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Mappings of Finite Distortion: Condition N
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1. Introduction

Suppose thaf is a continuous mapping from a domdnc R” (n > 2) into

R". We consider the following Lusin condition N: £ c € with £L"(E) = 0,
thenL"(f(E)) = 0. Physically, this condition requires that there be no creation
of matter under the deformatiofi of the n-dimensional body2. This is a nat-
ural requirement, since the N property with differentiability a.e. is sufficient for
validity of various change-of-variable formulas, including the area formula, and
the condition N holds for a homeomorphisfrif and only if f maps measurable
sets to measurable sets.

If the coordinate functions of belong to the Sobolev clasgll(Q) and| Df| €
LP(Q2) for somep > n, thenf satisfies the Lusin condition N (Marcus and Mizel,
[14]). Recently we verified in [10] that this also holds whe¥y | belongs to the
Lorentz space :}(2) and that this analytic assumption is essentially sharp even if
the determinant oDf is nonnegative a.e. For a homeomorphism, less regularity
is needed: it suffices to assume thfat Wk!(Q2, R"); this is due to Reshetnyak
[19]. On the other hand, there exists a homeomorphism that does not satisfy the
condition N and s@Df| belongs toL?(2) for eachp < n; see the examples by
Ponomarev [17; 18]. Some further results on the Lusin condition are listed in the
survey paper [13].

We will need the concept of topological degree. We say that a continuous map-
ping f is sense-preservinfithe topological degree with respect to any subdomain
G cc Qs strictly positive: degf, G, y) > Oforally € f(G)\ f(3G). In this
paper we show that, for a sense-preserving mapping, the sharp regularity assump-
tion in the rearrangement-invariant scale to rule out the failure of the condition N
is that

lim s/|Df|"’€ —0. 1.1)
e—>0+ Q

THEOREMA. Supposethat: Q@ — R” is sense-preserving and th@t1) holds.
Then f satisfies condition N. On the other hand, there is a homeomorpliism
from the closed unit cub@q onto Qq such that
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sup s/|Df|"’8 < 00, (1.2)
O<e<n—-1 Q

f does not satisfy condition N, anfirestricted to the boundary of the unit cube

is the identity mapping.

Let us definel”(2) as the collection of all the measurable functiansith

1/(n—e)
lull,y = sup (S/IU(x)I”‘de> < 0.
Q

O<e<n—1

ThenL () is a Banach space and
LZ)(Q) = {u e L"(Q) : lim 8/|u|”_8 dx = O}
e—0t Q

is a closed subspace. These function spaces were introduced by lwaniec and Sbor-
done [9]. The motivation for the subindéxin the definition of the latter space
comes from the fact thdt’,?(fz) is the closure of bounded functions Irf (Q);

see [5], where the notation is slightly different from ours. It is immediate that
L’},)(Q) c LY(Q) c,., L(R) and that each measurablavith

p<n
|u]"

—————dx < 00
o log(e + Jul)

belongs tal}) ().

There are recent results related to Theorem A. Miller and Spector [15] prove
the condition N for a Sobolev mapping that satisfies an invertibility assumption
under the conditions that (a) the Jacobian determinant is strictly positive a.e. and
(b) either the image of the domain has finite perimeter or the weak Jacobian, de-
fined as a distribution using integration by parts, is represented by an appropriate
measure. In our situation the weak Jacobian of the mappiocgincides with the
pointwise Jacobian by a result of Greco [5] and thus no additional assumptions are
needed. Yet another result in the same direction can be found in the work of Sverak
[20]. Here again it is assumed that the Jacobian of the mapping is strictly positive
almost everywhere. Thus our results are not covered by these earlier works.

Let us now move on to mappings of finite distortion. We say that a Sobolev
mappingf € WLX(Q, R") hasfinite distortionif there is a measurable function
K = K(x) > 1, finite almost everywhere, such that

|Df ()" < K(x)Jp(x) a.e. 1.3)

HereJ;(x) = J(x, f) = detDf(x) is the Jacobian determinant afWe call (1.3)
thedistortion inequalityfor f. Notice that, unless we put extra conditions Kn

we require only thatl;(x) > 0 a.e. and that the differenti@lf vanish a.e. in the
zero set of the Jacobian determindpt Gol'dstein and Vodopyanov [4] proved
that Sobolev mappings of finite distortion withf| € L"(2) satisfy the Lusin
condition N. We are interested here in mappings of finite distortion with lower in-
tegrability of the gradient. For the basic properties of such mappings, see [8] and
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[11]. Our results in [11] together with Theorem A and its proof yield the following
corollary.

CoroLLARY B. Let f be a mapping of finite distortion that satisfigsl). Then
f satisfies condition N. On the other hand, there is a homeomorpfiisfifinite
distortion from the closed unit cub@q onto Q¢ such that(1.2) holds andf does
not satisfy condition N.

As a consequence of Theorem A, we also deduce that Sobolev mappings whose
dilatations are exponentially integrable satisfy condition N. This result in the
planar case is essentially due to David [1]. More generally, we have the following
result.

CoroLLARY C. Suppose thaf € Wr1(Q, R"), J; € LX), and
IDf(x)|" < K(x)Jy(x)

a.e.x € Q, whereexp(AK) € LX) for somer > 0. Then f satisfies condi-
tion N. On the other hand, ift': (0, o0) — (0, 00) is a strictly increasing and
continuous function such that

/mwwm<m, (1.4)
1

t

then there is a homeomorphisfrof finite distortion from the closed unit culgk,
onto Qo such that/; € L*(Qo) with

/ exp(W(K(x)))dx < oo
Qo

and such thaif does not satisfy condition N.

The conclusion of the first part of Corollary C was previously known only in even
dimensions—under the assumption that- A(n) > 0. For this result see the
paper [7] by lwaniec, Koskela, and Martin, where the condition N was obtained
as a consequence of nontrivial regularity results for mappings of exponentially in-
tegrable distortion. Notice that the exponential integrabilitykoin Corollary C
cannot be substantially relaxed because (1.4) holds, for example, for the function
W(r) = t/log?(1+1).

Our proof of Theorem A goes as follows. The topological degree is related to
the weak Jacobian by a degree formula. On the other hand, by aresult of Greco [5],
the weak Jacobian coincides with the determinanbgfunder the assumptions
on f. We are then able to estimate the measurg'@) by an integral of the
determinant ofDf. The example showing the sharpnesglof) is anatural ho-
meomorphism that maps a regular Cantor set of measure zero onto a Cantor set of
positive measure. The construction is similar to that of Ponomarev’s [18]. Extra
care is needed, however, as we also use this very same mapping for Corollaries B
and C and hence must estimate the distortion of our homeomorphism.
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Note added in December 200@:has been very recently noticed that the diver-
gence of the integral in (1.4) is sufficient (modulo minor technical assumptions)
for condition N in the setting of Corollary C. See [12] for detalils.

2. Degree Formula

If Ais arealn x n matrix, we denote the cofactor matrix af by cofA. Then
the entries of coft areb;; = (—1)'*/ detA;;, and cofA is the transpose of the
adjugate adp of A.

LetV be an(n — 1)-dimensional subspace &f oriented by a unit vector nor-
mal toV. Then, for each linear mapping: V — R”, there is a vecton,_1L €
R" such that

An_1L -v = (cof L)v

whenevelL : R" — R" is a linear extension af (cf. [16]).
The following result is due to Muller, Spector, and Tang [16].

ProposiTION 2.1. LetG C R”" be a domain with a smooth boundary and fet
C(G) N WhP(3G). Let Dy f be the tangential derivative of with respect tdG
in the sense of distributional differentiation on manifolds. ket CY(R", R").
Assume that either

@ p>n—-21o0r
(b) p=n—1andL"(f(dG)) = 0.
Then

/ (ho FYOA™Dr £(x) - n(x) dH"1x)
G

= | divi(y)dedf, G, y)dy. (2.1)
Rll
Proof. Part (a) is directly stated in [16]. For part (b), we can mimic the proof in
[16], where the strictinequality > n—1is used only to prove assumption (b}

The following proposition is stated in ultimate generality because it may be in-
teresting in its own right. In the sequel we will use the assertion only under the
stronger hypothesis thabf| € L”(2), p > n — 1. A reader interested in only
this level of generality may skip the proof and realize that the conclusion easily
follows from part (a) of Proposition 2.1.

ProPOSITION 2.2. Suppose thaf: 2 — R” is a continuous mapping and that
|Df| e L"YX(Q). Letn € C®(Q), n > 0, andh € CY(R", R"). Then, for almost
all r > 0, we have

L'(f(n=1})) =0 (2.2)
and
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/ (ho f)(x)-cof Df(x)n(x) dH"(x)
{n=1}

= [ divhedegs.in > r1.ndy, (2.3)
Rh
wheren(x) denotes the outward unit normal {¢ = ¢} at x.

Proof. According to Corollary 2.4 in [10], the propertpf| € L"21(R) implies
that there is a nonnegative increasing functioon (0, co) such that

o0
/ gal/("_l)(s) dx < 00
0
and
f IDF 19" (I Df |y dx < oo.
{Df#0}

We call a level goodif Dy is bounded away from zero dn = ¢} (so that{n =
t} is a smooth manifold), if the trace gf belongs tow>"~1({n = t}), and if, for
H"Ya.e.x € {n = t}, the tangential derivativ® f(x) of the trace off coin-
cides with the restriction abf(x) to T, ({n = t}) and

/ |Df 1™ (I DF]) dH" H(x) < o0.
{n=t}N{Df #0}

Using the Sard theorem, the co-area formula, and well-known behavior of traces,
we observe that almost all levelsre good.

Letr be a good level. Then, using again Corollary 2.4 in [10], we observe that
Dy f| € L"Y1({n = t}) and thus by [10, Thm. C] we have

H' N f(n=1}) =0;
in particular, (2.2) holds. Now formula (2.3) follows from Proposition 2.1. [

3. Sense-Preserving Mappings

Each sense-preserving mappifig 2 — R” satisfies the spherical monotonicity
property
diam f(B) < diamf(0B) foreachB cc Q. 3.1

Indeed, ify € f(B)\ f(dB) theny cannot belong to the unbounded component
of R" \ f(dB), since we would then have defj B, y) = 0. Hencef(B) is con-
tained in the closed convex hull giaB) and (3.1) holds.

If feWbP(Q), p>n — 1, satisfies (3.1), then the following well-known os-
cillation estimates hold: for eache @ andr € (0, 3 dist(x, 3%2)),

diamf(B(x, r)) )‘” _ /
_— Cr " Df1|? dy.
( . <Cr B(x,2r)| 17 dy

The right-hand side is boundedras> O for all Lebesgue points ¢Df|”. By the
Rademacher—Stepanov theorem, it follows tfias differentiable almost every-
where (cf. [6]) and thus, at almost every paifgt Df (xo) is the classical (total)
differential of f atxg.



174 JANNE KAUHANEN, PEKKA KOSKELA, & JAN MALY

The following result is well known, but for the convenience of the reader we
give a proof here.

Lemma 3.1 If f e WEP(Q,R"), p > n — 1, is sense-preserving, theh > 0
a.e. inQ.

Proof. Fix xg such thatDf (xo) is the classical differential of atxo andJy (xo) #
0. It suffices to prove thai;(xg) > O.
We may assume that = 0 = f(xg). SinceJ;(0) # 0, there is a constamnt >
0 such that
|Df(0)x| > clx|

for all x e R". By the differentiability assumption, there existsran 0 for which
B(©,r) cc Qand
| f(x) = Df(0)x| < ger

for all x € 9B(0, r). It follows that
| f(x) — Df(0)x| < dist(0, f(dB(0, r)))

for all x € 3B(0, r). Then, by the properties of the topological degree (see e.g. [3,
Thm. 2.3(2)]) we have

deqg Df(0), B(0,r),0) =deq f, B(0,r),0) > 0O,
whence deDf(0) > 0. O

Letg > 1 and letg’ be the conjugated exponent. ff ¢ Wk4=D(Q, R") N
L‘{OIC(Q, R™), then the weak Jacobian is the distribution Dgtdefined by the rule

(DetDf. ) = — fﬂ Fud (60 e foss ) dx

for each test function € C°(Q2). HereJ(x, (f1, ..., fu—1, n)) is the determinant
of the differentialDg of the mappingz(x) = (f1, ..., fu_1, n). Thus, in the lan-
guage of differential forms,

Jx, (fr, ooy fam,m)dx =dfi A Adfp—a A dn.
We need a result of Greco [5] according to whighe L .(€2) and

loc
DetDf (x) = Jy(x) = J(x, f)

wheneverf € Wt(Q, R") satisfieg1.1) anceitherJ; (x) > 0a.e.in2or Jy(x) <
0 a.e. inQ2. The regularity in this result is sharp in the sense {haf) cannot be
replaced with (1.2).

Lemma 3.2. Let f: Q — R” be a sense-preserving mappingWn?($2) with
p > n —1, and assume that the weak Jacoblaat Df satisfiesDetDf = J;.
Then

LF(G)) < /G Jp(x) dx

for all openG cc Q.
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Proof. Lets € (0, 1). Choosen e CX(G) suchthatO<n <1, |Vp| #0in{0 <
n <1}, and
sLM(f(G)) < LM(f({n=1}).

Then, for almost everye (0, 1),
feWrr({n=1},R").

Thus, by choosing(y) = (0, ..., 0, y,) in Proposition 2.2 we have, sinoéx) =
=Vn(x)/|Vn(x)|, that

sLM(f(G) = LM(f({n > 1}) = fR” deqf,{n > 1}, y)dy

n(X ne

=- / IO, (fa s fos ) AU ). (32)
=n [Vn(x)|

Integrating (3.2) over € (0, 1) via the co-area formula, we obtain (see e.g. [2,

Thm. 3.2.12])

SL'(F(G)) < — /G FuT s e foore ) di = /G ni; < /G Jy(x) dx.

In the last inequality we have used the fact that- 0 a.e. (Lemma 3.1). Now let
s — 1 OJ

4. Proofs of Theorem A and Corollaries B and C

The first part of the claim of Theorem A immediately follows from Lemma 3.2
since, by Lemma 3.1/, > 0 a.e. and thus by Greco’s resujt € L} () and
DetDf = J;. The example of Section 5 gives the second part of Theorem A as
well as the second parts of Corollaries B and C.

Corollary B follows immediately from Theorem A since, by [11, Thm. 1.5], a
mappingy of finite distortion satisfyind1.1) issense-preserving.

Under the assumptions of Corollary C,

DFI"
s log(e + |Df1)

(see [7]), whence, by the results of Greco []1) issatisfied. Thus Corollary C
follows from Corollary B.

5. An Example

Let ¥ be as in Corollary C. We will construct a homeomorphigm Qo =
[0,1]" — Q¢ (n = 2) that fixes the boundar§Q, and has the following prop-
erties.

(@) fewb(Qo, R"), f is differentiable almost everywhere, and

sup e | IDF(x)|"F dx < oo. (5.1)
O<e<n-1 Qo



176 JANNE KAUHANEN, PEKKA KOSKELA, & JAN MALY

(b) The Jacobian determinasit(x) is strictly positive for almost every € Qo,
and

/ Jr(x)dx < 0. (5.2)
Qo

(c) The dilatationk (x) = |Df(x)|"/J¢(x) is finite almost everywhere, and
/ exp(W(K(x)))dx < oo. (5.3)
Qo

(d) f does not satisfy Lusin’s condition N.

Besides the usual Euclidean notm) = (x2 + --- + x2)¥2, we will use the
cubic norm||x|| = max;|x;|. Using the cubic norm, the,-centered closed cube
with edge length 2 > 0 and sides parallel to coordinate axes can be represented
in the form

Q(xo,7r) ={x €R" I |lx —xoll <7}

We then call- theradius of Q. We will use the notatiom < b if there is a con-
stantc = ¢(n) > 0 depending only on such thatz < cb, and we writea ~ b if
a <bandb < a.

We will be dealing with radial stretchings that map culid®, r) onto cubes.
The following lemma can be verified by an elementary calculation.

LemMma 5.1. Letp: (0, 00) — (0, co) be a strictly monotone and differentiable
function. Then, for the mapping

fx) = —p(lxl). x #0,

flxIl
we have for a.ex

max{p(uxn)’ |p’(||xll>l} ~ | Df ()]

[Bd

and N
P (lxDedlxIN™
f|x]jn =2

~ Jp(x).

We will first give two Cantor set constructions @y. We definef as the limit

of a sequence of piecewise continuously differentiable homeomorphjgms

Qo — Qo, Where eachf;, maps thekth step of the first Cantor set construc-

tion onto the second one. Thghmaps the first Cantor set onto the second one.
Choosing the Cantor sets so that the measure of the first one equals zero and the
second has positive measure, we obtain property (d).

Let V c R” be the set of all vertices of the cul@(0, 1). Then setsV* =
Vx--xV(k=12,...)will serve as the sets of indices for our construction
(with the exception of the subscript 0).dfe V¥~ we denote

Viw] = vevt: vi=wj, j=1...,k-=1}.
Letzo = [3.....3] andro = . Forv e V1 = Vletz, = zo+ v, P, =
0(z0. 7). andQ, = Q(z,. 3). Ifk€2,3 ... andQ,, = Q(zu, rr—1) is a cube
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ojo oo
ojg o|a
ojo oo
ojo oo
k=1 k:2

Figure 1 CubesQ,, ve V¥

from the previous step of constructian.c V*~1, thenQ,, is divided into 2 sub-
cubesP, (v € V¥[w]) with radiusr,_1/2, and inside them concentric cubgs

(v € V¥[w]) are considered with radiug = %rk_l. These cubes form the new
families. Thus, ifv = (vy, ..., vi) € V¥ then

k
— 1 _ 1
Zy =2y + M-k =20+ 3 E Tj-1Y),
j=1

P, == 0(z, rk,1/2), 0y = 0z, ).

See Figure 1. We thus obtain the familigg, : v € V¥}, k = 1,2,3, ..., for
which the radius oD, is
rp = 2—2k—l

and the number of cubes i&# = 2"%. Note thatr;, < ry_1/2 for allk. The mea-
sure of the resulting Cantor set

r=NUe.

k=1yeVk

En( U Qu) — 2nk2—2kn — 0.

veVk

equals zero, since

The second Cantor set construction is similar to the first except that now we
denote the centers ky and the cubes by, and Q. (v € V¥), with

1 1¢
Z:) = Z:l) =+ E lé_ll}k =20 + E er/_lvjv
j=l
P = Q(z,,r_1/2), 0, = 0(z,, ).
Here,
rp=gk)2*
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wherep: N — (1/2, 1] is any fixed, strictly decreasing function such théd) =
1 Note thatr] < r/_,/2 for eachk. We have

L" o) = lim c" o) = lim 2% @rH* > 27" > 0.
(krjl vgk Q ) k— 00 <ng Q ) k—o00 k

We are now ready to define the mappinfjs Define fo = id. We will give a
mappingf; that stretches each culgg, (v € V) homogeneously so thai(Q,)
equalsQ;. Onthe annulu®, \ Q,, fiis defined to be an appropriate radial map
with respect taz, in pre-image and, in image to makef; a homeomorphism.
The general step is as follows.Adf> 1thenf; is defined ag;_; outside the union
of all cubesQ,,, w € V¥L Further, f; remains equal tgf,_; at the centers of
cubesQ, (v e V¥). Then f; stretches each culi@, (v € V¥) homogeneously so
that f(Q,) equalsQ,. On the annulus, \ Q,, f is defined to be an appropriate
radial map with respect tg, in pre-image and;, in image to makef; a homeo-
morphism (see Figure 2). Notice that the Jacobian determihaniill be strictly
positive almost everywhere ifg.

Figure 2 The mappingf; acting onP,, v e V*

To be precise, lefy = id|y, and, fork =1, 2,3, ..., define

Sfr—1(x) it x¢Upeyr Po,
Je(x) =1 fim1@) +a(x —z) + by i xe P\ Qy (veVH),
fr—1(zy) + cr(x — z) if xeQ, weVh.

Hereay, by, c; are chosen so thagf, maps eactQ, onto Q/, is continuous, and
fixes the boundaryQo:

agri + by =rf,
agri—1/2+ by =r;_1/2, (5.4)
CkTy = Ty

Clearly the limit f = lim_, o, f is differentiable almost everywhere, its Jaco-
bian determinant is strictly positive almost everywhere, #rid absolutely con-
tinuous on almost all lines parallel to coordinate axes. Continuity &llows
from the uniform convergence of the sequengg: for anyx € Qg and! > j >
1, we have
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|fi(x) = f;(0) Srf =0
asj — oo.
It is easily seen thaf is a one-to-one mapping ad, onto Qq. Since f is
continuous and)g is compact, it follows thay is a homeomorphism. One also

verifies easily that
(NUe)-NUe

k=1 yevk k=1 yeVvk

so that property (d) holds.

To finish the proof of properties (a)—(c), we next estimad¢(x)| and Jy (x)
atx in the interior of the annulu®, \ Q, forve V¥ (k =1,2,3,...). Letr =
|lx — zy|l = r. Inthe annulus,

FO) = fieaen) + @llx = zoll + b
llx =zl
whence, denoting (r) = axr + by, we have by Lemma 5.1 (it is easy to check
thatb, > O for largek) that

|Df(x)| ~ ar + bi/rx
and
Jp(x) ~ ag(ag + by /ri)" %

From the equations (5.4) it follows that

/ !
ar = V2T Gy (a2t
re-1/2—rg
and
ag + by fri =1 /rk = @(k)2k ~ 2%,
Therefore,
|Df(x)] ~ 2
and

Jr(x) ~ (p(k — 1) — p(k))2™,
whence for largé we have
K(x) = |Df (x)|" < €o ’
Jr (x) ek =1 — (k)

wherecg = co(n) > 1 depends only on.
The measure of J, .« P, is 2 ; ~27"* and so, forO< ¢ <n —1,

(5.5)

o0
e | |IDF(x)" dx <e Z 2k Qk(n—e)
QO k=1

00
—ek __ £
SEZZ _1_2—£§C’

k=0

whereC < oo does not depend on This proves (5.1), and it follows that €
WLi(Qo, R™). Similarly, we prove (5.2):
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[ s £ 32k - - o2
Qo

k=1
=2 @k =1 = (k) = 9(0) — lim (k) < co.
k=1

For what follows we need to defiremore explicitly. Let

1 1> du
pk) = §<l+ X//; —\If_l(u))

for largek, wherei > 0 is chosen so thati2o = 1. Theng and|¢’| are decreas-
ing. By (5.5), for largek we have

K(x) < —2 = 25cq0Xk) = wi(k)
[’ (k)]
and thus

f eXpOW(K (1) dx < Y 27" exp(W(w (k)
Qo &

— Zz—nkek — Z(Z—ne)k < 00.
k k

Thus (5.3) is proven.
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