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ANOTHER STEP TOWARD AN OPTIMAL

TWO-PARAMETER SOR METHOD

Saadat Moussavi

Abstract. The SOR method is a well-known method obtained from
a one-part splitting of the system matrix A, using one parameter ω for the
diagonal. Using one parameter for the lower triangular matrix of A, M.
Sisler introduced a new method. Later, he combined the standard SOR
method and his method to get a two-parameter method.

Sisler proved that for cyclic and positive-definite matrices, if zero is an
eigenvalue of the Jacobi iteration matrix, the two-parameter method is not
superior to the SOR method.

In this paper we generalize Sisler’s method and provide a range for the
second parameter on which the two-parameter method is superior to the
SOR method.

1. Introduction. We wish to find the solution vector x to the linear
system Ax = b where A is a sparse n× n matrix, and b is a given vector in
the complex n-space. Usually A is not easy to invert. Let A0 be an easy to
invert part of A and write

A = A0 −A1 (1.1.1)

or equivalently,
A = A0(I −A−1

0 A1) = A0(I −B) (1.1.2)

where B = A−1
0 A1 is called the iteration matrix.

Display (1.1.1) is called an additive splitting which defines the sequence
{xk} for an arbitrary vector x0 via,

A0xk+1 −A1xk = b k = 0, 1, 2, . . .

or equivalently,

xk+1 = A−1
0 A1xk +A−1

0 b k = 0, 1, 2, . . . , and

xk+1 = Bxk +A−1
0 b k = 0, 1, 2, . . . .

By (1.1.1) it is clear that if {xk} converges at all, it must converge to
xsol = A−1b, the vector solution, where Axsol = b.

Display (1.1.2) shows that {xk} converges to xsol = A−1b for each x0

if and only if ρ(B) < 1 where ρ(B) is the spectral radius of B [8].
We use (1.1.2) to measure the asymptotic convergence R∞ of the se-

quence {xk}, where R∞ is defined by R∞=-log ρ(B), which carries informa-
tion about how fast the sequence {xk} converges. In fact 1

R∞

asymptotically
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represents the number of iterations that suffice to produce one additional
decimal place of accuracy in the x′ks.

The above splitting is called stationary since there is no altering of the
parameter from iteration to iteration, and it is a one-part splitting since
each xk+1 depends on one previous vector xk. The following well-known
iteration methods are examples of one-part stationary splitting.

For the given matrix A, let −L, −U , and D denote the strictly lower
triangular, strictly upper triangular, and diagonal part of A, respectively.

JACOBI Method. Choose A0 = D and A1 = L + U . The Jacobi
iteration matrix is represented by BJ = A−1

0 A1 = D−1(L+ U).

Successive Overrelaxation (SOR) Method. Choose A0 = 1
ω
D −

L and A1 = ( 1
ω
− 1)D + U . The SOR iteration matrix is represented by

Bω = A−1
0 A1 = (D − ωL)−1((1 − ω)D + ωU). (1.1.3)

The Successive Overrelaxation (SOR) method was developed indepen-
dently in the 1950’s by Frankel [2] and Young [12,13]. Since then there
has been much interest in using more than one parameter for the SOR
method to improve the convergence [3, 4, 5, 6, 7, 9]. In 1972 Sisler [9]
used one more parameter, say α, for the lower triangular matrix L. Hence,
A0 = D − αL and A1 = (1 − α)L+ U .

A similar conclusion holds for the upper triangular matrix U . Later,
Sisler combined his method and the SOR method [10] to obtain

A0 =
1

ω
D − αL and A1 =

(

1 −
1

ω

)

D + (1 − α)L+ U.

Then

B(ω,α) = (D − ωαL)−1((1 − ω)D + (1 − α)ωL+ ωU). (1.1.4)

He studied these methods for a cyclic matrix A and showed that if A
is also positive-definite and µ = 0 is an eigenvalue of the Jacobi iteration
matrix BJ , then the two-parameter method (1.1.4) is not superior to the
SOR method (1.1.3). His proof of Corollary 2.3 is rather complicated.

Later, Hadjidimos further developed Sisler’s method and called the
result the Accelerated Overrelaxation (AOR) method [3].

The modified Successive Overrelaxation (MSOR) method was first con-
sidered by Devogelaere [1]. Suppose the matrix A in the following form

A =

[

D1 M

N D2

]
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where D1 and D2 are square, non-singular matrices. Use ω for the “red”
equations corresponding toD1 and ω′ for the “black” equations correspond-
ing to D2. The iteration matrix for the MSOR method is given by

B(ω,ω′) = A−1
0 A1 =

[

(1 − ω)I1 ωF

ω′(1 − ω)G ωω′GF + (1 − ω′)I2

]

where F = −D−1
1 M and G = −D−1

2 N . Young [14] proved that if A is
positive-definite then ρ(Bωb

) < ρ(B(ω,ω′)), where ωb is the optimal param-
eter for the SOR method and ρ(B(ω,ω′)) is the virtual spectral radius of
B(ω,ω′). Young also showed that if A is positive-definite and 0 < ω, ω′ ≤ 1
then the Gauss-Seidel (SOR with ω = 1) iteration method converges faster
than the MSOR method. In [5], we generalize Young’s theorem for the case
that the MSOR method converges faster than the Gauss-Seidel method
and we combined the SOR and MSOR methods, which gives the following
invertible part:

A =

[

1
ω
D1 0
αN 1

ω′
D2

]

.

In this paper we generalize Sisler’s result in Theorem 2.2. Sisler’s theorem
with A positive-definite and µ = 0 an eigenvalue of BJ [11] becomes Corol-
lary 2.3 to our theorem. Furthermore, when the eigenvalues of the SOR
method are restricted to a certain configuration in the complex plane, we
introduce, in Theorem 2.4 and Theorem 2.5, a range value of α, for which
the two-parameter method has faster convergence than the SOR method.

2. A Generalized Two-Parameter Method. The matrix

B(ω,ω′,α) = A−1
0 A1 =

[

(1 − ω)I1 ωF

ω′(1 − αω)G αωω′GF + (1 − ω′)I2

]

is the iteration matrix for the accelerated MSOR method [5].
It has been shown that λ, the eigenvalue of the accelerated MSOR

iteration matrix, and µ, the eigenvalue of BJ , the Jacobi iteration matrix,
are related by the following equation [5].

(λ+ ω − 1)(λ+ ω′ − 1) = (αλ + (1 − α))ωω′µ2. (2.1.5)

Theorem 2.1. Suppose that A =

[

D1 M

N D2

]

, where D1 and D2 are

non-singular matrices. If ζ is an eigenvalue of the two-parameter iteration
matrix B( δ

α
, δ

α
,α) and λ is an eigenvalue of the SOR method, then

ζ =
1

α
λ+

(

1 −
1

α

)

. (2.1.6)
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Proof. By (2.1.5), if ζ is an eigenvalue of B( δ

α
, δ

α
,α) and µ is an eigen-

value of the Jacobi iterations matrix BJ , then

(

ζ +
δ

α
− 1

)2

= (αζ + (1 − α))
δ2

α2
µ2. (2.1.7)

If λ is an eigenvalue of the SOR method and µ is an eigenvalue of Jacobi
iteration matrix BJ , then

(λ+ δ − 1)2 = λδ2µ2 [10]. (2.1.8)

By (2.1.7) and (2.1.8), we have

α2(ζ + δ
α
− 1)2

αζ + (1 − α)
=

(λ+ δ − 1)2

λ
, and

λ(α(ζ − 1) + δ)2 = (α(ζ − 1) + 1)(λ+ δ − 1)2. (2.1.9)

Let ν = ζ − 1 in (2.1.9). Then

(λα2)ν2 + (2αδλ− α(λ+ δ − 1)2)ν − (λ+ δ − 1)2 + λδ2 = 0. (2.1.10)

The discriminant, ∆, of (2.1.10) is

∆ = α2(λ+ δ − 1)4 − 4α2λ(δ − 1)(λ+ δ − 1)2

= α2(λ+ δ − 1)2(λ − δ + 1)2

and the solutions are

v1 =
λ− 1

α
and v2 =

(δ − 1)2 − λ

αλ
.

Since v = ζ − 1,

ζ =
1

α
λ+

(

1 −
1

α

)

or (2.1.11)

ζ =
1

α

(δ − 1)2

λ
+

(

1 −
1

α

)

. (2.1.12)

We know that if α = 1, then the two-parameter method becomes
the standard SOR method. Therefore, (2.1.11) is the representation of
the relationship between the eigenvalues of the SOR method and the two-
parameter method.

Remark. By (2.1.11) an eigenvalue ζ of the two-parameter method is
obtained by shifting λ, the eigenvalue of the SOR method, on the line that
passes through the two points (1,0) and λ.
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Theorem 2.2. Suppose A is consistently ordered and 2-cyclic with all
the eigenvalues of BJ are real and ρ(BJ) < 1. If there is an eigenvalue of
ρ(Bwb

) with real part less than [ρ(BJ )]2, then the two-parameter method
is not superior to the SOR method.

Proof. Let ζ be an eigenvalue of the two-parameter method, and let λ
be an eigenvalue of the SOR method. By Theorem 2.1 we have

ζ =
1

α
λ+

(

1 −
1

α

)

.

(1) If α < 1, then an eigenvalue ζ of the two-parameter method can be
obtained by shifting the eigenvalue of the SOR method to the left of λ
on the line that passes through the two points S and λ where S = (1, 0)
and λ = (Re λ, Im λ).

(2) If α > 1, then an eigenvalue ζ of the two-parameter method is obtained
by shifting λ the eigenvalue of the SOR method to the right of λ on
the line that passes through the two points S and λ.

Since ω = ωb, the optimum value of ω, all the eigenvalues of Bωb
lie

on the circle with radius ωb − 1 and center at origin [12].
We draw two tangent lines from the point S to this circle, and call the

points of contact T and T ′ (Figure 1).

If the location of the point T is determined by the complex number x+ yi,
then

[ρ(Bωb
)]2 + ((x − 1)2 + y2) = 1

which leads to x = [ρ(Bωb
)]2. Thus, the real part of points T and T ′ is

[ρ(Bωb
)]2. Therefore, if an eigenvalue of Bωb

, say λs, has real part less than
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[ρ(Bωb
]2, then it must be located on the arc TAT ′ (Figure 1). We know

that Bωb
has an eigenvalue, say λ1 = ωb − 1, at point B [14] (Figure 1).

The parameter α > 1 slides λ1 toward the point S, which causes a
worse spectral radius for the two-parameter method. On the other hand,
α < 1 slides λs to the left, hence outside the circle, which causes a larger
spectral radius for the two parameter method. Under the assumption of
this theorem, α = 1 (i.e., the SOR method) is optimal.

Corollary 2.3. (Sisler) Suppose A is consistently ordered and 2-cyclic,
where all the eigenvalues of BJ are real and ρ(BJ) < 1. If µ = 0 is
an eigenvalue of the Jacobi iteration matrix BJ , then the two-parameter
method is not superior to the SOR method.

Proof. Since µ = 0 is an eigenvalue of BJ , λ = 1− ωb is an eigenvalue
of the SOR iteration matrix Bωb

[14]. Since λ = 1 − ωb is located on the
arc TAT ′ (Figure 1), by Theorem 2.2 the two-parameter method is not
superior to the SOR method for ω = ωb.

Theorem 2.4. Suppose A is consistently ordered and 2-cyclic, where all
the eigenvalues of BJ are real and ρ(BJ ) < 1. If all the eigenvalues of the
SOR method have real parts greater than [ρ(BJ)]2, then the two-parameter
method is superior to the SOR method for

[ρ(Bωb
)]2 + 1 − 2 Reλ

1 − [ρ(Bωb
]2

< α < 1,

where λ is the eigenvalue of Bωb
with the smallest real part.

Proof. All the eigenvalues of the SOR iteration matrix including λ1 =
ωb − 1 are on the arc TBT ′ (Figure 2). The parameter α < 1 shifts all
the eigenvalues of the SOR method toward the inside of the circle. We will
show that

α =
[ρ(Bωb

)]2 + 1 − 2 Reλ

1 − [ρ(Bωb
)]2

shifts the eigenvalue λ, which lies on TBT ′, to λs on the arc TAT ′ (Figure
2).
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The line Sλ that passes through the two points S and λ is given by

y =
Imλ

Reλ− 1
(x− 1). (2.4.13)

The circle with center at origin and radius ρ(Bωb
) is given by

x2 + y2 = [ρ(Bωb
)]2. (2.4.14)

The intersection of the line and the circle is obtained by solving the following
equation.

[(Imλ)2 + (Reλ− 1)2]x2 − 2 (Imλ)2x+ (Imλ)2 − (Reλ− 1)2[ρ(Bωb
)]2 = 0.
(2.4.15)

We get the two points
(Re λ, Imλ)

and

(

2[ρ(Bωb
)]2 − Reλ− Reλ[ρ(Bωb

)]2

[ρ(Bωb
)]2 − 2 Reλ+ 1

,
Imλ(1 − [ρ(Bωb

)]2

[ρ(Bωb
)]2 − 2 Reλ+ 1

)

represented by λ and λs, respectively. Since

|λS |
2 = (ReλS)2 + (Im λS)2 = [ρ(Bωb

)]2,

λS lies on the circle.
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Using the fact that λs = 1
α
λ+ (1 − 1

α
), we can compute α by

α =
[ρ(Bωb

)]2 − 2Reλ+ 1

1 − [ρ(Bωb
)]2

. (2.4.16)

The parameter α (2.4.16) shifts λ, which lies on TBT ′, to λS on the arc
TAT ′. Therefore,

[ρ(Bωb
)]2 + 1 − 2Reλ

1 − [ρ(Bωb
)]2

< α < 1

will shift all the eigenvalues of the SOR method toward the inside of the
circle but never outside the circle. This implies that the spectral radius of
the two-parameter method is smaller than ρ(Bωb

).

Example 2.4.1. The eigenvalues of the optimal SOR method, where
ωb = 1.50132 are:

λ1, λ2 = 0.4352± 0.248842762i,

λ3, λ4 = 0.4703± 0.1736077544i,

λ5, λ6 = 0.49± 0.1055327258i, and

λ7 = 0.50132.

The spectral radius of the SOR method is ρ(Bωb
) = 0.50132.

Note that the two points T and T ′ (Figure 2) are located at
0.2513217427 ± 0.433773125i. All the eigenvalues of Bωb

are located on
the arc TBT ′. Among the eigenvalues of Bωb

, λ1 and λ2 have the smallest
real part, Reλ = 0.4352. Using (2.4.16) to calculate α, we get

α = 0.508792313.

By Theorem 2.4, any α in the range of 0.508792313 < α < 1 provides a
faster two-parameter method compared to the SOR method. We check the
results for α = 0.65 and α = 0.84.

(1) Let α = 0.65. The eigenvalues of the two-parameter method are

ζ1, ζ2 = 0.1310769231± 0.38288349634i,

ζ3, ζ4 = 0.1850769231± 0.2670888529i,

ζ5, ζ6 = 0.2153846154± 0.1629734243i, and

ζ7 = 0.2328.

The spectral radius of the two-parameter method is ρ(B(ωb,α)) =
0.40406526522. Hence, ρ(B(ωb,α)) < ρ(ωb).
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(2) Let α = 0.84. The eigenvalues of the two-parameter method are

ζ1, ζ2 = 0.3276190476± 0.2962413407i,

ζ3, ζ4 = 0.3694047619± 0.2066758981i,

ζ5, ζ6 = 0.3928571429± 0.1261103879i, and

ζ7 = 0.406333333.

The spectral radius of the two-parameter method is ρ(B(ωb,α)) =
0.4416935279.
Hence, ρ(B(ωb,α)) < ρ(ωb).

Theorem 2.8. Let A =

[

D1 M

N D2

]

, where D1 and D2 are non-singular

matrices. Suppose the eigenvalues of the SOR method lie inside or on the
circle with center at origin and radius ρ(Bω). If all the eigenvalues that
represent the spectral radius of the SOR method are located either on the
arc TAT ′ or on the arc TBT ′ (Figure 3), then the two-parameter method
has faster convergence than the SOR method for the following range of α:

Case 1. If all those eigenvalues of the SOR method that represent the
spectral radius of Bω are located on arc TAT ′ then the range for α is

1 < α <
m

1 − Reλ−
√

[ρ(B)]2m− (Imλ)2
,

where λ is the eigenvalue of the SOR method with the largest real part,
and m = 1 + |λ| − 2Reλ.

Case 2. If those eigenvalues of the SOR method which represent the spectral
radius of Bω are all located on arc TBT ′ then the range for α is

m

1 − Reλ+
√

[ρ(B)]2m− (Imλ)2
< α < 1,

where λ is the eigenvalue of the SOR method with the smallest real part,
and m = 1 + |λ| − 2Reλ.
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Proof.

Case 1. Let the eigenvalue ψ of the SOR method which represents the
spectral radius of Bω lie on arc TAT ′, and let λ be the eigenvalue of the
SOR method with the largest real part.

We will show that

α =
m

1 − Reλ±
√

[ρ(B)]2m− (Imλ)2
, (2.5.17)

where m = 1 + |λ| − 2Reλ shifts the eigenvalue λ, which lies inside the
circle, to λL on the arc to TAT ′ or to λR on the arc TBT ′ (Figure 3).

By (2.4.13) and (2.4.14) we have [(Imλ)2+(Reλ−1)2]x2−2 (Imλ)2x+
(Imλ)2 − (Reλ− 1)2[ρ(Bωb

)]2 = 0. Hence,

x =
(Im λ)2 ± (Reλ− 1)

√

[ρ(Bω)]2((Imλ)2 + (1 − Reλ)2) − (Im λ)2

(Reλ− 1)2 + (Imλ)2
.

Let m = (Reλ − 1)2 + (Imλ)2 = 1 + |λ| − 2 Reλ. Hence, the real part of
the new point ζ is

Re ζ =
(Imλ)2 ± (Reλ− 1)

√

[ρ(Bω)]2m− (Imλ)2

m
. (2.5.18)

By (2.4.13),

Im ζ =
(Imλ)[(Im λ)2 ± (Reλ− 1)

√

[ρ(Bω)]2m− (Imλ)2

m(Reλ− 1)
. (2.5.19)
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Using (2.5.18), (2.5.19), and the fact that ζ = 1
α
λ+ (1− 1

α
) (Theorem 2.1)

to calculate α, we get

α =
m

1 − Reλ±
√

[ρ(B)]2m− (Imλ)2
, where m = 1 + |λ| − 2 Reλ.

Let
α1 =

m

1 − Reλ−
√

[ρ(B)]2m− (Im λ)2
. (2.5.20)

Since [ρ(B)]2 > |λ|2,

[ρ(B)]2 > 1 − 2(1 − Reλ) + 1 − 2 Reλ+ |λ| = 1 − 2(1 − Reλ) +m.

Therefore,

[ρ(B)]2m > m−2m(1−Reλ)+m2 = 1−2Reλ+|λ|−2(1−Reλ)m+m2, and

[ρ(B)]2m− (Imλ)2 > 1 − 2Reλ+ (Reλ)2 − 2(1− Reλ)m+m2.

Hence,
√

[ρ(B)2m− (Imλ)2 > (1 − Reλ) −m,

which implies

α1 =
m

1 − Reλ−
√

[ρ(B)]2m− (Im λ)2
> 1.

Let
α2 =

m

1 − Reλ+
√

[ρ(B)]2m− (Imλ)2
. (2.5.21)

In an analogous way, we can show that α2 < 1.
Since in Case 1 the SOR method has at least one eigenvalue on the arc

TAT ′, α has to be greater than 1 to ensure the shifting toward the inside
of the circle. If we choose α = α1 > 1 (2.5.20) then ζ = λR will be the
result of the shifting. Hence, any α in the range

1 < α <
m

1 − Reλ−
√

[ρ(B)]2m− (Imλ)2

keeps all the eigenvalues of the SOR method inside the circle ρ(B(ω,α)) <
ρ(Bω).

Case 2. Since in this case the SOR method has at least one eigenvalue
on the arc TBT ′, α has to be less than 1 to ensure the shifting toward the
inside of the circle. If we choose α = α2 < 1 (2.5.21), λL will be the result
of the the shifting. Hence, any α in the range

m

1 − Reλ−
√

[ρ(B)]2m− (Im λ)2
< α < 1
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keeps all the eigenvalues of the the SOR method inside the circle and
ρ(B(ω,α)) < ρ(Bω).

Example 2.5.1. The eigenvalues of the SOR iteration matrix Bω are

λ1, λ2 = −0.65± 0.466368952i,

λ3, λ4 = −0.3± 0.5766282297i, and

λ5, λ6 = 0.51± 0.4794788838i.

The spectral radius of the SOR method is ρ(Bω) = 0.8.

Note that the two points T and T ′ are located at 0.64 ± 0.48i. The
two eigenvalues λ1 and λ2 which represent the spectral radius of Bω lie on
the arc TAT ′ (Figure 3). Since λ5 and λ6 are the eigenvalues of Bω with
the largest real parts, using (2.5.20) to calculate α, we get

α = α1 = 2.100751497.

By Theorem 2.5, any α in the range 1 < α < 2.100751497 provides a faster
two-parameter method compared to the SOR method.

(1) Let α = 1.2. The eigenvalues of the two-parameter method are

ζ1, ζ2 = −0.374999± 0.3886407933i,

ζ3, ζ4 = −0.0833333± 0.4805235247i, and

ζ5, ζ6 = 0.591666± 0.3995657365i.

The spectral radius of the two-parameter method is ρ(B(ω,α)) =
0.71394833.
Therefore, ρ(B(w,α)) < ρ(Bω).

(2) Let α = 1.92. The eigenvalues of the two-parameter method are

ζ1, ξ2 = 0.1406250001± 0.2429004958i,

ζ3, ζ4 = 0.322916667± 0.3003272029i, and

ζ5, ζ6 = 0.74479166667± 0.249728583i.

The spectral radius of the two-parameter method is ρ(B(ω,α)) =
0.7855437563.
Therefore, ρ(B(ω,α)) < ρ(Bω).

Example 2.5.2. The eigenvalues of the SOR iteration matrix Bω are

λ1, λ2 = 0.71± 0.3686461718i,

λ3, λ4 = −0.3± 0.5766282297i, and

λ5, λ6 = 0.51± 0.4794788838i.
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The spectral radius of the SOR method is ρ(Bω) = 0.8.
Note that the two points T and T ′ are located at 0.64 ± 0.48i. The

two eigenvalues λ1 and λ2 which represent the spectral radius of Bω lie on
the arc TBT ′ (Figure 3).

Since λ3 and λ4 are the eigenvalues of Bω with the smallest real parts,
using (2.5.21) to calculate α, we get

α = α2 = 0.886739268.

By Theorem 2.8, any α in the range of 0.886739268 < α < 1 provides a
faster two-parameter method compared to the SOR method.

Let α = 0.9. The eigenvalues of the two-parameter method are

ζ1, ζ2 = 0.6777778± 0.4096068575i,

ζ3, ζ4 = −0.444444± 0.6406980329i, and

ζ5, ζ6 = 0.4555556± 0.5327543153i.

The spectral radius of the two-parameter method is ρ(B(w,α)) =
0.791934.

Therefore, ρ(B(ω,α)) < ρ(Bω).
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