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REJOINDER

Hugh Chipman, Edward I. George and Robert E. McCulloch

First of all, we would like to thank the discussants, Merlise Clyde, Dean Foster and

Robert Stine, for their generous discussions. They have each made profound contribu-

tions to model selection and this comes through in their insightful remarks. Although

there is some overlap in the underlying issues they raise, they have done so from different

vantage points. For this reason, we have organized our responses around each of their

discussions separately.

Clyde

Clyde raises key issues surrounding prior selection. For choosing model space priors for

the linear model with redundant variables, she confirms the need to move away from

uniform and independence priors towards dilution priors. This is especially true in high

dimensional problems where independence priors will allocate most of their probability

to neighborhoods of redundant models. Clyde's suggestion to use an imaginary training

data to construct a dilution prior is a very interesting idea. Along similar lines, we have

considered dilution priors for the linear model where p{^) is defined as the probability

that Y* ~ iVn(0,1) is "closer" to the span of XΊ than the span of any other XΊ>. Here Y*

can be thought of as imaginary training data reflecting ignorance about the direction of

Y. Further investigation of the construction of effective dilution priors for linear models

is certainly needed.

Clyde comments on the typical choices of Σ 7 for the coefficient prior p{βΊ \σ2
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2Σ7) in (3.9), namely Σ 7 = c(X'ΊXΊ)~ι and Σ 7 = cIqΊ- In a sense, these

choices are the two extremes, c{X'ΊXΊ)~~ι serves to reinforce the likelihood covariance

while cIqΊ serves to break it apart. As we point out, the coefficient priors under such Σ 7 ,

are the natural conditional distributions of the nonzero components of β given 7 when

β ~ Np(0,cσ2{X'X)~ι) and β ~ JVp(0,cσ2J), respectively. The joint prior p(/37,7 | σ2)

then corresponds to a reweighting of the conditional distributions according to the chosen

model space prior ^(7). With respect to such joint priors, the conditional distributions

are indeed compatible in the sense of Dawid and Lauritzen (2000). Although not strictly

necessary, we find such compatible specifications to provide an appealingly coherent

description of prior information.

We agree with Clyde that the choice of c can be absolutely crucial. As the calibration

result in (3.17) shows, different values of c, and hence different selection criteria such as

AIC, BIC and RIC, are appropriate for different states of nature. For larger models
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with many small nonzero coefficients, smaller values of c are more appropriate, whereas

for parsimonious models with a few large coefficients, larger values of c are better. Of

course, when such information about the actual model is unavailable, as is typically the

case, the adaptive empirical Bayes methods serve to insure against poor choices. It is

especially appealing that by avoiding the need to specify hyperparameter values, em-

pirical Bayes methods are automatic, a valuable feature for large complicated problems.

Similar features are also offered by fully Bayes methods that margin out the hyperpa-

rameters with respect to hyperpriors. The challenge for the implementation of effective

fully Bayes methods is the selection of hyperpriors that offer strong performance across

the model space while avoiding the computational difficulties described by Clyde.

Clyde points out an important limitation of using empirical Bayes methods with

conditional priors of the form p(βy | σ
2,7) = NqΊ(βΊ,σ

2cVΊ). When the actual model

has many moderate sized coefficients and but a few very large coefficients, the few large

coefficients will tend to inflate the implicit estimate of c, causing the moderate sized

coefficients to be ignored as noise. In addition to the heavy-tailed and the grouped

prior formulations she describes for mitigating such situations, one might also consider

elaborating the priors by adding a shape hyperparameter.

Finally, Clyde discusses the growing need for fast Bayesian computational methods

that "scale up" for very large high dimensional problems. In this regard, it may be

useful to combine heuristic strategies with Bayesian methods. For example, George

and McCulloch (1997) combined globally greedy strategies with local MCMC search in

applying Bayesian variable selection to build tracking portfolios. In our response to

Foster and Stine below, we further elaborate on the potential of greedy algorithms for

such purposes.

Foster and Stine

Foster and Stine begin by emphasizing the need for adaptive procedures. We completely

agree. The adaptive empirical Bayes methods described in Section 3.3 offer improved

performance across the model space while automatically avoiding the need for hyper-

parameter specification. For more complicated settings, adaptivity can be obtained by

informal empirical Bayes approaches that use the data to gauge hyperparameter values,

such as those we described for the inverse gamma distribution in Sections 3.2 and 4.1.2.

In the sinusoid modelling example of Foster and Stine, a simple adaptive resolution is

obtained by a Bayesian treatment with a prior on ω^. This nicely illustrates the funda-

mental adaptive nature of Bayesian analysis. By using priors rather than fixed arbitrary

values to describe the uncertainty surrounding the unknown characteristics in a statisti-

cal problem, Bayesian methods are automatically adaptive. We attribute the adaptivity
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of empirical Bayes methods to their implicit approximation of a fully Bayes approach.

Foster and Stine go on to discuss some revealing analogies between strategies for

minimum length coding and formulations for Bayesian model selection. The key idea

is that the probability model for the data, namely the complete Bayesian formulation,

also serves to generate the coding strategy. Choosing the probability model that best

predicts the data is tantamount to choosing the optimal coding strategy. Foster and Stine

note that improper priors are unacceptable because they generate infinite codes. This is

consistent with our strong preference for proper priors for model selection. They point

out the potential inefficiencies of Bernoulli model prior codes for variable selection, and

use them to motivate a universal code that adapts to the appropriate model size. This

is directly analogous to our observation in Section 3.3 that different hyperparameter

choices for the Bernoulli model prior (3.15) correspond to different model sizes, and

that an empirical Bayes hyperparameter estimate adapts to the appropriate model size.

It should be the case that the universal prior corresponds to a fully Bayes prior that

is approximated by the empirical Bayes procedure. Finally, their coding scheme for

interactions is interesting and clearly effective for parsimonious models. Such a coding

scheme would seem to correspond to a hierarchical prior that puts a Bernoulli l/p prior

on each potential triple - two linear terms and their interaction - and a conditionally

uniform prior on the elements of the triple.

The credit risk example given by Foster and Stine raises several interesting issues.

It illustrates that with this large dataset, an automatic stepwise search algorithm can

achieve promising results. Figure 1 shows how their adaptive threshold criterion guards

against overfitting, although the cross validation results seem also to suggest that a

smaller number of terms, around 20, is adequate for prediction. Another automatic

adaptive alternative to consider here would be a stepwise search based on the empirical

Bayes criterion CCMh in (3.22). It would also be interesting to investigate the poten-

tial of one of the Bayesian variable selection approaches using the hierarchical priors

described in Section 3.1 to account for potential relationships between linear and inter-

action terms. As opposed to treating all potential predictors independently, such priors

tend to concentrate prior mass in a smaller, more manageable region of the model space.

For example, Chipman, Hamada and Wu (1997) considered an 18 run designed ex-

periment with 8 predictors used in a blood-glucose experiment. The non-orthogonal

design made it possible to consider a total of 113 terms, including quadratic terms and

interactions. They found that independence priors of the form (3.2) led to such a diffuse

posterior that, in 10,000 steps of a Gibbs sampling run, the most frequently visited model

was visited only 3 times. On the other hand, hierarchical priors like (3.7) raised posterior

mass on the most probable model to around 15%. In the same problem stepwise meth-
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ods were unable to find all the different models identified by stochastic search. In effect,

priors that account for interactions (or other structure, such as correlations between

predictors which can lead to the dilution problem discussed in Section 3.1) can narrow

the posterior to models which are considered more "plausible". We note, however, that

the credit risk example is much larger than this example, and because the number of

observations there is much larger than the number of predictors, such a hierarchical prior

may have only a minor effect.

The credit risk example is also a clear illustration of the everlasting potential of

greedy search algorithms on very large problems. At the very least, greedy algorithms

can provide a "baseline" against which MCMC stochastic search results can be compared

and then thrown out if an improvement is not found. Furthermore, greedy algorithms

can provide a fast way to get rough estimates of hyperparameter values, and can be

used directly for posterior search. Greedy algorithms also offer interesting possibilities

for enhancement of stochastic search. At the most basic level, the models identified

by greedy algorithms can be used as starting points for stochastic searches. Stochastic

search algorithms can also be made more greedy, for example, by exponentiating the

probabilities in the accept/reject step of the MH algorithms. The use of a wide variety

of search algorithms, including MCMC stochastic search, can only increase the chances

of finding better models.




