A NEW CLOSURE OPERATOR IN BITOPOLOGICAL SPACES AND ASSOCIATED SEPARATION AXIOMS

R. Raja Rajeswari and M. Lellis Thivagar

Abstract. The aim of this paper is to introduce a new closure operator and an associated new topology in bitopological spaces. We also define some new separation axioms and a comparative study is done.

1. Introduction and Preliminaries. In 1986, Maki introduced new sets called Λ -sets and \vee -sets of a given set B. He obtained B^{Λ} and B^{\vee} as the intersection of all open sets containing B and the union of all closed sets contained in B, respectively. By using the concept of Λ -sets and \vee -sets, Maki, Umehara, and Yamamura [4, 5, 6] defined and investigated different new classes of sets. In this paper, we define a new class of closure operator, which is also a Kuratowski closure operator with respect to the generalized Λ_u -sets, an analogue of Maki's work [4]. Thus, a new topology τ^{\vee_u} is formed. We also characterize the class of ultra- $T_{1/2}$ spaces using the newly defined spaces T_U^L and $T_{\vee_u}^R$.

Let us now recall some definitions which are useful to read this paper. Throughout this paper, (X, τ_1, τ_2) and (Y, σ_1, σ_2) (or simply X and Y) denote the bitopological spaces on which no separation axioms are assumed unless explicitly stated.

<u>Definition 1.1</u>. [3] A subset A of X is called

- (i) $\tau_1 \tau_2$ -open if $A \in \tau_1 \cup \tau_2$;
- (ii) $\tau_1 \tau_2$ -closed if $A^c \in \tau_1 \cup \tau_2$.

<u>Definition 1.2</u>. [3] Let A be a subset of X. Then the $\tau_1\tau_2$ -closure of A is denoted as $\tau_1\tau_2$ -Cl(A) and defined as $\tau_1\tau_2$ -Cl(A) = $\cap\{F \mid A \subset F \text{ and } F \text{ is } \tau_1\tau_2\text{-closed}\}.$

<u>Definition 1.3.</u> [3] A subset A of X is called $(1, 2)\alpha$ -open if A $\subset \tau_1$ -Int $(\tau_1\tau_2$ -Cl $(\tau_1$ -Int(A))). The complement of a $(1, 2)\alpha$ -open set is known as a $(1, 2)\alpha$ -closed set. The family of all $(1, 2)\alpha$ -open and $(1, 2)\alpha$ -closed sets are denoted as $(1, 2)\alpha O(X)$ and $(1, 2)\alpha C(X)$ (or $(1, 2)\alpha Cl(X)$), respectively.

<u>Definition 1.4.</u> [3] A subset A of X is called a $(1,2)\alpha$ g-closed set if $(1,2)\alpha Cl(A) \subseteq U$ whenever $A \subseteq U$ and $U \in \alpha O(X)$, where $(1,2)\alpha Cl(A) = \cap \{F \mid F \subset A \text{ and } F \in (1,2)\alpha C(X)\}.$

<u>Definition 1.5</u>. A space X is said to be

- (i) [1] ultra- R_0 space if and only if for every $x \in G$, where G is a $(1,2)\alpha$ -open set, $(1,2)\alpha Cl(\{x\}) \subset G$;
- (ii) [3] ultra- T_0 space if and only if for any two distinct points x and y in X, there exists a $(1,2)\alpha$ -open set G, containing x but not y.

<u>Definition 1.6.</u> [3] A bitopological space X is called ultra- $T_{1/2}$ if every $(1,2)\alpha$ g-closed set is $(1,2)\alpha$ -closed.

<u>Remark 1.7</u>. [3] In an ultra- $T_{1/2}$ space, every singleton set is either $(1,2)\alpha$ -open or $(1,2)\alpha$ -closed.

<u>Definition 1.8.</u> [9] In a bitopological space X, a subset B of X is an ultra- Λ -set (briefly, Λ_u -set) if $B = B^{\Lambda_u}$, where $B^{\Lambda_u} = \bigcap \{G \mid G \supset$ B and $G \in (1,2)\alpha O(X)$.

<u>Definition 1.9.</u> [9] In a bitopological space X, a subset B of X is an ultra- \vee -set (briefly \vee_u -set) if $B = B^{\vee_u}$, where $B^{\vee_u} = \bigcup \{F \mid F \subseteq B \text{ and } F \in U\}$ $(1,2)\alpha C(X)$. The family of all Λ_u -sets (resp. family of \vee_u -sets) is denoted by $\Lambda_u O(X)$ (resp. $\vee_u O(X)$).

Proposition 1.10. [9] For any bitopological space X, the following hold: (i) The sets \emptyset and X are both \vee_u sets and Λ_u -sets.

- (ii) Every union of Λ_u -sets is a Λ_u -set.
- (iii) Every intersection of \lor_u -set is a \lor_u -set.
- (iv) $B^{\vee_u} \subseteq B$.
- (v) $B \subseteq B^{\Lambda_u}$.
- (vi) $(B^{\overline{c}})^{\Lambda_u} = (B^{\vee_u})^c$, that is $(X B)^{\Lambda_u} = X B^{\vee_u}$.

Proposition 1.11. [9] Let $\{B_i : i \in I\}$ be subsets of a bitopological space (X, τ_1, τ_2) . Then the following are valid:

- space (A, T_1, T_2) . There the following are taken (i) $(\bigcup_{i \in I} B_i)^{\Lambda_u} = \bigcup_{i \in I} B_i^{\Lambda_u};$ (ii) $(\bigcap_{i \in I} B_i)^{\Lambda_u} \subseteq \bigcap_{i \in I} B_i^{\Lambda_u};$ (iii) $(\bigcup_{i \in I} B_i)^{\vee_u} \supseteq \bigcup_{i \in I} B_i^{\vee_u}$ for any index set I.

<u>Definition 1.12</u>. [9] In a space X, a subset B is called

- (i) Generalized- Λ_u -set (briefly g. Λ_u -set) of X if $B^{\Lambda_u} \subseteq F$ whenever $B \subseteq F$ and $F \in (1,2) \alpha CL(X)$. $D^{\Lambda_u}(X)$ denotes the family of all g. Λ_u -sets of X;
- (ii) Generalized \vee_u -set (briefly g. \vee_u -set) of X if B^c is a g. Λ_u -set. $D^{\vee_u}(X)$ denotes the family of all $g \vee_u$ -sets of X.

<u>Theorem 1.13</u>. [9] A subset A of (X, τ_1, τ_2) is a g. \vee_u -set if and only if $U \subseteq B^{\vee_u}$ whenever $U \subseteq B$ and U is a $(1,2)\alpha$ -open set.

2. A New Closure Operator C^{Λ_u} . By using the family of Λ_u sets of a bitopological space X we define a closure operator C^{Λ_u} and the associated topology τ^{Λ_u} .

<u>Definition 2.1</u>. For any subset B of a bitopological space X we define $C^{\Lambda_u}(B) = \cap \{G : B \subseteq G \text{ and } G \in D^{\Lambda_u}\} \text{ and } Int^{\vee_u}(B) = \cup \{F : F \subseteq G \}$ $B \text{ and } F \in D^{\vee_u} \}.$

Proposition 2.2. Let A and B be subsets of a bitopological space X. Then

(i) $C^{\Lambda_u}(B^c) = (Int^{\vee_u}(B))^c;$

(ii) If $A \subseteq B$, then $C^{\Lambda_u}(A) \subseteq C^{\Lambda_u}(B)$;

(iii) If B is a g. Λ_u -set, then $C^{\Lambda_u}(B) = B$;

(iv) If B is a g. \lor_u -set, then $Int^{\lor_u}(B) = B$.

<u>Theorem 2.3.</u> C^{Λ_u} is a Kuratowski closure operator.

<u>Proof.</u> (i) $C^{\Lambda_u}(\emptyset) = \emptyset$ is obvious.

(ii) $A \subset C^{\Lambda_u}(A)$ is true from the definition.

(iii) We now prove that $C^{\Lambda_u}(A \cup B) = C^{\Lambda_u}(A) \cup C^{\Lambda_u}(B)$.

Suppose there exists a point $x \in X$ such that $x \notin C^{\Lambda_u}(A \cup B)$. Then there exists a subset $G \in D^{\Lambda_u}$ such that $A \cup B \subseteq G$ and $x \notin G$. Then $A \subseteq G, B \subseteq G$, and $x \notin G$ which implies $x \notin C^{\Lambda_u}(A)$ and $x \notin C^{\Lambda_u}(B)$. So $C^{\Lambda_u}(A) \cup C^{\Lambda_u}(B) \subseteq C^{\Lambda_u}(A \cup B)$.

Suppose that there exists a point $x \in X$ such that $x \notin (C^{\Lambda_u}(A) \cup C^{\Lambda_u}(B))$. Then there exists two sets G_1 and G_2 in D^{Λ_u} such that $A \subseteq G_1$ and $B \subseteq G_2$ but $x \notin G_1$ and $x \notin G_2$. Now let $G = G_1 \cup G_2$. By Proposition 2.4 of [9], $G \in D^{\Lambda_u}$. Then $A \cup B \subseteq G$ and $x \notin G$ and so $x \notin C^{\Lambda_u}(A \cup B)$, which implies $C^{\Lambda_u}(A \cup B) \subseteq C^{\Lambda_u}(A) \cup C^{\Lambda_u}(B)$.

(iv) We now prove $C^{\Lambda_u}(C^{\Lambda_u}(B)) = C^{\Lambda_u}(B)$. Suppose there exists a point $x \in X$ such that $x \notin C^{\Lambda_u}(B)$. Then there exists a $U \in D^{\Lambda_u}$ such that $x \notin U$ and $B \subseteq U$. By Proposition 2.2, $C^{\Lambda_u}(B) \subseteq C^{\Lambda_u}(U) = U$. Thus, we have $x \notin C^{\Lambda_u}(C^{\Lambda_u}(B))$. Hence, $C^{\Lambda_u}(C^{\Lambda_u}(B)) \subseteq C^{\Lambda_u}(B)$. Also by (ii), $C^{\Lambda_u}(B) \subseteq C^{\Lambda_u}(C^{\Lambda_u}(B))$. Therefore, $C^{\Lambda_u}(C^{\Lambda_u}(B)) = C^{\Lambda_u}(B)$.

<u>Definition 2.4</u>. Let τ^{Λ_u} be a bit opological space generated by C^{Λ_u} in the usual manner.

 $\begin{aligned} \tau^{\Lambda_u} &= \{B : B \subseteq X, C^{\Lambda_u}(B^c) = B^c\}. \\ \text{Here, we also define another family of subsets.} \\ \rho^{\Lambda_u} &= \{B : C^{\Lambda_u}(B) = B\}. \\ \text{Then we can also say that} \\ \rho^{\Lambda_u} &= \{B : B^c \in \tau^{\Lambda_u}\}. \end{aligned}$

<u>Theorem 2.5.</u> For a space X, the following hold:

- (i) $\tau^{\Lambda_u} = \{B : B \subseteq X. Int^{\vee_u}(B) = B\}.$
- (ii) $(1,2)\alpha O(X) \subseteq D^{\Lambda_u} \subseteq \rho^{\Lambda_u}$.
- (iii) $(1,2)\alpha CL(X) \subseteq D^{\vee_u} \subseteq \tau^{\Lambda_u}.$

<u>Proof.</u> (i) Let $A \subseteq X$. Then $A \in \tau^{\Lambda_u}$ if and only if $C^{\Lambda_u}(A^c) = A^c$. By Proposition 2.2, $C^{\Lambda_u}(A^c) = [Int^{\vee_u}(A)]^c = A^c$, which implies $Int^{\vee_u}(A) = A$ and so $A \in \tau^{\Lambda_u}$.

(ii) Let $B \in (1,2)\alpha O(X)$. Then B is a Λ_u -set and, by the definition of Λ_u -set and $g.\Lambda_u$ -set, B is a $g.\Lambda_u$ -set. So $B \in D^{\Lambda_u}$. Then $C^{\Lambda_u}(B) = B$ which implies $B \in \rho^{\Lambda_u}$. So $(1,2)\alpha O(X) \subseteq D^{\Lambda_u} \subseteq \rho^{\Lambda_u}$.

(iii) Let $B \in (1,2)\alpha C(X)$. Then B is a $g.\vee_u$ -set. So $B \in D^{\vee_u}$ and so $Int^{\vee_u}(B) = B$, which implies $C^{\Lambda_u}(B^c) = B^c$. So $B \in \tau^{\Lambda_u}$. Hence, $(1,2)\alpha CL(X) \subseteq D^{\vee_u} \subseteq \tau^{\Lambda_u}$. Proposition 2.6. Let X be a bitopological space. Then

- (i) for each $x \in \overline{X}$, $\{x\}$ is either $(1, 2)\alpha$ -open or $\{x\}^c$ is a g.A-set;
- (ii) for each $x \in X$, $\{x\}$ is $(1, 2)\alpha$ -open or $\{x\}$ is a g. \lor_u -set.

<u>Proof.</u> Assume $\{x\}$ is not $(1,2)\alpha$ -open. Then $X - \{x\}$ is not a $(1,2)\alpha$ -closed set. So the only $(1,2)\alpha$ -closed set containing $\{x\}^c$ is X and so $\{x\}^c$ is a g. Λ_u -set. Hence, $\{x\}$ is a g. \vee_u -set.

<u>Proposition 2.7.</u> If $(1,2)\alpha O(X) = \tau^{\Lambda_u}$, then every singleton set $\{x\}$ of X is τ^{Λ_u} -open.

<u>Proof.</u> Suppose $\{x\}$ is not $(1, 2)\alpha$ -open. By Proposition 2.6, $\{x\}^c$ is a g. Λ_u -set. Then $x \in \tau^{\Lambda_u}$. If $\{x\}$ is $(1, 2)\alpha$ -open, then by assumption $\{x\} \in \tau^{\Lambda_u}$.

Proposition 2.8. Let X be a bitopological space. Then

- (i) if $(1,2)\alpha CL(X) = \tau^{\Lambda_u}$, then every $g.\Lambda_u$ -set of X is $(1,2)\alpha$ -open;
- (ii) if every g. Λ_u -set of X is $(1,2)\alpha$ -open, then $\tau^{\Lambda_u} = \{B : B \subseteq X, B = B^{\Lambda_u}\}.$

<u>Proof.</u> Let B be a g. Λ_u -set of X. That is, $B \in D^{\Lambda_u}$ and, by Theorem 2.5, $B \in \rho^{\Lambda_u}$ and so $B^c \in \tau^{\Lambda_u}$. By the assumption $B^c \in (1, 2) \alpha CL(X)$, we have $B \in (1, 2) \alpha O(X)$.

(ii) Let $A \subseteq X$ and $A \in \tau^{\Lambda_u}$. Then $C^{\Lambda_u}(A^c) = A^c = \cap \{G : A^c \subseteq G \text{ and } G \in D^{\Lambda_u}\} = \cap \{G : A^c \subseteq G \text{ and } G \in (1,2)\alpha O(X)\} = (A^c)^{\Lambda_u}$. Then, by Proposition 1.10, $A^c = (A^c)^{\Lambda_u} = X - A^{\vee_u}$. So we get $A = A^{\vee_u}$. That is, $A \in \tau^{\Lambda_u} = \{B : B \subseteq X \text{ and } B = B^{\vee_u}\}$.

<u>Remark 2.9</u>. From Definition 1.8, 2.1, and by Theorem 2.5, we can say that $(1,2)\alpha CL(X) \subseteq \vee_u O(X) \subseteq D^{\vee_u} \subseteq \tau^{\Lambda_u}$.

3. New Separation Axioms.

<u>Definition 3.1</u>. A bitopological space (X, τ_1, τ_2) is called a

- (i) T_u^L -space if and only if every $g \vee_u$ -set is a \vee_u -set;
- (ii) T_u^{LT} if and only if every $g \vee_u$ -set is a $(1,2)\alpha$ -closed set.

<u>Remark 3.2</u>. Every T_u^{LT} space is a T_u^L space, but the converse is not always true as can be seen from the following example.

Example 3.3. The space X defined in this example is a T_u^L space, but it is not a T_u^{LT} space. Let $X = \{a, b, c, d\}, \tau_1 = \{\phi, X, \{a\}, \{c\}, \{a, c\}, \{b, c\}, \{a, b, c\}, \{b, c, d\}\}$ and $\tau_2 = \{\phi, X, \{a, b\}\}$. Then $(1, 2)\alpha O(X) = \{\phi, X, \{a\}, \{c\}, \{a, c\}, \{b, c\}, \{a, b, c\}, \{a, c, d\}, \{b, c, d\}\}$ and $D^{\Lambda_u}(X) = \{\phi, X, \{a\}, \{c\}, \{a, c\}, \{b, c\}, \{c, d\}, \{a, b, c\}, \{a, c, d\}, \{b, c, d\}\}$.

<u>Definition 3.4</u>. A space X is said to be a

- (i) T_{\vee_u} space if every τ^{Λ_u} -open set is a g. \vee_u -set;
- (ii) $T^{R}_{\vee_{u}}$ space if every $\tau^{\Lambda_{u}}$ -open set is a \vee_{u} -set.

 $X = \{a, b, c, d\}, \tau_1 = \{\emptyset, X, \{d\}\}, \text{ and } \tau_2 =$ Example 3.5. $\{\emptyset, \overline{X}, \{c, d\}\}$. Then $(1,2)\alpha O(X) = \{\emptyset, X, \{d\}, \{a,d\}, \{b,d\}, \{c,d\}, \{a,b,d\}, \{a,c,d\}, \{b,c,d\}\}, \{a,c,d\}, \{b,c,d\}\}, \{a,c,d\}, \{b,c,d\}\}, \{a,c,d\}, \{b,c,d\}, \{c,d\}, \{c$ $(1,2)\alpha CL(X) = \{\emptyset, X, \{a\}, \{b\}, \{c\}, \{a,b\}, \{a,c\}, \{b,c\}, \{a,b,c\}\}, D^{\Lambda_u} =$ $\{ \emptyset, X, \{d\}, \{a, d\}, \{b, d\}, \{c, d\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\} \}, \text{ and } D^{\vee_u} = (1, 2) \alpha CL(X) = \tau^{\Lambda_u}. \text{ Here, } X \text{ is a } T^R_{\vee_u} \text{ space.}$

<u>Remark 3.6</u>. Every $T_{\vee_u}^R$ -space is a T_{\vee_u} -space. But the converse is not always true as seen from the following example.

Example 3.7. Let $X = \{a, b, c\}, \tau_1 = \{\phi, X, \{a\}\}, \text{ and } \tau_2 =$ $\{\phi, \overline{X}, \{b, c\}\}$. Then $D^{\wedge_u} = \{\phi, \overline{X}, \{a\}, \{a, b\}, \{a, c\}\} = \tau^{\Lambda_u}$. This space X is a T_{\vee_u} space but not a $T^R_{\vee_u}$ -space.

<u>Lemma 3.8</u>. For a g. \vee_u -set B of a space X, if $x \in X$ is a point such that $x \in B$ and $X \notin B^{\vee_u}$, then $\{x\}$ is neither $(1,2)\alpha$ -closed nor $(1,2)\alpha$ -open.

<u>Proof.</u> By the definition of B^{\vee_u} , the set $\{x\}$ is not $(1,2)\alpha$ -closed. By Theorem 1.13, $\{x\}$ is not $(1, 2)\alpha$ -open.

<u>Lemma 3.9</u>. For a bitopological space X, every singleton set $\{x\}$ is either $(1, 2)\alpha$ -closed or $\{x\}^c$ is $(1, 2)\alpha$ g-closed.

<u>Proof.</u> If $\{x\}$ is not $(1,2)\alpha$ -closed, then the only $(1,2)\alpha$ -open set containing $X - \{x\}$ is X. Hence, $\{x\}^c$ is $(1, 2)\alpha$ g-closed.

<u>Theorem 3.10</u>. The following statements in (X, τ_1, τ_2) are equivalent. (i) X is an ultra- $T_{1/2}$ space;

(ii) X is a T_u^L -space; (iii) X is a $T_{\vee_u}^R$ -space.

<u>Proof.</u> (i) \Rightarrow (ii) Suppose X is not an T_u^L -space. Then there exists a g. \vee_u -set which is not a \vee_u -set. Let $B^{\vee_u} \subset B$ but B^{\vee_u} is not equal to B. Then there exists an $x \in B$ but $x \notin B^{\vee_u}$. Hence, $\{x\}$ is not a $(1,2)\alpha$ -closed set. By Lemma 3.9, $X - \{x\}$ is a $(1, 2)\alpha$ -closed set. On the other hand, $\{x\}$ is not $(1, 2)\alpha$ -open (by Lemma 3.8). Therefore, $X - \{x\}$ is not $(1, 2)\alpha$ -closed but it is $(1,2)\alpha$ g-closed. This is a contradiction to the assumption that X is an ultra- $T_{1/2}$ space.

(ii) \Rightarrow (i) Suppose X is not an ultra- $T_{1/2}$ space. Then there exists a $B \subset X$ such that B is a $(1,2)\alpha$ -closed set but not $(1,2)\alpha$ -closed. Since B is not $(1,2)\alpha$ -closed, there exists a point $x \in X$ such that $x \in \alpha Cl(B)$ but $x \notin B$. By Proposition 2.6, the set $\{x\}$ is either $(1, 2)\alpha$ -open or a g. \vee_u -set.

Case (i). $\{x\}$ is $(1,2)\alpha$ -open. Then since $x \in (1,2)\alpha Cl(B), \{x\} \cap B =$ ϕ . This is a contradiction.

Case (ii). If $\{x\}$ is $g. \lor_u$ -set and $\{x\}$ is not $(1, 2)\alpha$ -closed, $\{x\}^{\lor_u} = \phi$. Hence, $\{x\}$ is not a g. \vee_u -set. This is a contradiction.

Case (iii). If $\{x\}$ is a g. \vee_u -set and $\{x\}$ is $(1,2)\alpha$ -closed, then $X - \{x\}$ is a $(1,2)\alpha$ -open set containing B. As B is a $(1,2)\alpha$ g-closed set, $(1,2)\alpha Cl(B) \subseteq X - \{x\}$, again this is a contradiction that $x \in (1,2)\alpha Cl(B)$.

(ii) \Rightarrow (iii) Let *B* be a τ^{Λ_u} -set. That is, $B = Int^{\vee_u}(B)$. By assumption, $D^{\vee_u}(X) = \vee_u O(X)$. Also, $(Int^{\vee_u}(B))^{\vee_u} = (\{\bigcup \{F : F \subseteq B, F \in D^{\vee_u}\}^{\vee_u} \supset \bigcup \{F : F^{\vee_u} \subseteq B, F \in D^{\vee_u}\} = Int^{\vee_u}(B)$. Again by Proposition 1.11, $(Int^{\vee_u}(B))^{\vee_u} \subseteq Int^{\vee_u}(B)$. Hence, $Int^{\vee_u}(B)$ is a \vee_u -set.

(iii) \Rightarrow (ii) Let *B* be a g. \lor_u -set. Then $Int^{\lor_u}(B) = B$ (by Definition 2.1) and, by assumption, it is a \lor_u -set.

<u>Theorem 3.11</u>. If X is an ultra- $T_{1/2}$ space, then X is a T_{\vee_u} space.

<u>Proof.</u> By Remark 2.9, we have $(1,2)\alpha CL(X) \subseteq \vee_u O(X) \subset D^{\vee_u} \subseteq \tau^{\Lambda_u}$. Again by Theorem 3.10, $\vee_u O(X) = \tau^{\vee_u}$. Therefore, $D^{\vee_u} = \tau^{\vee_u}$. Hence, X is a T_{\vee_u} space.

<u>Remark 3.12</u>. The converse of Theorem 3.11 need not always be true. This is shown by the following example.

<u>Lemma 3.14</u>. For a space X, every singleton set is a g. Λ_u -set if and only if $G = G^{\vee_u}$ for every $(1, 2)\alpha$ -open set G.

<u>Proof.</u> Let G be a $(1, 2)\alpha$ -open set and let $y \in X - G$. Then $\{y\}$ is a g. Λ_u -set and X-G is a $(1, 2)\alpha$ -closed set. $\{y\}^{\Lambda_u} \subseteq X-G$. Again, $U\{y\}^{\Lambda_u} \subseteq X - G$ for $y \in X - G$. By Proposition 1.11, $(U\{y\})^{\Lambda_u} = \cup\{\{y\}^{\Lambda_u}\}$ for $y \in X - G$ and hence, $\{U\{y\}^{\Lambda_u} : y \in X - G\} = (X - G)^{\Lambda_u} = \{(U\{y\}))^{\Lambda_u} : y \in X - G\} \subseteq X - G$. Again by Proposition 1.11, $X - G \subseteq (X - G)^{\Lambda_u}$. Therefore, $(X - G)^{\Lambda_u} = X - G = X - G^{\vee_u}$ and so $G = G^{\vee_u}$.

<u>Lemma 3.15</u>. The bitopological space X is an ultra- R_0 space if and only if $G = G^{\vee_u}$, where G is a $(1, 2)\alpha$ -open set.

<u>Proof.</u> Let X be ultra- R_0 . Let $x \in G$. Then $(1, 2)\alpha Cl(\{x\}) \subseteq G$. So we have $\{x\} \subseteq (1, 2)\alpha Cl(\{x\}) \subseteq G$ for each $x \in G$. Then $\{\cup\{x\} : x \in G\} \subseteq \{\cup(1, 2)\alpha Cl(\{x\}); x \in G\} \subset G$. Now let $F = (1, 2)\alpha Cl(\{x\})$. Then we have $G = \cup\{F : F \subseteq G \text{ and } F \in (1, 2)\alpha Cl(\{x\})\} = G^{\vee_u}$.

Conversely, let $G = U\{F_i : F_i \subseteq G \text{ and } F \in (1,2)\alpha C(X)\}$ and also, let $x \in G$. Then $x \in F_i$ for some i and F_i is $(1,2)\alpha$ -closed. Then $(1,2)\alpha Cl(\{x\}) \subseteq (1,2)\alpha Cl(F_i) = F_i \subseteq G$. Hence, X is ultra- R_0 .

<u>Theorem 3.16</u>. If X is an ultra- R_0 space, then X is T_{\vee_u} .

<u>Proof.</u> By Lemma 3.15, if X is ultra- R_0 and G is any $(1, 2)\alpha$ -open set, then $G = G^{\Lambda_u}$. By Lemma 3.14, every singleton set $\{b\}$ is a g. Λ_u -set.

Now let B be any subset of X. Then $B = \bigcup \{\{b\} = b \in B\}$ is also a $g.\Lambda_u$ -set. Thus, every subset of X is a $g.\Lambda_u$ -set. Hence, $D^{\Lambda_u} = P(X)$ and so $D^{\vee_u} = \tau^{\Lambda_u}$. That is, X is T_{\vee_u} .

<u>Remark 3.17</u>. Every T_{\vee_u} -space need not always be an ultra- R_0 -space. This can be seen by the following example.

 $\begin{array}{l} \underline{\text{Example 3.18. Let } X = \{a, b, c\}, \ \tau_1 = \{\emptyset, X, \{a\}, \{a, b\}, \{a, c\}\}, \ \text{and} \\ \tau_2 = \overline{\{\emptyset, X, \{b\}, \{c\}, \{b, c\}\}. \ \text{Then} \ (1, 2) \alpha O(X) = \{\emptyset, X, \{a\}, \{a, b\}, \{a, c\}\}, \\ (1, 2) \alpha CL(X) = \{\emptyset, X, \{b\}, \{c\}, \{b, c\}\}, \ D^{\Lambda_u} = \{\emptyset, X, \{a\}, \{b, a\}, \{a, c\}\}. \\ \text{Here, } D_u^{\vee} = (1, 2) \alpha CL(X) = \tau^{\vee}. \ \text{The space is not ultra-} R_0 \ \text{but } T_{\vee_u}. \end{array}$

<u>Remark 3.19</u>. The concepts of ultra- T_0 and T_{\vee_u} are independent. Example 3.13 and the following example justify this claim.

Example 3.20. Let X be the set of all real numbers and $\tau_1 = \{\{\emptyset, \overline{X}\} \cap \{(a, \infty) : a \in X\}, \tau_2 = \{\emptyset, X\}$. Now $(1, 2)\alpha O(X) = \tau_1$. Here, the space X is ultra- T_0 but not T_{\vee_u} .

References

- 1. S. A. Ponmani and M. L. Thivagar, "Remarks on Ultra Semi- T_{YS}^* Spaces," Antartica Journal of Mathematics, 3 (2006), 131–138.
- M. Caldas, "On Maps and Generalized Λ_s-sets," East-West Journal, 2 (2002), 181–190.
- M. L. Thivagar and R. R. Rajeswari, "On Bitopological Ultra Spaces," South East Bulletin of Mathematics, 31 (2007), 993–1008.
- H. Maki, "Generalized A-sets and the Associated Closure Operator, The Special Issue in Commemoration of Prof. Kazuadar IKEDA's Retirement, (1986), 139–146.
- H. Maki and J. Umehara, "A Note on the Homeomorphic Image of a T[∨]-spaces," Mem. Fac. Sci. Kochi. Univ (Math), 10 (1989), 39–45.
- H. Maki, J. Umehara, and Y. Yamamura, "Generalization of T_{1/2} Space Using Generalized-∨-sets," Indian. J. Pure and App. Maths, 19 (1988), 634–640.
- G. B. Navalagi, M. L. Thivagar, and R. R. Rajeswari, "On Some Extension of Semi-pre-open Sets in Bitopological Spaces," *Mathematical Forum*, 17 (2004), 63–76.
- G. B. Navalagi, M. L. Thivagar, R. R. Rajeswari, and S. A. Ponmani, "On (1,2)α-hyper Connected Spaces," *International Journal of Mathematics and Analysis*, (to appear).
- 9. R. R. Rajeswari, M. L. Thivagar, and S. A. Ponmani, " $g.\Lambda_u$ Mappings and $g.\vee_u$ -sets in Bitopological Spaces," (communicated).

R. Raja Rajeswari Department of Mathematics Sri Parasakthi College Courtallam - 627802 Tirunelveli Dt., TamilNadu, India email: raji_arul2000@yahoo.co.in

M. Lellis Thivagar Department of Mathematics Arul Anndar College Karumathur - 625514 Madurai Dt., TamilNadu, India email: mlthivagar@yahoo.co.in