
28 MISSOURI JOURNAL OF MATHEMATICAL SCIENCES

PASTING LEMMAS FOR g-CONTINUOUS FUNCTIONS

M. Anitha, R. Selvi, and P. Thangavelu

Abstract. The Pasting Lemma for continuous functions plays a key
role in algebraic topology. Several mathematicians have established pasting
lemmas for some stronger and weaker forms of continuous functions. In
this paper we prove pasting lemmas for rg-continuous, gp-continuous, gc-
irresolute, and gpr-continuous functions.

1. Introduction and Preliminaries. The Pasting Lemma for con-
tinuous functions has applications in algebraic topology. The continuous
functions defined on closed sets of a locally finite covering of a topologi-
cal space can be pasted to form a continuous function on the whole space.
In this paper we establish the pasting lemma for rg-continuous [14], gc-
irresolute [5], and gp-continuous [3] functions.

Throughout the paper, (X, τ) is a topological space on which no sep-
aration axiom is assumed unless explicitly stated. Let A be a subset of X .
Then A is

(i) preopen [12] if A ⊆ Int(Cl(A)) and preclosed if Cl(Int(A) ⊆ A.
(ii) semi-open [10] if A ⊆ Cl(Int(A)) and semi-closed if Int(Cl(A)) ⊆ A.
(iii) regular open [15] if A = Int(ClA)) and regular closed if A =

Cl(Int(A)).
(iv) generalized closed [11] (briefly g-closed) if Cl(A) ⊆ U whenever A ⊆ U

and U is open
(v) regular generalized closed [14] (briefly rg-closed) if Cl(A) ⊆ U when-

ever A ⊆ U and U is regular open.
(vi) generalized preclosed [4] (briefly gp-closed) if pCl(A) ⊆ U whenever

A ⊆ U and U is open.
(vii) generalized pre-regular closed [7] (briefly gpr-closed) if pCl(A) ⊆ U

whenever A ⊆ U and U is regular open in X .

The complement of a g-closed set is g-open. Analogously, the concepts
rg-open set, gp-open set, and gpr-open set will be defined.

Let f : X → Y . Then f is

(i) g-continuous [5] if f−1(V ) is g-closed for every closed set V of Y .
(ii) rg-continuous [14] if f−1(V ) is rg-closed for every closed set V of Y .
(iii) semi-continuous [10] if f−1(V ) is semi-closed for every closed set V of

Y .
(iv) gp-continuous [3] if f−1(V ) is gp-closed for every closed set V of Y .
(v) gpr-continuous [7] if f−1(V ) is gpr-closed for every closed set V of Y .
(vi) gc-irresolute [5] if the inverse image of a g-closed set in Y is g-closed

in X .
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(vii) gp-irresolute [3] if the inverse image of a gp-closed set in Y is gp-closed
in X .

A collection {Aα : α ∈ Ω} of subsets of a space X is locally finite [13]
if every point of X has a neighborhood that intersects only finitely many
members of {Aα : α ∈ Ω}.

The following theorems and propositions will be useful in the sequel.

Proposition 1.1 [13]. Let {Aα : α ∈ Ω} be a locally finite collection of
subsets of a space X . Then Cl(∪Aα) = ∪Cl(Aα).

Proposition 1.2 [11]. Suppose B ⊆ A ⊆ X , B is g-closed relative to A,
and A is a g-closed subset of X . Then B is g-closed relative to X .

Proposition 1.3 [8]. Let A ⊆ Y ⊆ X . Then

(a) If Y is open in X and A is gpr-closed in X , then A is gpr-closed in Y

and
(b) If Y is open and preclosed in X and A is gpr-closed in Y , then A is

gpr-closed in X .

Proposition 1.4 [3]. Let F ⊆ A ⊆ X , where A is open and gp-closed in
X . If F is gp-closed in A, then F is gp-closed in X .

Proposition 1.5 [1]. The union of two gpr-closed sets is gpr-closed if at
least one of them is semi-closed.

Proposition 1.6 [6]. For a topological space X the following are equiv-
alent.

(a) X is submaximal.
(b) Cl(A) = pCl(A) for every subset A of X , where pCl(A) is the preclo-

sure of A.

Proposition 1.7 [5]. Let X = A∪B be a topological space with topology
τ and Y be a topological space with topology σ. Let f : (A, τ |A) → (Y, σ)
and g: (B, τ |B) → (Y, σ) be g-continuous maps such that f(x) = g(x) for
every x ∈ A∩B. Suppose A and B are g-closed sets in X . Then the function
h: (X, τ) → (Y, σ), defined by h(x) = f(x) for x ∈ A and h(x) = g(x) for
x ∈ B is g-continuous.

Proposition 1.8 [8]. Let X = A∪B be a topological space with topology
τ and Y be a topological space with topology σ. Let the family of all gpr-
open sets in (X, τ) be closed under finite intersections and let f : (A, τ |A) →
(Y, σ) and g: (B, τ |B) → (Y, σ) be gpr-continuous maps such that f(x) =
g(x) for every x ∈ A ∩ B. Suppose A and B are open and preclosed in X .
Then the function h: (X, τ) → (Y, σ) defined by h(x) = f(x) for x ∈ A and
h(x) = g(x) for x ∈ B is gpr-continuous.

Proposition 1.9 [2]. If A is semi-closed, then pCl(A ∪ B) = pCl(A) ∪
pCl(B).
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Proposition 1.10 [3]. In a submaximal space, every gp-closed set is
g-closed.

Arbitrary union of g-closed (resp. rg-closed) sets is not g-closed (resp.
rg-closed). However, we will prove that the union of a locally finite collec-
tion of g-closed sets (resp. rg-closed) is g-closed (resp. rg-closed).

2. Pasting Lemmas. In this section we prove that the union of
g-closed sets from a locally finite family of g-closed sets is g-closed, the
union of gp-closed sets from a locally finite family of gp-closed sets in a
submaximal space is gp-closed, and we use them to generalize the pasting
lemma.

Theorem 2.1. If {Aα : α ∈ Ω} is a locally finite family of g-closed
(resp. rg-closed) sets, then ∪Aα is g-closed (resp. rg-closed).

Proof. Let {Aα} be a locally finite collection of g-closed (resp. rg-
closed) sets in X and let ∪Aα ⊆ U , where U is open (resp. regular open)
in X . Then Aα ⊆ U implies Cl(Aα) ⊆ U . This implies ∪Cl(Aα) ⊆ U .
By Proposition 1.1, Cl(∪Aα) ⊆ U . Therefore, ∪Aα is g-closed (resp. rg-
closed).

Corollary 2.2. If {Aα : α ∈ Ω} is a locally finite family of gp-closed
sets of submaximal space X , then ∪Aα is gp-closed.

Proof. The corollary follows from Proposition 1.10 and Theorem 2.1.

Theorem 2.3. Let X = ∪Aα and let {Aα : α ∈ Ω} be a locally finite
covering of g-closed sets. Let fα: Aα → Y be g-continuous (resp. rg-
continuous, resp. gc-irresolute) for all α ∈ Ω such that fα(x) = fβ(x) for
all x ∈ Aα ∩ Aβ . Define f(x) = fα(x) for x ∈ Aα. Then f is g-continuous
(resp. rg-continuous, resp. gc-irresolute).

Proof. Let F be closed (resp. g-closed) in Y . Then f−1(F ) =
∪f−1

α (F ). Since fα is g-continuous in Aα, f−1
α (F ) is g-closed in Aα for all α.

By Proposition 1.2, f−1
α (F ) is g-closed in X for all α. Since f−1

α (F ) ⊆ Aα

for all α and since {Aα : α ∈ Ω} is locally finite, {f−1
α (F ) : α ∈ Ω} is locally

finite. Then ∪f−1
α (F ) is g-closed (resp. rg-closed) in X .

Theorem 2.4. Let X = A ∪ B, where A and B are both open and
preclosed in X . Let f : A → Y and g: B → Y be gpr-continuous functions
such that f(x) = g(x) for every x ∈ A ∩ B. Define h: X → Y such that
h(x) = f(x) for x ∈ A and h(x) = g(x) for x ∈ B. Furthermore, if f is
semi-continuous (or) g is semi-continuous, then h is gpr-continuous.

Proof. Let F be closed in Y . Then h−1(F ) = f−1(F )∪g−1(F ) = C∪D,
where C = f−1(F ) and D = g−1(F ). By Proposition 1.3, C is gpr-closed in
X . Similarly, D is gpr-closed in X . Since f is semi-continuous, f−1(F ) is
semi-closed. By Theorem 1.5, C ∪D is gpr-closed in X . Therefore, h−1(F )
is gpr-closed in X . Hence, h is gpr-continuous.
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Theorem 2.5. Let {Aα : α ∈ Ω} be a locally finite collection of subsets
of a submaximal space X . Then pCl(∪Aα) = ∪pCl(Aα).

Proof. The theorem follows from Proposition 1.1 and Proposition 1.6.

Theorem 2.6. Let X be a submaximal space and let {Aα : α ∈ Ω} be a
locally finite covering of subsets of X such that each Aα is gp-closed in X .
Let fα: Aα → Y be gp-continuous for all α ∈ Ω such that fα(x) = fβ(x) for
all x ∈ Aα ∩ Aβ . Define f(x) = fα(x) for x ∈ Aα. Then f is g-continuous.

Proof. Let F be closed in Y . Since fα is gp-continuous in Aα, f−1
α (F )

is gp-closed in Aα for all α. Since each Aα is submaximal, f−1
α (F ) is g-

closed in Aα. By Proposition 1.2, f−1
α (F ) is g-closed in X for all α and

hence, fα: Aα → Y is g-continuous for each α. Since f−1
α (F ) ⊆ Aα for

all α and since {Aα : α ∈ Ω} is locally finite in X , {f−1
α (F ) : α ∈ Ω} is

a locally finite family of g-closed sets in X . Then by Theorem 2.3, f is
g-continuous. Again since f−1(F ) = ∪f−1

α (F ), by Theorem 2.1, ∪f−1
α (F )

is g-closed. This shows that f is g-continuous.

Lemma 2.7. The union of two gp-closed sets is gp-closed if at least one
of them is semi-closed.

Proof. Let A ∪ B ⊆ U , where U is open and A and B are gp-closed.
Then A ⊆ U and B ⊆ U . Since A and B are gp-closed, pCl(A) ⊆ U and
pCl(B) ⊆ U . Since A is semi-closed, by Proposition 1.9, pCl(A ∪ B) ⊆ U .
Therefore, A ∪ B is gp-closed.

Theorem 2.8. Let X = A ∪ B, where A and B are both open and gp-
closed. Let f : A → Y and g: B → Y be gp-continuous (resp. gp-irresolute)
functions such that f(x) = g(x) for every x ∈ A∩B. Define h: X → Y such
that h(x) = f(x) for x ∈ A and h(x) = g(x) for x ∈ B. Furthermore, if f

is semi-continuous or g is semi-continuous, then h is gp-continuous (resp.
gp-irresolute).

Proof. Let F be a closed (resp. gp-closed) set in Y . Then h−1(F ) =
f−1(F ) ∪ g−1(F ) = C ∪ D, where C = f−1(F ) and D = g−1(F ). By
Proposition 1.4, C is gp-closed in X . Similarly, D is gp-closed in X . Since
f is semi-continuous, f−1(F ) is semi-closed. Therefore, by using Lemma
2.7, h−1(F ) is gp-closed in X .
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