cubic norm, thex0-centered closed cube
with edge length 2r > 0 and sides parallel to coordinate axes can be represented
in the form

Q(x0, r) = {x ∈Rn : ‖x − x0‖ ≤ r}.
We then callr the radiusof Q. We will use the notationa . b if there is a con-
stantc = c(n) > 0 depending only onn such thata ≤ cb, and we writea ≈ b if
a . b andb . a.

We will be dealing with radial stretchings that map cubesQ(0, r) onto cubes.
The following lemma can be verified by an elementary calculation.

Lemma 5.1. Letρ : (0,∞)→ (0,∞) be a strictly monotone and differentiable
function. Then, for the mapping

f(x) = x

‖x‖ρ(‖x‖), x 6= 0,

we have for a.e.x

max

{
ρ(‖x‖)
‖x‖ , |ρ ′(‖x‖)|

}
≈ |Df(x)|

and
ρ ′(‖x‖)ρ(‖x‖)n−1

‖x‖n−1
≈ Jf (x).

We will first give two Cantor set constructions inQ0. We definef as the limit
of a sequence of piecewise continuously differentiable homeomorphismsfk :
Q0 → Q0, where eachfk maps thek th step of the first Cantor set construc-
tion onto the second one. Thenf maps the first Cantor set onto the second one.
Choosing the Cantor sets so that the measure of the first one equals zero and the
second has positive measure, we obtain property (d).

Let V ⊂ Rn be the set of all vertices of the cubeQ(0,1). Then setsV k =
V × · · · × V (k = 1,2, . . . ) will serve as the sets of indices for our construction
(with the exception of the subscript 0). Ifw ∈V k−1, we denote

V k[w] = {v ∈V k : vj = wj, j = 1, . . . , k −1}.
Let z0 =

[
1
2, . . . ,

1
2

]
and r0 = 1

2 . For v ∈ V 1 = V let zv = z0 + 1
4v, Pv =

Q
(
zv,

1
4

)
, andQv = Q

(
zv,

1
8

)
. If k ∈ 2,3, . . . andQw = Q(zw, rk−1) is a cube
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Figure 1 CubesQv, v ∈V k

from the previous step of construction,w ∈V k−1, thenQw is divided into 2n sub-
cubesPv (v ∈ V k[w]) with radiusrk−1/2, and inside them concentric cubesQv

(v ∈ V k[w]) are considered with radiusrk = 1
4rk−1. These cubes form the new

families. Thus, ifv = (v1, . . . , vk)∈V k then

zv := zw + 1
2rk−1vk = z0 + 1

2

k∑
j=1

rj−1vj,

Pv := Q(zv, rk−1/2), Qv := Q(zv, rk).
See Figure 1. We thus obtain the families{Qv : v ∈ V k}, k = 1,2,3, . . . , for
which the radius ofQv is

rk = 2−2k−1

and the number of cubes is #V k = 2nk. Note thatrk < rk−1/2 for all k. The mea-
sure of the resulting Cantor set

E =
∞⋂
k=1

⋃
v∈V k

Qv

equals zero, since

Ln
( ⋃
v∈V k

Qv

)
= 2nk2−2kn→ 0.

The second Cantor set construction is similar to the first except that now we
denote the centers byz ′v and the cubes byP ′v andQ′v (v ∈V k), with

z ′v := z ′w +
1

2
r ′k−1vk = z0 + 1

2

k∑
j=1

r ′j−1vj,

P ′v := Q(z ′v, r ′k−1/2), Q′v := Q(z ′v, r ′k ).
Here,

r ′k = ϕ(k)2−k−1,
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whereϕ : N→ (1/2,1] is any fixed, strictly decreasing function such thatϕ(0) =
1. Note thatr ′k < r ′k−1/2 for eachk. We have

Ln
( ∞⋂
k=1

⋃
v∈V k

Qv

)
= lim

k→∞L
n

( ⋃
v∈V k

Qv

)
= lim

k→∞2nk(2r ′k )
n ≥ 2−n > 0.

We are now ready to define the mappingsfk. Definef0 = id. We will give a
mappingf1 that stretches each cubeQv (v ∈ V 1) homogeneously so thatf1(Qv)

equalsQ′v. On the annulusPv \Qv, f1 is defined to be an appropriate radial map
with respect tozv in pre-image andz ′v in image to makef1 a homeomorphism.
The general step is as follows. Ifk > 1 thenfk is defined asfk−1 outside the union
of all cubesQw, w ∈ V k−1. Further,fk remains equal tofk−1 at the centers of
cubesQv (v ∈V k). Thenfk stretches each cubeQv (v ∈V k) homogeneously so
thatf(Qv) equalsQ′v. On the annulusPv \Qv, f is defined to be an appropriate
radial map with respect tozv in pre-image andz ′v in image to makefk a homeo-
morphism (see Figure 2). Notice that the Jacobian determinantJfk will be strictly
positive almost everywhere inQ0.

Figure 2 The mappingfk acting onPv, v ∈V k

To be precise, letf0 = id|Q0 and, fork = 1,2,3, . . . , define

fk(x) =


fk−1(x) if x /∈⋃v∈V k Pv,

fk−1(zv)+ ak(x − zv)+ bk x−zv
‖x−zv‖ if x ∈Pv \Qv (v ∈V k),

fk−1(zv)+ ck(x − zv) if x ∈Qv (v ∈V k).

Hereak, bk, ck are chosen so thatfk maps eachQv ontoQ′v, is continuous, and
fixes the boundary∂Q0:

ak rk + bk = r ′k,
ak rk−1/2+ bk = r ′k−1/2,

ck rk = r ′k.
(5.4)

Clearly the limitf = lim k→∞ fk is differentiable almost everywhere, its Jaco-
bian determinant is strictly positive almost everywhere, andf is absolutely con-
tinuous on almost all lines parallel to coordinate axes. Continuity off follows
from the uniform convergence of the sequence(fk): for anyx ∈Q0 andl ≥ j ≥
1, we have
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|fl(x)− fj(x)| . r ′j → 0

asj →∞.
It is easily seen thatf is a one-to-one mapping ofQ0 ontoQ0. Sincef is

continuous andQ0 is compact, it follows thatf is a homeomorphism. One also
verifies easily that

f

( ∞⋂
k=1

⋃
v∈V k

Qv

)
=
∞⋂
k=1

⋃
v∈V k

Q′v,

so that property (d) holds.
To finish the proof of properties (a)–(c), we next estimate|Df(x)| andJf (x)

at x in the interior of the annulusPv \Qv for v ∈ V k (k = 1,2,3, . . . ). Let r =
‖x − zv‖ ≈ rk. In the annulus,

f(x) = fk−1(zv)+ (ak‖x − zv‖ + bk) x − zv‖x − zv‖;
whence, denotingρ(r) = ak r + bk, we have by Lemma 5.1 (it is easy to check
thatbk > 0 for largek) that

|Df(x)| ≈ ak + bk/rk
and

Jf (x) ≈ ak(ak + bk/rk)n−1.

From the equations (5.4) it follows that

ak = r ′k−1/2− r ′k
rk−1/2− rk = (ϕ(k −1)− ϕ(k))2k

and
ak + bk/rk = r ′k/rk = ϕ(k)2k ≈ 2k.

Therefore,
|Df(x)| ≈ 2k

and
Jf (x) ≈ (ϕ(k −1)− ϕ(k))2nk,

whence for largek we have

K(x) = |Df(x)|
n

Jf (x)
≤ c0

ϕ(k −1)− ϕ(k) , (5.5)

wherec0 = c0(n) ≥ 1 depends only onn.
The measure of

⋃
v∈V k Pv is 2nkr nk−1≈ 2−nk and so, for 0< ε ≤ n−1,

ε

∫
Q0

|Df(x)|n−ε dx . ε
∞∑
k=1

2−nk2k(n−ε)

≤ ε
∞∑
k=0

2−εk = ε

1− 2−ε
≤ C,

whereC < ∞ does not depend onε. This proves (5.1), and it follows thatf ∈
W 1,1(Q0,Rn). Similarly, we prove (5.2):
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Q0

Jf (x) dx .
∞∑
k=1

2−nk(ϕ(k −1)− ϕ(k))2nk

=
∞∑
k=1

(ϕ(k −1)− ϕ(k)) = ϕ(0)− lim
k→∞ϕ(k) <∞.

For what follows we need to defineϕ more explicitly. Let

ϕ(k) = 1

2

(
1+ 1

λ

∫ ∞
k

du

9−1(u)

)
for largek, whereλ > 0 is chosen so that 2λc0 = 1. Thenϕ and|ϕ ′| are decreas-
ing. By (5.5), for largek we have

K(x) ≤ c0

|ϕ ′(k)| = 2λc09
−1(k) = 9−1(k)

and thus ∫
Q0

exp(9(K(x))) dx .
∑
k

2−nk exp(9(9−1(k)))

=
∑
k

2−nkek =
∑
k

(2−ne)k <∞.

Thus (5.3) is proven.
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